A Permutation Game

Lara Pudwell Valparaiso University faculty.valpo.edu/lpudwell

MathPath Plenary July 22, 2025

イロト イポト イヨト イヨ

Counting Permutations breakout

- Day 1: Descents
- Day 2: Cycles
- Day 3: Fixed Points
- Day 4: Patterns
- Day 5: Solution to The Game of the Week

(日)

Counting Permutations breakout

- Day 1: Descents
- Day 2: Cycles
- Day 3: Fixed Points
- Day 4: Patterns
- Day 5: Solution to The Game of the Week

Today: More variations on the Game of the Week!

★ 3 → < 3</p>

Definition

A permutation is a list where order matters.

Permutations of 1? 1

Permutations of 1, 2? 12, 21

Permutations of 1, 2, 3?

(日)

Definition

A permutation is a list where order matters.

Permutations of 1? 1

Permutations of 1, 2? 12,21

Permutations of 1, 2, 3? 123, 132, 213, 231, 312, 321

There are

permutations of $1, 2, \ldots, n$.

• • • • • • •

Definition

A permutation is a list where order matters.

Permutations of 1? 1

Permutations of 1, 2? 12, 21

Permutations of 1, 2, 3? 123, 132, 213, 231, 312, 321

There are $n \cdot (n-1) \cdot (n-2) \cdots 1 = n!$ permutations of $1, 2, \ldots, n$.

• • • • • • •

Permutation Pictures

123, 132, 213, 231, 312, 321

Prequel: Permutation Patterns

Prequel: Permutation Patterns

Prequel: Permutation Patterns

562719348 contains the pattern 132

Prequel: Permutation Patterns

・ロト ・回ト ・ヨト ・ヨト

562719348 contains the pattern 1234

Prequel: Permutation Patterns

・ロト ・回ト ・ヨト ・ヨト

562719348 avoids the pattern 4321

The Game

The (a, b)-permutation game

- Take turns naming *different* positive numbers.
- The game is over when the permutation you made so far has an increasing $1 \cdots a$ pattern or a decreasing $b \cdots 1$ pattern.

Question: How long can you make the (a, b)-permutation game last?

Theorem (Erdős-Szekeres, 1935)

Any permutation of length ______ or more contains either an increasing pattern of length *a* or a decreasing pattern of length *b*.

$$a = 2, b = 2?$$

 $a = 3, b = 2?$
 $a = , b = 2?$

Theorem (Erdős-Szekeres, 1935)

Any permutation of length ______ or more contains either an increasing pattern of length *a* or a decreasing pattern of length *b*.

$$a = 2, b = 2?$$
 2
 $a = 3, b = 2?$
 $a = , b = 2?$

Theorem (Erdős-Szekeres, 1935)

Any permutation of length ______ or more contains either an increasing pattern of length *a* or a decreasing pattern of length *b*.

$$a = 2, b = 2?$$
 2
 $a = 3, b = 2?$ 3
 $a = 0, b = 2?$

Theorem (Erdős-Szekeres, 1935)

Any permutation of length ______ or more contains either an increasing pattern of length *a* or a decreasing pattern of length *b*.

$$a = 2, b = 2?$$
 2
 $a = 3, b = 2?$ 3
 $a = , b = 2?$ a

Theorem (Erdős-Szekeres, 1935)

Any permutation of length ______ or more contains either an increasing pattern of length *a* or a decreasing pattern of length *b*.

$$a = 2, b = 2?$$
 2 $a = 3, b = 3?$
 $a = 3, b = 2?$ 3 $a = 4, b = 3?$
 $a = , b = 2?$ a $a = , b = 3?$

Theorem (Erdős-Szekeres, 1935)

Any permutation of length ______ or more contains either an increasing pattern of length *a* or a decreasing pattern of length *b*.

$$a = 2, b = 2?$$
 2 $a = 3, b = 3?$ 5
 $a = 3, b = 2?$ 3 $a = 4, b = 3?$
 $a = , b = 2?$ a $a = , b = 3?$

Theorem (Erdős-Szekeres, 1935)

