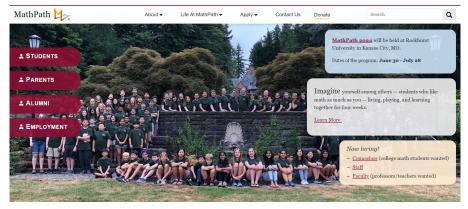
An Erdős-Szekeres Permutation Game

Lara Pudwell Valparaiso faculty.valpo.edu/lpudwell

Special Session on Permutation Patterns; AMS Fall Eastern Sectional Meeting October 20, 2024

Audience: young thinkers



MathPath (mathpath.org) a national residential summer camp for 11-14 year olds showing high interest in mathematics.

The Game

The (a, b)-permutation game

- Take turns naming *different* positive numbers.
- The game is over when the permutation you made so far has an increasing subsequence of length *a* or a decreasing subsequence of length *b*.

Question: How long can you make the (a, b)-permutation game last?

The Game

The (a, b)-permutation game

- Take turns naming *different* positive numbers.
- The game is over when the permutation you made so far has an increasing subsequence of length *a* or a decreasing subsequence of length *b*.

Question: How long can you make the (a, b)-permutation game last?

Theorem (Erdős-Szekeres, 1935)

Any permutation of length (a-1)(b-1)+1 or more contains either an increasing pattern of length *a* or a decreasing pattern of length *b*.

- For each turn, keep track of:
 - **1** the longest increasing sequence ending with the new number.
 - 2 the longest decreasing sequence ending with the new number.

Chosen number:	5	1	4	2	
increasing:	1	1	2	2	
decreasing:	1	2	2	3	

- For each turn, keep track of:
 - **1** the longest increasing sequence ending with the new number.
 - 2 the longest decreasing sequence ending with the new number.

Example:

Chosen number:	5	1	4	2	
increasing:	1	1	2	2	
decreasing:	1	2	2	3	

• The corresponding pairs of numbers are different because...

- For each turn, keep track of:
 - the longest increasing sequence ending with the new number.
 - 2 the longest decreasing sequence ending with the new number.

Chosen number:	5	1	4	2
increasing:	1	1	2	2
decreasing:	1	2	2	3

- The corresponding pairs of numbers are different because...
- The game is over when...

- For each turn, keep track of:
 - **1** the longest increasing sequence ending with the new number.
 - Ithe longest decreasing sequence ending with the new number.

Chosen number:	5	1	4	2	E
increasing:	1	1	2	2	ŀ
decreasing:	1	2	2	3	L

•				
		۲		
			۲	
	•			

- The corresponding pairs of numbers are different because...
- The game is over when...
- There are (a 1)(b 1) different possible pairs before a game-ending choice must be made.

The (a, b)-permutation game

- Take turns naming *different* positive numbers.
- The game is over when the permutation you made so far has an increasing subsequence of length *a* or a decreasing subsequence of length *b*.

The (a, b)-permutation game

- Take turns naming *different* positive numbers.
- The game is over when the permutation you made so far has an increasing subsequence of length *a* or a decreasing subsequence of length *b*.

 $\begin{array}{c} 12 \rightarrow 123 \\ 12 \rightarrow 12 \frac{4}{3} \\ 12 \rightarrow 12 \frac{1}{2} \end{array}$

The (a, b)-permutation game

- Take turns naming *different* positive numbers.
- The game is over when the permutation you made so far has an increasing subsequence of length *a* or a decreasing subsequence of length *b*.

 $\begin{array}{c} 12 \rightarrow 123 \\ \hline 12 \rightarrow 12\frac{4}{3} \\ \hline 12 \rightarrow 12\frac{1}{2} \\ \hline 12 \rightarrow 231 \\ \end{array} \qquad \qquad 12 \rightarrow 231 \\ \end{array}$

The (a, b)-permutation game

- Take turns naming *different* positive numbers.
- The game is over when the permutation you made so far has an increasing subsequence of length *a* or a decreasing subsequence of length *b*.



The (a, b)-permutation game

- Take turns naming *different* positive *numbers*.
- The game is over when the permutation you made so far has an increasing subsequence of length *a* or a decreasing subsequence of length *b*.

