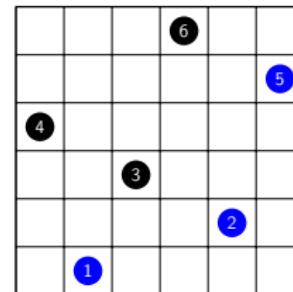


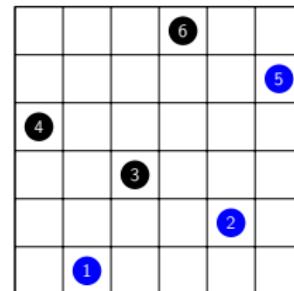
Sorting by right-to-left minima

Lara Pudwell Valparaiso
University
faculty.valpo.edu/lpudwell
joint work with Rebecca Smith

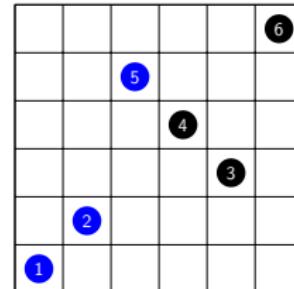
Special Session on Permutation Patterns
2026 Joint Mathematics Meetings
Washington, D.C.
January 4, 2026

1. Identify right-to-left minima of π .

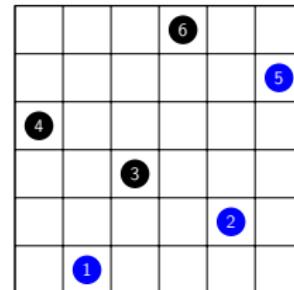
1. Identify right-to-left minima of π .



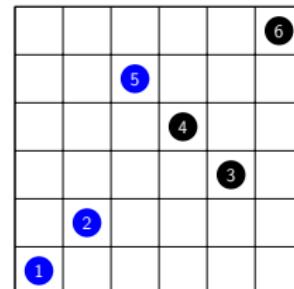
2. Move them to the front.



1. Identify right-to-left minima of π .



2. Move them to the front.



3. Call the result $S(\pi)$.

e.g. $S(413625) = 125436$.

Steps

1. Identify right-to-left minima of π .
2. Move them to the front.
3. Call the result $S(\pi)$. (and repeat with $S(\pi)$ as new input)

Observation:

- The first i digits of $S^i(\pi)$ are

Steps

1. Identify right-to-left minima of π .
2. Move them to the front.
3. Call the result $S(\pi)$. (and repeat with $S(\pi)$ as new input)

Observation:

- The first i digits of $S^i(\pi)$ are $1, 2, \dots, i$.
- Any permutation of length n is sorted to increasing order in at most

Steps

1. Identify right-to-left minima of π .
2. Move them to the front.
3. Call the result $S(\pi)$. (and repeat with $S(\pi)$ as new input)

Observation:

- The first i digits of $S^i(\pi)$ are $1, 2, \dots, i$.
- Any permutation of length n is sorted to increasing order in at most $n - 1$ iterations.

Data

$n \setminus k$	0	1	2	3	4	5	6	7
1	1							
2	1	1						
3	1	3	2					
4	1	7	11	5				
5	1	15	43	45	16			
6	1	31	148	268	211	61		
7	1	63	480	1344	1767	1113	272	
8	1	127	1509	6171	12099	12477	6551	1385

Notation

$t_{n,k}^*$ is number of permutations of length n requiring exactly k iterations.

Data

$n \setminus k$	0	1	2	3	4	5	6	7
1	1							
2	1	1						
3	1	3	2					
4	1	7	11	5				
5	1	15	43	45	16			
6	1	31	148	268	211	61		
7	1	63	480	1344	1767	1113	272	
8	1	127	1509	6171	12099	12477	6551	1385

Notation

$t_{n,k}^*$ is number of permutations of length n requiring *exactly* k iterations.

$t_{n,k}$ is number of permutations of length n requiring *at most* k iterations.

At most one iteration?