Any permutation of length ______ or more contains either an increasing pattern of length *a* or a decreasing pattern of length *b*.

$$a = 2, b = 2?$$
 2 $a = 3, b = 3?$ 5
 $a = 3, b = 2?$ 3 $a = 4, b = 3?$ 7
 $a = , b = 2?$ a $a = , b = 3?$

Theorem (Erdős-Szekeres, 1935)

Any permutation of length ______ or more contains either an increasing pattern of length *a* or a decreasing pattern of length *b*.

$$a = 2, b = 2?$$
 2 $a = 3, b = 3?$ 5 $a = 3, b = 2?$ 3 $a = 4, b = 3?$ 7 $a = , b = 2?$ a $a = , b = 3?$ $2a - 1$

Theorem (Erdős-Szekeres, 1935)

Any permutation of length ______ or more contains either an increasing pattern of length *a* or a decreasing pattern of length *b*.

$$a = 2, b = 2?$$
 2 $a = 3, b = 3?$ 5 $a = 4, b = 4?$ $a = 3, b = 2?$ 3 $a = 4, b = 3?$ 7 $a = 5, b = 4?$ $a = , b = 2?$ a $a = , b = 3?$ $2a - 1$ $a = , b = 4?$

Theorem (Erdős-Szekeres, 1935)

Any permutation of length ______ or more contains either an increasing pattern of length *a* or a decreasing pattern of length *b*.

$$a = 2, b = 2?$$
2 $a = 3, b = 3?$ 5 $a = 4, b = 4?$ 10 $a = 3, b = 2?$ 3 $a = 4, b = 3?$ 7 $a = 5, b = 4?$ $a = , b = 2?$ $a = , b = 3?$ $2a - 1$ $a = , b = 4?$

Theorem (Erdős-Szekeres, 1935)

Any permutation of length ______ or more contains either an increasing pattern of length *a* or a decreasing pattern of length *b*.

$$a = 2, b = 2?$$
2 $a = 3, b = 3?$ 5 $a = 4, b = 4?$ 10 $a = 3, b = 2?$ 3 $a = 4, b = 3?$ 7 $a = 5, b = 4?$ 13 $a = , b = 2?$ $a = , b = 3?$ $2a - 1$ $a = , b = 4?$

Theorem (Erdős-Szekeres, 1935)

Any permutation of length ______ or more contains either an increasing pattern of length *a* or a decreasing pattern of length *b*.

$$a = 2, b = 2?$$
 2 $a = 3, b = 3?$ 5 $a = 4, b = 4?$ 10 $a = 3, b = 2?$ 3 $a = 4, b = 3?$ 7 $a = 5, b = 4?$ 13 $a = , b = 2?$ a $a = , b = 3?$ $2a - 1$ $a = , b = 4?$ $3a - 2$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Optimal play intuition

Theorem (Erdős-Szekeres, 1935)

Any permutation of length (a-1)(b-1)+1 or more contains either an increasing pattern of length a or a decreasing pattern of length b.

$$a = 2, b = 2?$$
 2 $a = 3, b = 3?$ 5 $a = 4, b = 4?$ 10 $a = 3, b = 2?$ 3 $a = 4, b = 3?$ 7 $a = 5, b = 4?$ 13 $a = , b = 2?$ a $a = , b = 3?$ $2a - 1$ $a = , b = 4?$ $3a - 2$

For each turn, keep track of:

• the longest increasing sequence ending with the new number.

Chosen number:	5
increasing:	1
decreasing:	1

For each turn, keep track of:

• the longest increasing sequence ending with the new number.

Chosen number:	5	1
increasing:	1	
decreasing:	1	

For each turn, keep track of:

• the longest increasing sequence ending with the new number.

Chosen number:	5	1
increasing:	1	1
decreasing:	1	2

For each turn, keep track of:

the longest increasing sequence ending with the new number.

Chosen number:	5	1	4
increasing:	1	1	
decreasing:	1	2	

For each turn, keep track of:

the longest increasing sequence ending with the new number.

Chosen number:	5	1	4
increasing:	1	1	2
decreasing:	1	2	2

For each turn, keep track of:

the longest increasing sequence ending with the new number.

