Skip to main content
\(\renewcommand{\chaptername}{Unit} \newcommand{\derivativehomeworklink}[1]{\href{http://db.tt/cSeKG8XO}{#1}} \newcommand{\chpname}{unit} \newcommand{\sageurlforcurvature}{http://bmw.byuimath.com/dokuwiki/doku.php?id=curvature_calculator} \newcommand{\uday}{ \LARGE Day \theunitday \normalsize \flushleft \stepcounter{unitday} } \newcommand{\sageworkurl}{http://bmw.byuimath.com/dokuwiki/doku.php?id=work_calculator} \newcommand{\sagefluxurl}{http://bmw.byuimath.com/dokuwiki/doku.php?id=flux_calculator} \newcommand{\sageworkfluxurl}{http://bmw.byuimath.com/dokuwiki/doku.php?id=both_flux_and_work} \newcommand{\sagelineintegral}{http://bmw.byuimath.com/dokuwiki/doku.php?id=line_integral_calculator} \newcommand{\sagephysicalpropertiestwod}{http://bmw.byuimath.com/dokuwiki/doku.php?id=physical_properties_in_2d} \newcommand{\sagephysicalpropertiesthreed}{http://bmw.byuimath.com/dokuwiki/doku.php?id=physical_properties_in_3d} \newcommand{\sageDoubleIntegralCheckerURL}{http://bmw.byuimath.com/dokuwiki/doku.php?id=double_integral_calculator} \newcommand{\myscale}{1} \newcommand{\ds}{\displaystyle} \newcommand{\dfdx}[1]{\frac{d#1}{dx}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ii}{\vec \imath} \newcommand{\jj}{\vec \jmath} \newcommand{\kk}{\vec k} \newcommand{\vv}{\mathbf{v}} \newcommand{\RR}{\mathbb{R}} \newcommand{\R}{ \mathbb{R}} \newcommand{\inv}{^{-1}} \newcommand{\im}{\text{im }} \newcommand{\colvec}[1]{\begin{bmatrix}#1\end{bmatrix} } \newcommand{\cl}[1]{ \begin{matrix} #1 \end{matrix} } \newcommand{\bm}[1]{ \begin{bmatrix} #1 \end{bmatrix} } \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\rref}{rref} \DeclareMathOperator{\vspan}{span} \DeclareMathOperator{\trace}{tr} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\curl}{curl} \newcommand{\blank}[1]{[14pt]{\rule{#1}{1pt}}} \newcommand{\vp}{^{\,\prime}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Section2.5The Cross Product and Planes

ObjectivesTopical
  • use the normal vector to find the equation for a plane

We will now combine the dot product with the cross product to develop an equation of a plane in 3D. Before doing so, let's look at what information we need to obtain a line in 2D, and a plane in 3D. To obtain a line in 2D, one way is to have 2 points. The next problem introduces the new idea by showing you how to find an equation of a line in 2D.

Subsection2.5.1Planes from Points

Exercise2.5.1

Suppose the point \(P=(1,2)\) lies on line \(L\text{.}\) Suppose that the angle between the line and the vector \(\vec n=\left\lt 3,4\right>\) is 90\(^\circ\) (whenever this happens we say the vector \(\vec n\) is normal to the line). Let \(Q=(x,y)\) be another point on the line \(L\text{.}\) Use the fact that \(\vec n\) is orthogonal to \(\vec {PQ}\) to obtain an equation of the line \(L\text{.}\)

Exercise2.5.2

Let \(P=(a,b,c)\) be a point on a plane in 3D. Let \(\vec n=\langle A,B,C \rangle\) be a normal vector to the plane (so the angle between the plane and and \(\vec n\) is 90\(^\circ\)). Let \(Q=(x,y,z)\) be another point on the plane. Show that an equation of the plane through point \(P\) with normal vector \(\vec n\) is

\begin{equation*} A(x-a)+B(y-b)+C(z-c)=0. \end{equation*}
Exercise2.5.3

Consider the three points \(P=(1,0,0), Q=(2,0,-1), R=(0,1,3)\text{.}\) Find an equation of the plane which passes through these three points.

Hint

First find a normal vector to the plane.

Subsection2.5.2Planes and Lines

Exercise2.5.4

Find an equation of the plane containing the lines \(\vec r_1(t)=(1,3,0)t+(1,0,2)\) and \(\vec r_2(t)=(2,0,-1)t+(2,3,2)\text{.}\)

Exercise2.5.5

Consider the points \(P=(2,-1,0)\text{,}\) \(Q=(0,2,3)\text{,}\) and \(R=(-1,2,-4)\text{.}\)

(a)

Give an equation \((x,y,z)=(?,?,?)\) of the line through \(P\) and \(Q\text{.}\)

(b)

Give an equation of the line through \(P\) and \(R\text{.}\)

(c)

Give an equation of the plane through \(P\text{,}\) \(Q\text{,}\) and \(R\text{.}\)

Exercise2.5.6

Consider the two planes \(x+2y+3z=4\) and \(2x-y+z=0\text{.}\) These planes meet in a line. Find a vector that is parallel to this line. Then find a vector equation of the line.

Subsection2.5.3Computational Practice

These are provided to help you achieve better skills in basic computational answers

1
2
3