$n \setminus k$	0	1	2	3	4	5	6	7
1	1							
2	1	1						
3	1	3	2					
4	1	7	11	5				
5	1	15	43	45	16			
6	1	31	148	268	211	61		
7	1	63	480	1344	1767	1113	272	
8	1	127	1509	6171	12099	12477	6551	1385

At most one iteration?

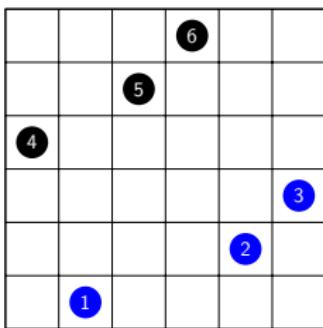
$n \setminus k$	0	1	2	3	4	5	6	7
1	1							
2	1	1						
3	1	3	2					
4	1	7	11	5				
5	1	15	43	45	16			
6	1	31	148	268	211	61		
7	1	63	480	1344	1767	1113	272	
8	1	127	1509	6171	12099	12477	6551	1385

$$t_{n,1} = 2^{n-1}$$

At most one iteration?

Theorem

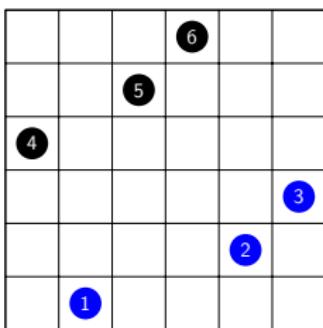
$$t_{n,1} = 2^{n-1}.$$



At most one iteration?

Theorem

$$t_{n,1} = 2^{n-1}.$$

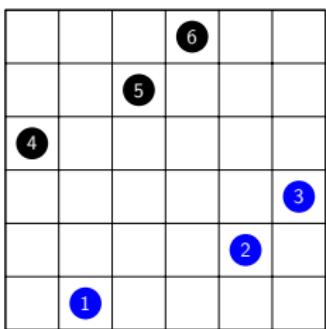


$$Av(321, 314\bar{2})$$

At most one iteration?

Theorem

$$t_{n,1} = 2^{n-1}.$$



$$Av(321, 314\bar{2})$$

Corollary

$$t_{n,1}^* = t_{n,1} - t_{n,0} = 2^{n-1} - 1.$$

At most two iterations?

$n \setminus k$	0	1	2	3	4	5	6	7
1	1							
2	1	1						
3	1	3	2					
4	1	7	11	5				
5	1	15	43	45	16			
6	1	31	148	268	211	61		
7	1	63	480	1344	1767	1113	272	
8	1	127	1509	6171	12099	12477	6551	1385

At most two iterations?

$n \setminus k$	0	1	2	3	4	5	6	7
1	1							
2	1	1						
3	1	3	2					
4	1	7	11	5				
5	1	15	43	45	16			
6	1	31	148	268	211	61		
7	1	63	480	1344	1767	1113	272	
8	1	127	1509	6171	12099	12477	6551	1385

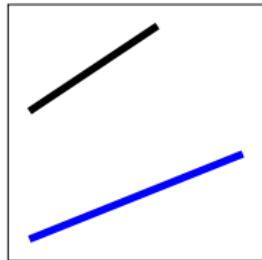
$$t_{n,2} = \frac{3^n - 2n + 3}{4}$$

At most two iterations?

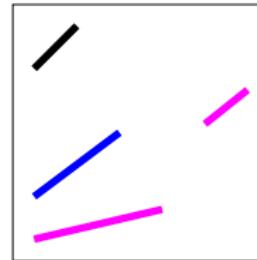
Theorem

$$t_{n,2} = \frac{3^n - 2n + 3}{4}. \text{ (A111277)}$$

Preimage of...



looks like....

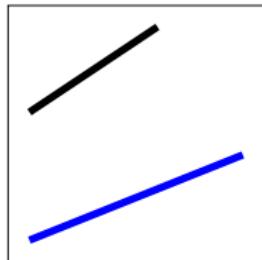


At most two iterations?