Chosen number:	5	1	4	2
increasing:	1	1	2	
decreasing:	1	2	2	

For each turn, keep track of:

the longest increasing sequence ending with the new number.

Chosen number:	5	1	4	2	Ľ
increasing:	1	1	2	2	⊢
decreasing:	1	2	2	3	L

For each turn, keep track of:

the longest increasing sequence ending with the new number.

the longest decreasing sequence ending with the new number. Example:

				-		•	
Chosen number:	5	1	4	2			
increasing:	1	1	2	2	-	_	
decreasing:	1	2	2	3	t		•

• The corresponding pairs of numbers are different because...

For each turn, keep track of:

the longest increasing sequence ending with the new number.

the longest decreasing sequence ending with the new number. Example:

Chosen number: 5 1 4 2 increasing: 1 1 2 2 decreasing: 1 2 2 3					-	•		
	Chosen number:	5	1	4	2			۲
decreasing: $1 2 2 3$	increasing:	1	1	2	2	_	_	
	decreasing:	1	2	2	3		•	

- The corresponding pairs of numbers are different because...
- The game is over when...
Proof Sketch (Seidenberg, 1959)

For each turn, keep track of:

• the longest increasing sequence ending with the new number.

② the longest decreasing sequence ending with the new number. Example:

				-				1
Chosen number:	5	1	4	2		٠		
incrossing:	1	1	2	2				
increasing:	1	T	2	2			•	
decreasing:	1	2	2	3				
	_	_		-	_			

- The corresponding pairs of numbers are different because...
- The game is over when...
- There are (a 1)(b 1) different possible pairs before a game-ending choice must be made.

Counting

Question: How many ways can we play the game optimally?

How many permutations of length (a-1)(b-1) avoid both $1 \cdots a$ and $b \cdots 1$?

Counting

Question: How many ways can we play the game optimally?

How many permutations of length (a-1)(b-1) avoid both $1 \cdots a$ and $b \cdots 1$?

a∖b	2	3	4	5	6	7
2	1	1	1	1	1	1
3	1	4	25	196	1764	17424
4	1	25	1764	213444	36072036	7659050256
5	1	196	213444	577152576	2764917142416	$1.96 imes10^{16}$

Counting

Question: How many ways can we play the game optimally?

How many permutations of length (a-1)(b-1) avoid both $1 \cdots a$ and $b \cdots 1$?

a\b	2	3	4	5	6	7
2	1	1	1	1	1	1
3	1	4	25	196	1764	17424
4	1	25	1764	213444	36072036	7659050256
5	1	196	213444	577152576	2764917142416	$1.96 imes10^{16}$

Not a new question...

1969]

PROBLEMS AND SOLUTIONS

1153

SOLUTIONS OF ADVANCED PROBLEMS Increasing and Decreasing Subsequences

5641 [1968, 1125]. Proposed by Stanley Rabinowitz, Far Rockaway, N. Y.

From the set $\{1, 2, 3, \dots, n^2\}$ how many arrangements of the n^2 elements are there such that there is no subsequence of n+1 elements either monotone increasing or monotone decreasing?

Solution by Richard Stanley, Harvard University. Let A be an arrangement of $\{1, 2, \dots, n^2\}$ with the desired property. Then the longest increasing and longest decreasing subsequences of A have length n (which is proved in the same way that one proves Erdös problem: every sequence of length n^{3+1} has an increasing or a decreasing sequence of length n+1). It follows from a theorem of Schensted (Increasing and decreasing subsequences, Canadian J. of Math., 13 (1961) 179–191. Thm. 3), using the fact that the only partition of n^2 into n parts with largest part n is $n^2 = n+n + \cdots + n$, that the number of such A is given by

$$\left[\frac{n^{2}!}{1^{1} \cdot 2^{2} \cdot 3^{3} \cdot \cdot \cdot n^{n} \cdot (n+1)^{n-1}(n+2)^{n-2} \cdot \cdot \cdot (2n-1)^{1}}\right]^{2}.$$

Schensted in fact solves the more general problem of finding the number of arrangements of $\{1, 2, \cdots, n\}$ whose longest increasing subsequence has a given length *a* and whose longest decreasing subsequence has a given length *b*.

