Pattern avoidance in cyclic parking functions

Special Session on Parking Functions
AMS Fall Central Sectional Meeting
Saint Louis University
October 18, 2025

Definition

A permutation of length n is an ordered list of the numbers $1, 2, \ldots, n$. S_n is the set of all permutations of length n.

$$\mathcal{S}_1 = \{1\}$$

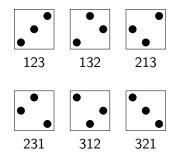
$$\mathcal{S}_2 = \{12, 21\}$$

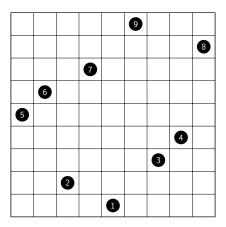
$$S_3 = \{123, 132, 213, 231, 312, 321\}$$

$$|\mathcal{S}_n| = n \cdot (n-1) \cdot (n-2) \cdot \cdot \cdot 1 = n!$$

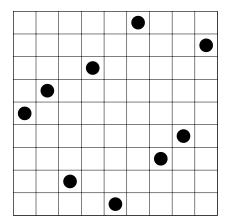
Note

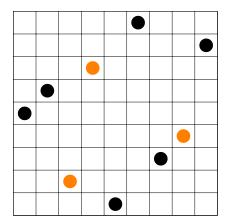
Permutation $\pi = \pi_1 \pi_2 \cdots \pi_n$ is often visualized by plotting the points (i, π_i) in the Cartesian plane.

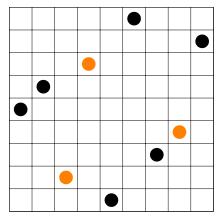




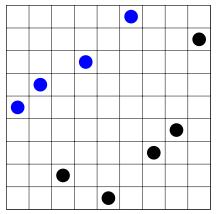
$$\pi = 562719348$$

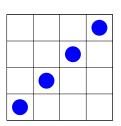




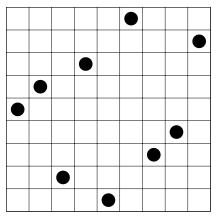


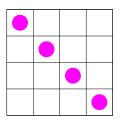
562719348 contains the pattern 132





562719348 contains the pattern 1234





562719348 avoids the pattern 4321

Big question

How many permutations of length n avoid the pattern ρ ?

ho	number of permutations avoiding $ ho$
$\rho \in \mathcal{S}_2$	1
$ ho\in\mathcal{S}_3$	C_n (Catalan)
1234	1, 1, 2, 6, 23, 103, 513, 2761, (Gessel, 1990)
1342	1, 1, 2, 6, 23, 103, 512, 2740, (Bóna, 1997)
1324	$1, 1, 2, 6, 23, 103, 513, 2762, \dots$ (open question)

Patterns in Cyclic Permutations

Big question

How many permutations of length n cyclicly avoid the pattern ρ ? (i.e. there is no i for which $\pi_{i+1} \cdots \pi_n \pi_1 \cdots \pi_i$ contains ρ .)

Studied by Callan (2002), Vella (2003)

Total number of cyclic permutations of size n: (n-1)!

ho	number of permutations cyclicly avoiding $ ho$
$\rho \in \mathcal{S}_3$	1
1234	$2^{n}+1-2n-\binom{n}{3}$
1342	$2^{n-1}-(n-1)$
1324	F_{2n-3} (Fibonacci)

History

Jelínek and Mansour (2009)

- Consider parking functions as words on $[n]^n$
- Determined all equivalence classes of patterns of length at most 5

History

Jelínek and Mansour (2009)

- Consider parking functions as words on $[n]^n$
- Determined all equivalence classes of patterns of length at most 5

Remmel and Qiu (2016)

- Consider parking functions as labeled Dyck paths (bijection of Garsia and Haiman)
- Each Dyck path is associated with a permutation (many-to-one correspondence)
- Determined number of 123-avoiding parking functions

History

Jelínek and Mansour (2009)