When you complete an increasing subsequence of length *a* or a decreasing subsequence of length *b*, *you lose*.

The (a, b)-permutation game

- Take turns naming *different* positive *numbers*.
- The game is over when the permutation you made so far has an increasing subsequence of length *a* or a decreasing subsequence of length *b*.
 When you complete an increasing subsequence of length *a* or a

decreasing subsequence of length *b*, *you lose*.

Question: Who has the winning strategy?

$a \ge 2$, b = 2

- Minimum length game? 2 turns
- Maximum length game? a turns

(日)

$a \ge 2, b = 2$

- Minimum length game? 2 turns
- Maximum length game? *a* turns

Strategy:

- Generate an increasing permutation
- If a is even player 1 wins.
- If a is odd player 2 wins.

Example:

$\epsilon \rightarrow_1 1 \rightarrow_2 12 \rightarrow_1 123 \rightarrow_2 1234 \rightarrow_1 12345 \rightarrow_2 \cdots$

< ∃ >

Representing moves visually

Draw a (b-1) imes (a-1) grid, and label cells by ordered pairs as follows:

→ < ∃→

▲ 同 ▶ ▲ 目

Representing moves visually

Draw a (b-1) imes (a-1) grid, and label cells by ordered pairs as follows:

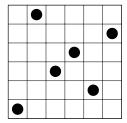
Shade a cell when the most recent move has this ordered pair in the Seidenberg proof of Erdős-Szekeres Theorem.

Play on a $(b-1) \times (a-1)$ grid.

- First move: Player 1 shades the (1,1) cell.
- Players take turns shading *legal* cells.
- Last move: player who takes the (a 1, b 1) cell wins.

What makes a cell *legal*?

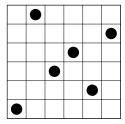
What makes a cell *legal*?



(1,1)	(2,1)	(3,1)	(4,1)	(5,1)
(1,2)	(2,2)	(3,2)	(4,2)	(5,2)
(1,3)	(2,3)	(3,3)	(4,3)	(5,3)
(1,4)	(2,4)	(3,4)	(4,4)	(5,4)

What makes a cell legal?

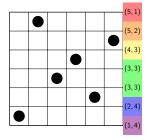
• Either the row number or column number is strictly larger each previously-shaded cell.



(1,1)	(2,1)	(3.1)	(4,1)	(5,1)
(1,2)	(2,2)	(3,2)	(4,2)	(5,2)
(1,3)	(2,3)	(3,3)	(4,3)	(5,3)
(1,4)	(2,4)	(3,4)	(4,4)	(5,4)

What makes a cell legal?

- Either the row number or column number is strictly larger each previously-shaded cell.
- Must share an edge with some previously eliminated cell.



(1,1)	(2,1)	(3,1)	(4,1)	(5,1)
(1,2)	(2,2)	(3,2)	(4,2)	(5,2)
(1,3)	(2,3)	(3,3)	(4,3)	(5,3)
(1,4)	(2,4)	(3,4)	(4,4)	(5,4)

Play on a $(b-1) \times (a-1)$ grid.

- First move: Player 1 shades the (1,1) cell.
- Players take turns shading *legal* cells.
- Last move: player who takes the (a 1, b 1) cell wins.

Play on a $(b-1) \times (a-1)$ grid.

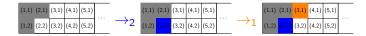
- First move: Player 1 shades the (1,1) cell.
- Players take turns shading *legal* cells.
- Last move: player who takes the (a 1, b 1) cell wins.

 $a \geq 2$, b = 2

$$\underbrace{\left(1,1\right)\left(2,1\right)\left(3,1\right)\left(4,1\right)\left(5,1\right)\cdots} \rightarrow 1 \underbrace{\left(1,1\right)\left(2,1\right)\left(3,1\right)\left(4,1\right)\left(5,1\right)\cdots} \rightarrow 2 \underbrace{\left(1,1\right)\left(2,1\right)\left(3,1\right)\left(4,1\right)\left(5,1\right)\cdots} \rightarrow 1 \cdots$$

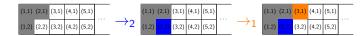
 $a \ge 3$, b = 3Case 1:

Case 2:



 $a \ge 3$, b = 3Case 1:

Case 2:



Endgame:

 $a \ge 4$, b = 4Opening moves:



or

 $a \ge 4$, b = 4

Midgame:

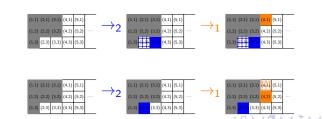
э

The permutation game, re-framed $a \ge 4$, b = 4Case 1a:

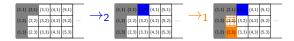
Case 1b:

Case 1c:

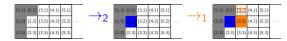
Case 1d:



 $a \ge 4$, b = 4Case 2a:



Case 2b:



Case 2c:

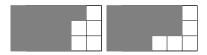
 $a \ge 4$, b = 4

э

Image: A mathematical states and a mathem

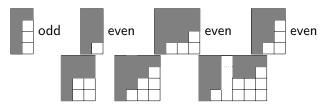
 $a \geq 4$, b = 4

Endgame:



The permutation game, re-framed $a \ge 5$, b = 5

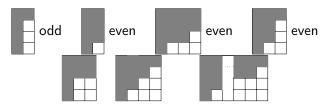
Seven(ish) states:



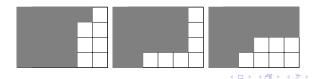
3

The permutation game, re-framed $a \ge 5, b = 5$

Seven(ish) states:



Endgame:



э

Moves for $a \ge b$ game

b	minimum moves	maximum moves	actual moves
			using strategy
2	2	а	а
3	3	2 <i>a</i> – 1	2 <i>a</i> – 2
4	4	3 <i>a</i> — 2	2a - 3 or $2a - 1$
5	5	4 <i>a</i> — 3	between $2a - C$ and $4a - 6$

< ロ > < 回 > < 回 > < 回 > < 回 >

• First player to complete 1...a or b...1 wins?

イロト イ団ト イヨト イヨト

• First player to complete 1...a or b...1 wins?

Same strategy on smaller board

イロト イ団ト イヨト イヨト

• First player to complete 1...a or b...1 wins?

Same strategy on smaller board

• Players pick specific numbers from $\{1, \ldots, (a-1)(b-1)+1\}$, rather than forming a pattern?

→ Ξ →

• First player to complete 1...a or b...1 wins?

Same strategy on smaller board

• Players pick specific numbers from $\{1, \ldots, (a-1)(b-1)+1\}$, rather than forming a pattern? Results for $(a-1)(b-1)+1 \le 15$ (Harary, Sagan, and West); general case open

• First player to complete 1...a or b...1 wins?

Same strategy on smaller board

- Players pick specific numbers from $\{1, \ldots, (a-1)(b-1)+1\}$, rather than forming a pattern? Results for $(a-1)(b-1)+1 \le 15$ (Harary, Sagan, and West); general case open
- More than two players?

• First player to complete 1...a or b...1 wins?

Same strategy on smaller board

• Players pick specific numbers from $\{1, \ldots, (a-1)(b-1)+1\}$, rather than forming a pattern? Results for $(a-1)(b-1)+1 \le 15$ (Harary, Sagan, and West); general case open

• More than two players? Open

• First player to complete 1...a or b...1 wins?

Same strategy on smaller board

- Players pick specific numbers from $\{1, \ldots, (a-1)(b-1)+1\}$, rather than forming a pattern? Results for $(a-1)(b-1)+1 \le 15$ (Harary, Sagan, and West); general case open
- More than two players?

Open

● b ≥ 6?

Open, but conjectured first player winning strategy exists.

For more details...

- Frank Harary, Bruce Sagan, and David West, Computer-aided analysis of monotonic sequence games, Atti Accad. Perolitana Pericolanti Cl. Sci. Fis. Mat. Natur. 61 (1983), 67–78.
- Lara Pudwell, Catalan Numbers and Permutations, *Mathematics Magazine* 97.3 (2024), 279–283.
- Abraham Seidenberg, A Simple Proof of a Theorem of Erdős and Szekeres, J. Lond. Math. Soc. 34.3 (1959), 352.

Thanks for listening!

slides at faculty.valpo.edu/lpudwell