Also solved by Joel Spencer.

Advanced Problem 5641. Amer. Math. Monthly 76.10 (1969), p.1153.

Fact

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

Questions:

- What is C_{a-1} ?
- Can we write a visual proof of this fact?

Fact

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

Questions:

- What is C_{a-1} ?
- Can we write a visual proof of this fact?

 C_n is the number of ways to arrange n pairs of parentheses.

 $C_1 =$

★ Ξ →

Fact

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

Questions:

- What is C_{a-1} ?
- Can we write a visual proof of this fact?

 C_n is the number of ways to arrange n pairs of parentheses.

 $C_1 = 1$ ()

→ Ξ →

Fact

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

Questions:

- What is C_{a-1} ?
- Can we write a visual proof of this fact?

 C_n is the number of ways to arrange n pairs of parentheses.

 $C_1 = 1$ () (Also, $C_0 = 1$.)

★ ∃ → ★

Fact

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

Questions:

- What is C_{a-1} ?
- Can we write a visual proof of this fact?

 C_n is the number of ways to arrange n pairs of parentheses.

$$C_1 = 1$$
 () (Also, $C_0 = 1$.)
 $C_2 =$

Fact

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

Questions:

- What is C_{a-1} ?
- Can we write a visual proof of this fact?

 C_n is the number of ways to arrange n pairs of parentheses.

$$C_1 = 1$$
 () (Also, $C_0 = 1$.)
 $C_2 = 2$ (()) or ()()

Fact

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

Questions:

- What is C_{a-1} ?
- Can we write a visual proof of this fact?

 C_n is the number of ways to arrange *n* pairs of parentheses.

$$C_1 = 1$$
 () (Also, $C_0 = 1$.)
 $C_2 = 2$ (()) or ()()
In general: ())

★ ∃ → ★

Fact

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

Questions:

- What is C_{a-1} ?
- Can we write a visual proof of this fact?

 C_n is the number of ways to arrange n pairs of parentheses.

$$C_1 = 1$$
 () (Also, $C_0 = 1$.)
 $C_2 = 2$ (()) or ()()

In general: (*i* pairs)

Fact

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

Questions:

- What is C_{a-1} ?
- Can we write a visual proof of this fact?

 C_n is the number of ways to arrange n pairs of parentheses.

$$C_1 = 1$$
 () (Also, $C_0 = 1$.)
 $C_2 = 2$ (()) or ()()
In general: (*i* pairs) *n*-*i*-1 pairs So, $C_n = \sum_{i=0}^{n-1} C_i C_{n-i-1}$

Fact

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

Questions:

- What is C_{a-1} ?
- Can we write a visual proof of this fact?

 C_n is the number of ways to arrange n pairs of parentheses.

$$C_{1} = 1 \quad () \qquad (Also, C_{0} = 1.)$$

$$C_{2} = 2 \quad (()) \text{ or } () ()$$
In general: $(i \text{ pairs}) n - i - 1 \text{ pairs}$ So, $C_{n} = \sum_{i=0}^{n-1} C_{i}C_{n-i-1} = \frac{\binom{2n}{n}}{n+1}$

Fact

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

Questions:

- What is C_{a-1} ?
- Can we write a visual proof of this fact?

 C_n is the number of ways to arrange *n* pairs of parentheses.

$$C_{1} = 1 \quad () \qquad (Also, C_{0} = 1.)$$

$$C_{2} = 2 \quad (()) \text{ or } () ()$$
In general: $(i \text{ pairs}) n - i - 1 \text{ pairs}$ So, $C_{n} = \sum_{i=0}^{n-1} C_{i}C_{n-i-1} = \frac{\binom{2n}{n}}{n+1}$

★ Ξ →

Fact

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

Questions:

- What is C_{a-1} ?
- Can we write a visual proof of this fact?

→ Ξ →

Fact

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

Questions:

- What is C_{a-1} ?
- Can we write a visual proof of this fact?