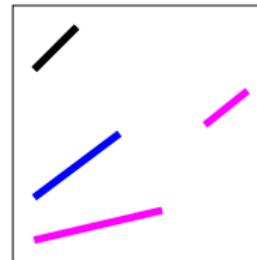
Theorem

$$t_{n,2} = \frac{3^n - 2n + 3}{4}. \quad (\text{A111277})$$

Preimage of...



looks like....



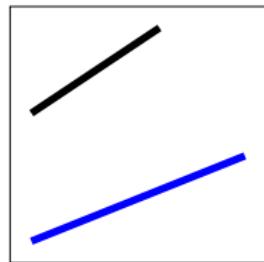
$$t_{n,2} = 1 + \sum_{k=1}^{n-1} 3^{k-1}(n-k) = \frac{3^n - 2n + 3}{4}.$$

At most two iterations?

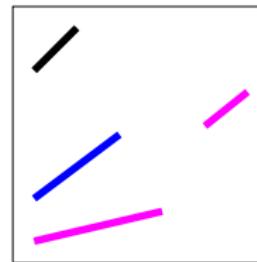
Theorem

$$t_{n,2} = \frac{3^n - 2n + 3}{4}. \quad (\text{A111277})$$

Preimage of...



looks like....



Corollary

$$t_{n,2}^* = t_{n,2} - t_{n,1} = \frac{3^n - 2n + 3}{4} - 2^{n-1} = \frac{3^n - 2^{n+1} - 2n + 3}{4}.$$

At most three iterations?

$n \setminus k$	0	1	2	3	4	5	6	7
1	1							
2	1	1						
3	1	3	2					
4	1	7	11	5				
5	1	15	43	45	16			
6	1	31	148	268	211	61		
7	1	63	480	1344	1767	1113	272	
8	1	127	1509	6171	12099	12477	6551	1385

At most three iterations?

$n \setminus k$	0	1	2	3	4	5	6	7
1	1							
2	1	1						
3	1	3	2					
4	1	7	11	5				
5	1	15	43	45	16			
6	1	31	148	268	211	61		
7	1	63	480	1344	1767	1113	272	
8	1	127	1509	6171	12099	12477	6551	1385

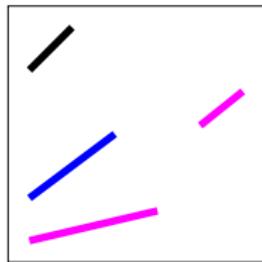
$$t_{n,3} = 2^{2n-3} - (n-2)2^{n-2}$$

At most three iterations?

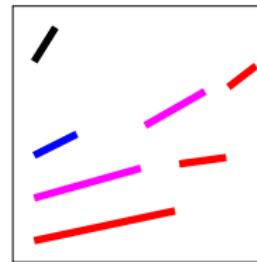
Theorem

$$t_{n,3} = 2^{2n-3} - (n-2)2^{n-2}. \text{ (A376585)}$$

Preimage of...



looks like....

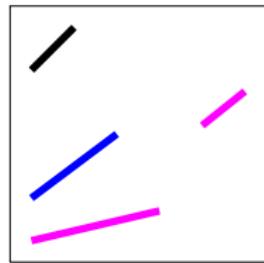


At most three iterations?

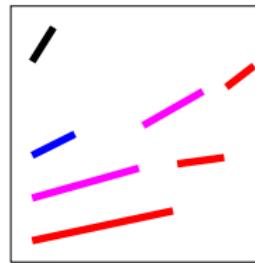
Theorem

$$t_{n,3} = 2^{2n-3} - (n-2)2^{n-2}. \quad (\text{A376585})$$

Preimage of...



looks like....