- Consider parking functions as words on $[n]^n$
- Determined all equivalence classes of patterns of length at most 5

Remmel and Qiu (2016)

- Consider parking functions as labeled Dyck paths (bijection of Garsia and Haiman)
- Each Dyck path is associated with a permutation (many-to-one correspondence)
- Determined number of 123-avoiding parking functions

Adeniran and Pudwell (2023)

- Extend Remmel and Qiu's work
- ullet Count parking functions avoiding a subset of \mathcal{S}_3

Current Project

• Think of parking function as a word w on $[n]^n$

```
\begin{split} \mathcal{PF}_1 &= \{1\} \\ \mathcal{PF}_2 &= \{11,12,21\} \\ \mathcal{PF}_3 &= \{111,112,121,211,122,212,221,113,\\ &\quad 131,311,123,132,213,231,312,321\} \end{split}
```

• Count parking functions such that there is no i where $w_{i+1} \cdots w_n w_1 \cdots w_i$ contains ρ .

Current Project

• Think of parking function as a word w on $[n]^n$

$$\begin{split} \mathcal{P}\mathcal{F}_1 &= \{1\} \\ \mathcal{P}\mathcal{F}_2 &= \{11,12,21\} \\ \mathcal{P}\mathcal{F}_3 &= \{111,112,121,211,122,212,221,113,\\ &\quad 131,311,123,132,213,231,312,321\} \end{split}$$

• Count parking functions such that there is no i where $w_{i+1} \cdots w_n w_1 \cdots w_i$ contains ρ .

Equivalence classes:

12 ∼ 21	113 \sim 131 \sim 311
$\textbf{112} \sim 121 \sim 211$	$123 \sim 231 \sim 312$
122 \sim 212 \sim 221	$132 \sim 213 \sim 321$

Known: $|\mathcal{PF}_n| = (n+1)^{n-1}$.

Known: $|\mathcal{PF}_n| = (n+1)^{n-1}$.

How many distinct cyclic parking functions?

• Data: 1, 2, 6, 33, 260, 2812, . . .

Known: $|\mathcal{PF}_n| = (n+1)^{n-1}$.

How many distinct cyclic parking functions?

- Data: 1, 2, 6, 33, 260, 2812, . . .
- OEIS A121774: Number of n-bead necklaces with n+1 colors, divided by (n+1).

Known: $|\mathcal{PF}_n| = (n+1)^{n-1}$.

How many distinct cyclic parking functions?

- Data: 1, 2, 6, 33, 260, 2812, . . .
- OEIS A121774: Number of n-bead necklaces with n+1 colors, divided by (n+1).
- Necklace to parking function intuition:
 - Equivalence classes of necklaces:

e.g.
$$11\sim22\sim33$$
 and $12\sim23\sim31$

ightharpoonup n+1 necklaces in each class, and exactly one is a parking function.

Counting Cyclic Patterns

Known:

- $|\mathcal{PF}_n| = (n+1)^{n-1} (1,3,16,125,1296,16807,...)$
- Number of cyclic parking functions is given by A121774. (1, 2, 6, 33, 260, 2812, ...)

Counting Cyclic Patterns

Known:

- $|\mathcal{PF}_n| = (n+1)^{n-1} (1,3,16,125,1296,16807,...)$
- Number of cyclic parking functions is given by A121774. (1, 2, 6, 33, 260, 2812, ...)

How many patterns after rotation?

- OEIS A019536: Number of length *n* necklaces with integer entries that cover an initial interval of positive integers
- 1, 2, 5, 20, 109, 784, 6757, 68240, . . .

Known:

- $|\mathcal{PF}_n| = (n+1)^{n-1} (1,3,16,125,1296,16807,...)$
- Number of cyclic parking functions is given by A121774. (1, 2, 6, 33, 260, 2812, ...)
- Number of cyclic parking function patterns is given by A019536 (1, 2, 5, 20, 109, 784, . . .)