Strategy:

C_{a-1} is the number of ways to arrange a - 1 pairs of parentheses
So, (C_{a-1})² is...

Fact

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

Questions:

- What is C_{a-1} ?
- Can we write a visual proof of this fact?

Strategy:

- C_{a-1} is the number of ways to arrange a-1 pairs of parentheses
- So, $(C_{a-1})^2$ is the number of *pairs* of parentheses arrangements Example: $(C_2)^2 = 4$ matches

(()),()()

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

Observations about maximum length permutations avoiding $12 \cdots a$ and 321:

• The permutation has length 2(a-1).

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

Observations about maximum length permutations avoiding $12 \cdots a$ and 321:

- The permutation has length 2(a-1).
- Every digit is a left-to-right max or not.

• • = • • = •

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

Observations about maximum length permutations avoiding $12 \cdots a$ and 321:

- The permutation has length 2(a-1).
- Every digit is a left-to-right max or not.
- Left-to-right maxes are in increasing order.

★ ∃ → ★

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

Observations about maximum length permutations avoiding $12 \cdots a$ and 321:

- The permutation has length 2(a-1).
- Every digit is a left-to-right max or not.
- Left-to-right maxes are in increasing order.
- Non left-to-right maxes are in increasing order.

A B M A B M

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

Observations about maximum length permutations avoiding $12 \cdots a$ and 321:

- The permutation has length 2(a-1).
- Every digit is a left-to-right max or not.
- Left-to-right maxes are in increasing order.
- Non left-to-right maxes are in increasing order.
- Exactly half the digits are left-to-right maxes.

4 3 4 3 4

... but a new bijection

Fact

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

< ロ > < 同 > < 三 > < 三 >

... but a new bijection

Fact

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

... but a new bijection

Fact

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

... but a new bijection

Fact

There are $(C_{a-1})^2$ maximum length permutations with no $1 \cdots a$ and no 321.

• • = • • = •

Small Examples

< ロ > < 回 > < 回 > < 回 > < 回 >

Small Examples

Full details at: Catalan Numbers and Permutations, *Mathematics Magazine* 97.3 (2024), 279-283.

https://doi.org/10.1080/0025570X.2024.2336423

イロト イロト イヨト イヨ

What happens when you play this competitively?

The (a, b)-permutation game

- Take turns naming *different* positive numbers.
- The game is over when the permutation you made so far has an increasing $1 \cdots a$ pattern or a decreasing $b \cdots 1$ pattern.

What happens when you play this competitively?

The (a, b)-permutation game

- Take turns naming *different* positive numbers.
- The game is over when the permutation you made so far has an increasing 1… a pattern or a decreasing b… 1 pattern.
 When you complete an increasing 1… a pattern or a decreasing b…1 pattern, you lose.

What happens when you play this competitively?

The (a, b)-permutation game

- Take turns naming *different* positive numbers.
- The game is over when the permutation you made so far has an increasing 1… a pattern or a decreasing b… 1 pattern.
 When you complete an increasing 1… a pattern or a decreasing b…1 pattern, you lose.

Question: Who has the winning strategy?

$a \ge 2$, b = 2

The (a, 2)-permutation game

- Take turns naming *different* positive numbers.
- When you complete an increasing $1 \cdots a$ pattern or a decreasing 21 pattern, you lose.

Minimum length game? 2 turns Maximum length game? *a* turns

A B M A B M

$a \ge 2$, b = 2

The (a, 2)-permutation game

- Take turns naming *different* positive numbers.
- When you complete an increasing $1 \cdots a$ pattern or a decreasing 21 pattern, you lose.

Minimum length game? 2 turns Maximum length game? *a* turns

Strategy:

- Generate an increasing permutation
- If a is even player 1 wins; if a is odd player 2 wins.

Example:

$$\epsilon \rightarrow_1 1 \rightarrow_2 12 \rightarrow_1 123 \rightarrow_2 1234 \rightarrow_1 12345 \rightarrow_2 \cdots$$

$a \geq 3$, b = 3

The (a, 3)-permutation game

- Take turns naming *different* positive numbers.
- When you complete an increasing $1 \cdots a$ pattern or a decreasing 321 pattern, *you lose*.