Corollary

$$t_{n,3}^* = t_{n,3} - t_{n,2} = \frac{4^n - 2 \cdot 3^n - (2n-4)2^n + (4n-6)}{8}.$$

Recap

- $t_{n,0} = 1$
- $t_{n,1} = 2^{n-1}$
- $t_{n,2} = \frac{3^n - 2n + 3}{4}$
- $t_{n,3} = 2^{2n-3} - (n-2)2^{n-2}$

Recap

- $t_{n,0} = 1 = \frac{1^n}{1}$
- $t_{n,1} = 2^{n-1} = \frac{2^n}{2}$
- $t_{n,2} = \frac{3^n - 2n + 3}{4}$
- $t_{n,3} = 2^{2n-3} - (n-2)2^{n-2} = \frac{4^n - (n-2)2^{n+1}}{8}$

Recap

- $t_{n,0} = 1 = \frac{1^n}{1}$
- $t_{n,1} = 2^{n-1} = \frac{2^n}{2}$
- $t_{n,2} = \frac{3^n - 2n + 3}{4}$
- $t_{n,3} = 2^{2n-3} - (n-2)2^{n-2} = \frac{4^n - (n-2)2^{n+1}}{8}$

In these cases, leading term of $t_{n,k}$ is $\frac{(k+1)^n}{2^k}$.

Recap

- $t_{n,0} = 1 = \frac{1^n}{1}$
- $t_{n,1} = 2^{n-1} = \frac{2^n}{2}$
- $t_{n,2} = \frac{3^n - 2n + 3}{4}$
- $t_{n,3} = 2^{2n-3} - (n-2)2^{n-2} = \frac{4^n - (n-2)2^{n+1}}{8}$

In these cases, leading term of $t_{n,k}$ is $\frac{(k+1)^n}{2^k}$.

In the long run, $t_{n,n-1} = n!$

$$\text{and } \lim_{n \rightarrow \infty} \frac{\left(\frac{n^n}{2^{n-1}}\right)}{n!} = \infty.$$

Recap

- $t_{n,0} = 1 = \frac{1^n}{1}$
- $t_{n,1} = 2^{n-1} = \frac{2^n}{2}$
- $t_{n,2} = \frac{3^n - 2n + 3}{4}$
- $t_{n,3} = 2^{2n-3} - (n-2)2^{n-2} = \frac{4^n - (n-2)2^{n+1}}{8}$

In these cases, leading term of $t_{n,k}$ is $\frac{(k+1)^n}{2^k}$.

In the long run, $t_{n,n-1} = n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ and $\lim_{n \rightarrow \infty} \frac{\left(\frac{n^n}{2^{n-1}}\right)}{n!} = \infty$.

Exactly $n - 1$ iterations?

$n \setminus k$	0	1	2	3	4	5	6	7
1	1							
2	1	1						
3	1	3	2					
4	1	7	11	5				
5	1	15	43	45	16			
6	1	31	148	268	211	61		
7	1	63	480	1344	1767	1113	272	
8	1	127	1509	6171	12099	12477	6551	1385

Exactly $n - 1$ iterations?

Theorem

The permutations counted by $t_{n,n-1}^*$ are exactly those where

- 2 appears before 1, and
- the patterns 123, 231, and 312 are not formed by consecutive *values*.

Intuition:

- If 1 precedes 2...

Exactly $n - 1$ iterations?

Theorem

The permutations counted by $t_{n,n-1}^*$ are exactly those where

- 2 appears before 1, and
- the patterns 123, 231, and 312 are not formed by consecutive *values*.

Intuition:

- If 1 precedes 2...
- π contains one of 123, 231, 312 with consecutive values, then $S(\pi)$...

Exactly $n - 1$ iterations?

Theorem

The permutations counted by $t_{n,n-1}^*$ are exactly those where

- 2 appears before 1, and
- the patterns 123, 231, and 312 are not formed by consecutive *values*.

Intuition:

- If 1 precedes 2...
- π contains one of 123, 231, 312 with consecutive values, then $S(\pi)$...

Example:

3576241 → 1357624 → 1243576 → 1235647 → ...

Exactly $n - 1$ iterations?