Known:

- $|\mathcal{PF}_n| = (n+1)^{n-1} (1,3,16,125,1296,16807,...)$
- Number of cyclic parking functions is given by A121774. (1, 2, 6, 33, 260, 2812, ...)
- Number of cyclic parking function *patterns* is given by A019536 (1, 2, 5, 20, 109, 784, ...)

Patterns of length 2: 11, 12

Patterns of length 3: 111, 112, 122, 123, 132

Known:

- $|\mathcal{PF}_n| = (n+1)^{n-1} (1,3,16,125,1296,16807,...)$
- Number of cyclic parking functions is given by A121774. (1, 2, 6, 33, 260, 2812, ...)
- Number of cyclic parking function patterns is given by A019536 (1, 2, 5, 20, 109, 784, . . .)

Patterns of length 2: 11, 12

Patterns of length 3: 111, 112, 122, 123, 132

Notation: $cpf_n(\rho)$ is the number of cyclic parking functions of size n avoiding ρ .

$$cpf_n(12) = 1$$

$$cpf_n(12) = 1$$

Only all 1s parking function.

$$cpf_n(12) = 1$$

Only all 1s parking function.

$$cpf_n(11) = (n-1)!$$

$$cpf_n(12) = 1$$

Only all 1s parking function.

$$cpf_n(11) = (n-1)!$$

Only cyclic parking functions with distinct digits.

Length 3 Patterns: Data

ρ	$cpf_n(ho)$	OEIS
112	1, 2, 4, 11, 42, 207,	A213937
123	1, 2, 5, 16, 47, 153,	new
132	$1, 2, 5, 16, 47, 153, \dots$	new
122	1, 2, 5, 19, 101, 676,	new (but related to A350267)
111	1, 2, 5, 28, 204, 2000,	new

Length 3 Patterns: Data

ρ	$cpf_n(ho)$	OEIS
112	1, 2, 4, 11, 42, 207,	A213937
123	1, 2, 5, 16, 47, 153,	new
132	$1, 2, 5, 16, 47, 153, \dots$	new
122	1, 2, 5, 19, 101, 676,	new (but related to A350267)
111	1, 2, 5, 28, 204, 2000,	new

Generally explained in terms of Polya's Theorem and bijections with necklaces

Pairs of Length 3 Patterns: Data

ρ, σ	$cpf_n(ho,\sigma)$	formula
112, 123	$1, 2, 3, 4, 5, 6, \dots$	n
112, 132	$1, 2, 3, 4, 5, 6, \dots$	n
112, 122	1, 2, 3, 7, 25, 121,	(n-1)! + 1
111, 112	1, 2, 3, 9, 36, 180,	$\frac{3(n-1)!}{2} \text{ for } n \geq 3$
122, 123	1, 2, 4, 8, 16, 32,	2^{n-1}
122, 132	$1, 2, 4, 8, 16, 32, \dots$	2^{n-1}
123, 132	1, 2, 4, 9, 16, 37,	new
111, 123	1, 2, 4, 11, 21, 51,	Motzkin (except $n = 4$)
111, 132	$1, 2, 4, 11, 21, 51, \dots$	Motzkin (except $n=4$)
111, 122	1, 2, 4, 15, 72, 420,	$\frac{(n+1)(n-1)!}{2} \text{ for } n \geq 3$

Examples of length 4:

 $1234,\ 1243,\ 1324,\ 1342,\ 1423,\ 1432,\ 1233,\ 1323,\ 1332$

Examples of length 4:

1234, 1243, 1324, 1342, 1423, 1432, 1233, 1323, 1332

Enumerate:

- (n-1)! ways to make a cyclic permutation of $1, \ldots, n$
- $\frac{(n-1)!}{2}$ ways to make a cyclic permutation of $1, 2, \dots, n-3, n-2, \mathbf{n-1}, \mathbf{n-1}$

$$cpf_n(111,112) = (n-1)! + \frac{(n-1)!}{2} = \frac{3(n-1)!}{2}$$

Avoiding 122 and 123

Examples of length 4:

1111, 1112, 1113, 1114, 1132, 1142, 1143, 1432

Avoiding 122 and 123

Examples of length 4:

1111, 1112, 1113, 1114, 1132, 1142, 1143, 1432

Enumerate:

- Pick k of the digits $\{2, \ldots, n\}$ in $\binom{n-1}{k}$ ways
- Sum over $0 \le k \le n-1$

$$cpf_n(122, 123) = \sum_{k=0}^{n-1} {n-1 \choose k} = 2^{n-1}$$

Case 1: contains one *n* Examples of length 5:

11225, 11335, 11235, 11245, 11345, 12235, 12245, 13345, 12345

Case 1: contains one *n* Examples of length 5:

1122**5**, 1133**5**, 1123**5**, 1124**5**, 1134**5**, 1223**5**, 1224**5**, 1334**5**, 1234**5**

Case 2: no n; find the rightmost i where a(i) = i.

Examples of length 5:

11223, **1**1224, **1**1233, **1**1234, 1**2**233, 1**2**234, 11**3**34, 12**3**34, 112**4**4, 113**4**4, 122**4**4, 123**4**4

Usually, rightmost a(i) = i means a(i + 1) = i. (Only exceptions are 1212 and 1313 of length 4.)

Case 1: contains one *n* Examples of length 5:

11225, 11335, 11235, 11245, 11345, 12235, 12245, 13345, 12345

Case 2: no n; find the rightmost i where a(i) = i.

Examples of length 5:

11223, **11**224, **11**233, **11**234, **12**233, **12**234, 11**3**34, 12**3**34, 112**4**4, 113**4**4, 122**4**4, 123**4**4

Usually, rightmost a(i) = i means a(i + 1) = i. (Only exceptions are 1212 and 1313 of length 4.)

$$cpf_n(111, 132) = cpf_{n-1}(111, 132) + \sum_{k=0}^{n-2} cpf_k(111, 132)cpf_{n-k-2}(111, 132)$$

(Motzkin recurrence)

Pairs of Length 3 Patterns: Data

ρ, σ	$cpf_n(ho,\sigma)$	formula
112, 123	$1, 2, 3, 4, 5, 6, \dots$	n
112, 132	$1, 2, 3, 4, 5, 6, \dots$	n
112, 122	1, 2, 3, 7, 25, 121,	(n-1)! + 1
111, 112	1, 2, 3, 9, 36, 180,	$\frac{3(n-1)!}{2} \text{ for } n \geq 3$
122, 123	1, 2, 4, 8, 16, 32,	2^{n-1}
122, 132	$1, 2, 4, 8, 16, 32, \dots$	2^{n-1}
123, 132	1, 2, 4, 9, 16, 37,	new
111, 123	1, 2, 4, 11, 21, 51,	Motzkin (except $n = 4$)
111, 132	$1, 2, 4, 11, 21, 51, \dots$	Motzkin (except $n=4$)
111, 122	1, 2, 4, 15, 72, 420,	$\frac{(n+1)(n-1)!}{2} \text{ for } n \geq 3$

Future directions

- Avoiding more patterns simultaneously?
- Avoiding longer patterns?
 - 20 patterns of length 4
 - Avoiding one at a time produces 14 distinct sequences, all are new to OEIS
- Connect length 3 avoidance results to other combinatorial objects.

References

- A. Adeniran and L. Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
- D. Callan, Pattern avoidance in cyclic permutations, arXiv:0210014v1.
- V. Jelínek and T. Mansour, Wilf-equivalence of *k*-ary words, compositions, and parking functions, *Electron. J. Combin.* **16.1** (2009), #R58.
- D. Qiu and J. Remmel, Patterns in words of ordered set partitions, J. Comb. 10 (2019), 433—490.
- A. Vella, Pattern avoidance in permutations: linear and cyclic orders, *Electron. J. Combin.* 9.2 (2002-03), #R18.

Thanks for listening!

slides at faculty.valpo.edu/lpudwell email: Lara.Pudwell@valpo.edu