Minimum length game? 3 turns

• • = • • = •
$a \geq 3$, b = 3

The (a, 3)-permutation game

- Take turns naming *different* positive numbers.
- When you complete an increasing $1 \cdots a$ pattern or a decreasing 321 pattern, *you lose*.

Minimum length game? 3 turns Maximum length game? 2(a-1)+1 turns

$a \ge 3, b = 3$

The (a, 3)-permutation game

- Take turns naming *different* positive numbers.
- When you complete an increasing $1 \cdots a$ pattern or a decreasing 321 pattern, *you lose*.

Minimum length game? 3 turns Maximum length game? 2(a-1)+1 turns

- You try: play against a neighbor
 - Is there a winning strategy... for the first player? ... for the second player?
 - How long does the game last with your strategy?

• • = • • = •

Representing moves visually

Draw a grid, and label cells by ordered pairs as follows:

(日)

Representing moves visually

Draw a grid, and label cells by ordered pairs as follows:

Shade a cell when the most recent move has this ordered pair in the Seidenberg proof of Erdős-Szekeres Theorem.

★ ∃ → ★ ∃

a = 6, b = 3 Game Example

 ϵ

(1,1)	(2,1)	(3,1)	(4,1)	(5,1)
(1,2)	(2,2)	(3,2)	(4,2)	(5,2)

a = 6, b = 3 Game Example

$\epsilon \rightarrow_1 \mathbf{1}$

(1,1)	(2,1)	(3,1)	(4,1)	(5,1)
(1,2)	(2,2)	(3,2)	(4,2)	(5,2)

•			

< ロ > < 回 > < 回 > < 回 > < 回 >

Competition

a = 6, b = 3 Game Example

$\epsilon \rightarrow_1 1 \rightarrow_2 12$

(1,1)	(2,1)	(3,1)	(4,1)	(5,1)
(1,2)	(2,2)	(3,2)	(4,2)	(5,2)

-				
-	-	-	_	
_		_	_	
	•			
٠				

Competition

a = 6, b = 3 Game Example

$\epsilon \rightarrow_1 1 \rightarrow_2 12 \rightarrow_1 231$

(1,1)	(2,1)	(3,1)	(4,1)	(5,1)
(1,2)	(2,2)	(3,2)	(4,2)	(5,2)

a = 6, b = 3 Game Example

$\epsilon \rightarrow_1 1 \rightarrow_2 12 \rightarrow_1 231 \rightarrow_2 2413$

(1,1)	(2,1)	(3,1)	(4,1)	(5,1)
(1,2)	(2,2)	(3,2)	(4,2)	(5,2)

イロト イヨト イヨト イヨト

a = 6, b = 3 Game Example

$\epsilon \rightarrow_1 1 \rightarrow_2 12 \rightarrow_1 231 \rightarrow_2 2413 \rightarrow_1 24135$

(1,1)	(2,1)	(3,1)	(4,1)	(5,1)
(1,2)	(2,2)	(3,2)	(4,2)	(5,2)

イロト イヨト イヨト イヨト

a = 6, b = 3 Game Example

$\epsilon \rightarrow_1 1 \rightarrow_2 12 \rightarrow_1 231 \rightarrow_2 2413 \rightarrow_1 24135 \rightarrow_2 241356$

(1,1)	(2,1)	(3,1)	(4,1)	(5,1)
(1,2)	(2,2)	(3,2)	(4,2)	(5,2)

イロト イヨト イヨト イヨト

a = 6, b = 3 Game Example

$\epsilon \rightarrow_1 \mathbf{1} \rightarrow_2 \mathbf{12} \rightarrow_1 \mathbf{231} \rightarrow_2 \mathbf{2413} \rightarrow_1 \mathbf{24135} \rightarrow_2 \mathbf{241356} \rightarrow_1 \mathbf{2413675}$

(1,1)	(2,1)	(3,1)	(4,1)	(5,1)
(1,2)	(2,2)	(3,2)	(4,2)	(5,2)

< ロ > < 同 > < 三 > < 三 >

Play on a $(b-1) \times (a-1)$ grid.