Theorem

$$\sum_{n=0}^{\infty} t_{n,n-1}^* \frac{x^n}{n!} = \sec(x) + \tan(x). \quad (A000111)$$

Sketch:

Both permutations counted by $t_{n,n-1}^*$ and Euler up-down permutations have a generating tree with

Root: $(1, 1)$

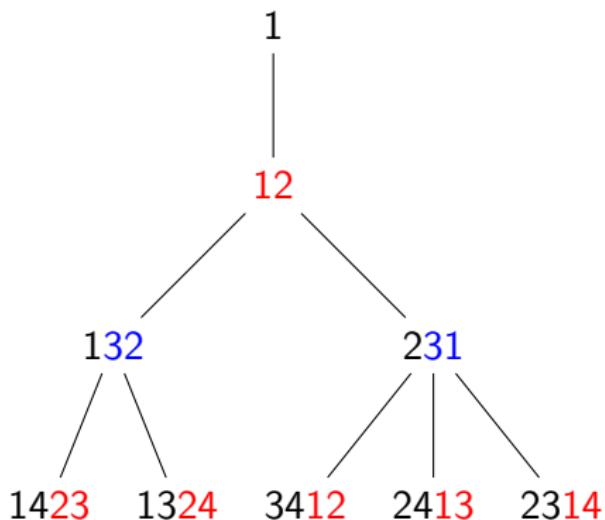
Rule: $(n, k) \rightarrow (n+1, n-k+2)(n+1, n-k+3) \cdots (n+1, n+1)$