- First move: Player 1 shades the (1,1) cell.
- Players take turns shading *legal* cells.
- Last move: player who takes the (a 1, b 1) cell wins.

What makes a cell *legal*?

The permutation game, re-framed

What makes a cell *legal*?

Example:

(1,1)	(2,1)	(3,1)	(4,1)	(5,1)
(1,2)	(2,2)	(3,2)	(4,2)	(5,2)
(1,3)	(2,3)	(3,3)	(4,3)	(5,3)
(1,4)	(2,4)	(3,4)	(4,4)	(5,4)

What makes a cell legal?

• Either the row number or column number is strictly larger each previously-shaded cell.

Example:

(1,1)	(2,1)	(3,1)	(4,1)	(5,1)
(1,2)	(2,2)	(3,2)	(4,2)	(5,2)
(1,3)	(2,3)	(3,3)	(4,3)	(5,3)
(1,4)	(2,4)	(3,4)	(4,4)	(5,4)

What makes a cell legal?

- Either the row number or column number is strictly larger each previously-shaded cell.
- Must share an edge with some previously eliminated cell.

Example:

(1,1)	(2,1)	(3,1)	(4,1)	(5,1)
(1,2)	(2,2)	(3,2)	(4,2)	(5,2)
(1,3)	(2,3)	(3,3)	(4,3)	(5,3)
(1,4)	(2,4)	(3,4)	(4,4)	(5,4)

Play on a $(b-1) \times (a-1)$ grid.

- First move: Player 1 shades the (1,1) cell.
- Players take turns shading *legal* cells.
- Last move: player who takes the (a 1, b 1) cell wins.

★ ∃ → ★

Play on a $(b-1) \times (a-1)$ grid.

- First move: Player 1 shades the (1,1) cell.
- Players take turns shading *legal* cells.
- Last move: player who takes the (a 1, b 1) cell wins.

 $a \ge 2$, b = 2

$$\underbrace{\left(1,1\right)\left(2,1\right)\left(3,1\right)\left(4,1\right)\left(5,1\right)\cdots}_{\left(1,1\right)\left(2,1\right)\left(2,1\right)\left(3,1\right)\left(4,1\right)\left(5,1\right)\cdots}\rightarrow 2 \underbrace{\left(1,1\right)\left(2,1\right)\left(3,1\right)\left(4,1\right)\left(5,1\right)\cdots}_{\left(1,1\right)\left(2,1\right)\left(3,1\right)\left(4,1\right)\left(5,1\right)\cdots}\rightarrow 1 \cdots$$

• • = • • =

The (a, 3)-permutation game, re-framed

Case 1:

Case 2:

(1,1) (2,1) (3,1) (4,1) (5,1)		(1,1) (2,1) (3,1)	(4,1) (5,1)		(1,1) (2,1) (3,1)	(4,1) (5,1)	
(1,2) (2,2) (3,2) (4,2) (5,2)	\rightarrow_2	(1,2) (2,2) (3,2)	(4,2) (5,2)	$\rightarrow 1$	(1,2) (2,2) (3,2)	(4,2) (5,2)	

-

The (a, 3)-permutation game, re-framed

Case 1:

Case 2:

Endgame:

The (a, 4)-permutation game

You try: play against a neighbor

- Is there a winning strategy... for the first player? ... for the second player?
- How long does the game last with your strategy?

→ ∃ → < ∃</p>

The (a, 4)-permutation game

Opening moves:

or

(1,1	l)	(2,1)	(3,1)	(4,1)	(5,1)	10	(1,1)	(2,1)	(3,1)	(4,1)	(5,1)		(1,1)	(2,1)	(3,1)	(4,1)	(5,1)	
(1,2	2)	(2,2)	(3,2)	(4,2)	(5,2)	 $\overline{2}$	(1,2)	(2,2)	(3,2)	(4,2)	(5,2)	 $\neg 1$	(1,2)	(2,2)	(3,2)	(4,2)	(5,2)	
(1,3	8)	(2,3)	(3,3)	(4,3)	(5,3)		(1,3)	(2,3)	(3,3)	(4,3)	(5,3)		(1,3)	(2,3)	(3,3)	(4,3)	(5,3)	

э

The (a, 4)-permutation game

< ロ > < 回 > < 回 > < 回 > < 回 >

The (a, 4)-permutation game

Endgame:

イロト イ団ト イヨト イヨト

The (a, 5)-permutation game

< ロ > < 回 > < 回 > < 回 > < 回 >

The (a, 5)-permutation game

Seven(ish) states:

(ロ) (日) (日) (日) (日)

The (a, 5)-permutation game

Seven(ish) states:

Endgame:

Moves for $a \ge b$ game

b	minimum moves	maximum moves	actual moves				
			using strategy				
2	2	а	а				
3	3	2 <i>a</i> – 1	2 <i>a</i> – 2				
4	4	3 <i>a</i> — 2	2a - 3 or $2a - 1$				
5	5	4 <i>a</i> — 3	between $2a - C$ and $4a - 6$				

• First player to complete $1 \cdots a$ or $b \cdots 1$ wins?

< ロ > < 回 > < 回 > < 回 > < 回 >

• First player to complete $1 \cdots a$ or $b \cdots 1$ wins?

Same strategy on smaller board

イロト イ団ト イヨト イヨト

What if... ?

• First player to complete 1...a or b...1 wins?

Same strategy on smaller board

• Players pick specific numbers from $\{1, \ldots, (a-1)(b-1)+1\}$, rather than forming a pattern?

• • = • • =

What if... ?

• First player to complete 1...a or b...1 wins?

Same strategy on smaller board

• Players pick specific numbers from $\{1, \ldots, (a-1)(b-1)+1\}$, rather than forming a pattern? Results for $(a-1)(b-1)+1 \le 15$ (Harary, Sagan, and West); general case open

• • = • • = •

• First player to complete 1...a or b...1 wins?

Same strategy on smaller board

- Players pick specific numbers from $\{1, \ldots, (a-1)(b-1)+1\}$, rather than forming a pattern? Results for $(a-1)(b-1)+1 \le 15$ (Harary, Sagan, and West); general case open
- More than two players?

• First player to complete 1...a or b...1 wins?

Same strategy on smaller board

- Players pick specific numbers from $\{1, \ldots, (a-1)(b-1)+1\}$, rather than forming a pattern? Results for $(a-1)(b-1)+1 \le 15$ (Harary, Sagan, and West); general case open
- More than two players? Open

• First player to complete 1...a or b...1 wins?

Same strategy on smaller board

- Players pick specific numbers from $\{1, \ldots, (a-1)(b-1)+1\}$, rather than forming a pattern? Results for $(a-1)(b-1)+1 \le 15$ (Harary, Sagan, and West); general case open
- More than two players?

Open

b ≥ 6?

Open, but conjectured first player winning strategy exists.

For more details...

- M. H. Albert, R. E. L. Aldred, M. D. Atkinson, C. C. Handley, D. A. Holton, D. J. McCaughan, and B. E. Sagan, Monotonic sequence games, in *Games of No Chance III*, edited by M. H. Albert and R. J. Nowakowski, MSRI Publications, Volume 56 (2009), 309–327.
- Lara Pudwell, The Hidden and Surprising Structure of Ordered Lists, *Math Horizons* 29.3 (2022), 5-7.
- Lara Pudwell, Catalan Numbers and Permutations, *Mathematics Magazine* 97.3 (2024), 279-283.
- Frank Harary, Bruce Sagan, and David West, Computer-aided analysis of monotonic sequence games, Atti Accad. Perolitana Pericolanti Cl. Sci. Fis. Mat. Natur. 61 (1983), 67–78.
- Stanley Rabinowitz, (proposer), Richard Stanley, (solver), Advanced Problem 5641, Amer. Math. Monthly 76.10 (1969), 1153.
- Abraham Seidenberg, A Simple Proof of a Theorem of Erdős and Szekeres, J. Lond. Math. Soc. 34.3 (1959), 352.

Thanks for listening!

slides at faculty.valpo.edu/lpudwell

< ロ > < 同 > < 三 > < 三 >