Up-down permutations

- start with 12
- no **123** or **321** in consecutive positions

Up-down permutations

- start with 12
- no 123 or 321 in consecutive positions

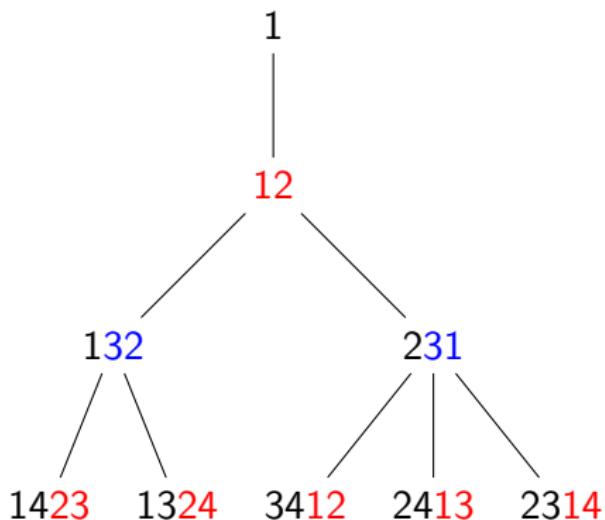


Up-down permutations

- start with 12
- no 123 or 321 in consecutive positions

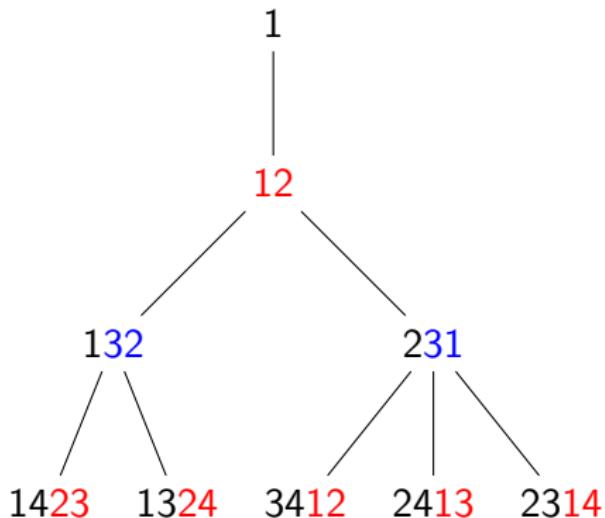
 $n - 1$ iteration permutations

- lowest values are 21
- no 123, 231, or 312 in consecutive values

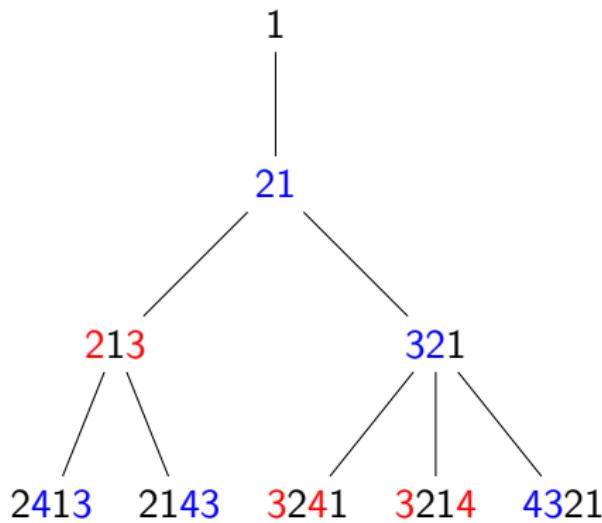


Up-down permutations

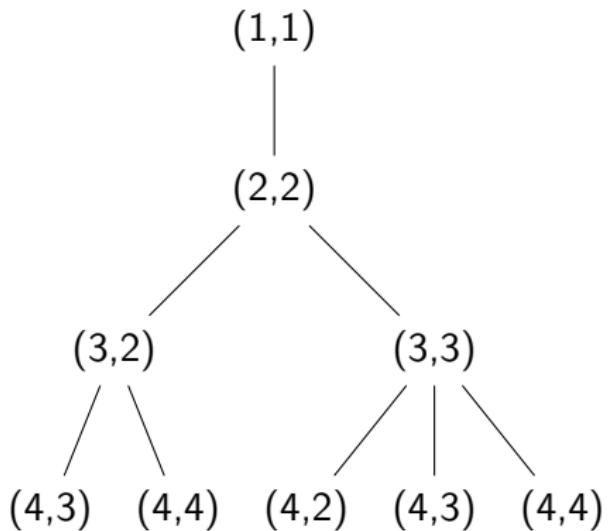
- start with 12
- no 123 or 321 in consecutive positions

 $n - 1$ iteration permutations

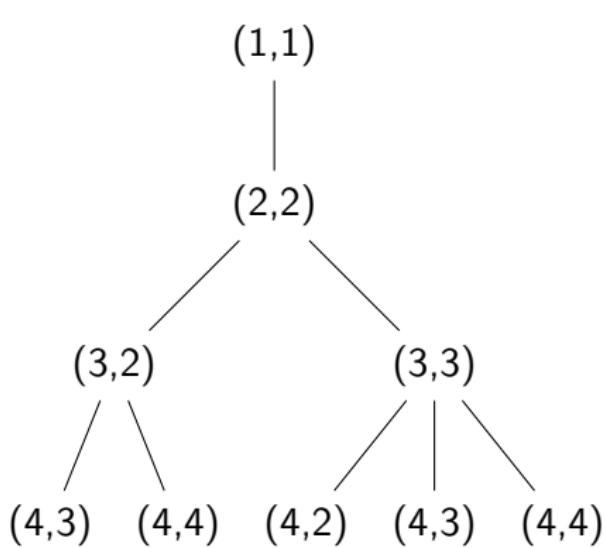
- lowest values are 21
- no 123, 231, or 312 in consecutive values



Generating tree



Generating tree

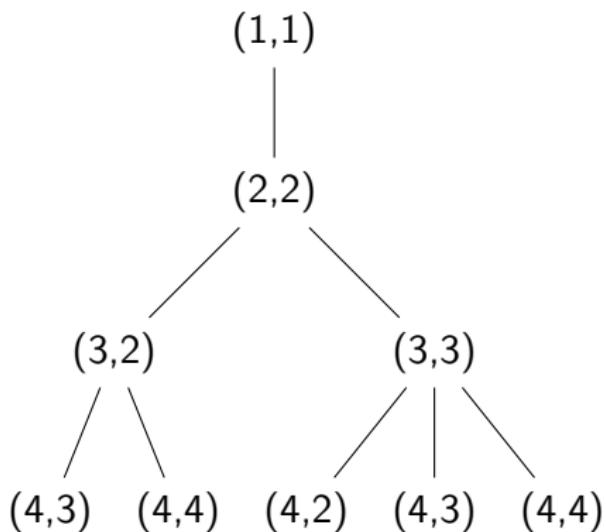


Entringer numbers

$$E(n, k) =$$

$$E(n, k - 1) + E(n - 1, n - k + 1)$$

Generating tree



Entringer numbers

$$E(n, k) =$$

$$E(n, k - 1) + E(n - 1, n - k + 1)$$

$n \setminus k$	1	2	3	4	5
1	1	0	0	0	0
2	0	1	0	0	0
3	0	1	1	0	0
4	0	1	2	2	0
5	0	2	4	5	5

Exactly $n - 2$ iterations?

$n \setminus k$	0	1	2	3	4	5	6	7
1	1							
2	1	1						
3	1	3	2					
4	1	7	11	5				
5	1	15	43	45	16			
6	1	31	148	268	211	61		
7	1	63	480	1344	1767	1113	272	
8	1	127	1509	6171	12099	12477	6551	1385

Exactly $n - 2$ iterations?

$n \setminus k$	0	1	2	3	4	5	6	7
1	1							
2	1	1						
3	1	3	2					
4	1	7	11	5				
5	1	15	43	45	16			
6	1	31	148	268	211	61		
7	1	63	480	1344	1767	1113	272	
8	1	127	1509	6171	12099	12477	6551	1385

$$t_{n,n-2}^* + t_{n,n-1}^*$$

Exactly $n - 2$ iterations?

$n \setminus k$	0	1	2	3	4	5	6	7
1	1							
2	1	1						
3	1	3	2					
4	1	7	11	5				
5	1	15	43	45	16			
6	1	31	148	268	211	61		
7	1	63	480	1344	1767	1113	272	
8	1	127	1509	6171	12099	12477	6551	1385

$$t_{n,n-2}^* + t_{n,n-1}^* = t_{n+1,n}^*$$

Exactly $n - 2$ iterations?

$n \setminus k$	0	1	2	3	4	5	6	7
1	1							
2	1	1						
3	1	3	2					
4	1	7	11	5				
5	1	15	43	45	16			
6	1	31	148	268	211	61		
7	1	63	480	1344	1767	1113	272	
8	1	127	1509	6171	12099	12477	6551	1385

$$t_{n,n-2}^* + t_{n,n-1}^* = t_{n+1,n}^*$$

Sketch: make generating tree for these two diagonals together.

Summary

$n \setminus k$	0	1	2	3	4	5	6	7
1	1							
2	1	1						
3	1	3	2					
4	1	7	11	5				
5	1	15	43	45	16			
6	1	31	148	268	211	61		
7	1	63	480	1344	1767	1113	272	
8	1	127	1509	6171	12099	12477	6551	1385

- $t_{n,0} = 1$
- $t_{n,1} = 2^{n-1}$
- $t_{n,2} = \frac{3^n - 2n + 3}{4}$
- $t_{n,3} = 2^{2n-3} - (n-2)2^{n-2}$
- $t_{n,n-1}^*$ matches number of up-down permutations.
- $t_{n,n-2}^*$ matches first differences of $t_{n,n-1}^*$ sequence.

Summary

$n \setminus k$	0	1	2	3	4	5	6	7
1	1							
2	1	1						
3	1	3	2					
4	1	7	11	5				
5	1	15	43	45	16			
6	1	31	148	268	211	61		
7	1	63	480	1344	1767	1113	272	
8	1	127	1509	6171	12099	12477	6551	1385

- $t_{n,0} = 1$
- $t_{n,1} = 2^{n-1}$
- $t_{n,2} = \frac{3^n - 2n + 3}{4}$
- $t_{n,3} = 2^{2n-3} - (n-2)2^{n-2}$
- $t_{n,n-1}^*$ matches number of up-down permutations.
- $t_{n,n-2}^*$ matches first differences of $t_{n,n-1}^*$ sequence.

Thanks for listening!
slides at faculty.valpo.edu/lpudwell