
Sorting via shuffles with a cut after the longest

increasing prefix

Lara Pudwella, Rebecca Smithb

aDepartment of Mathematics and Statistics, Valparaiso University, Valparaiso, IN, USA
bDepartment of Mathematics, SUNY Brockport, Brockport, NY, USA

Abstract

We define four new shuffling algorithms on permutations. For each algorithm,
we characterize and enumerate the sets of permutations that are sorted after
k iterations of the algorithm and we determine properties of the correspond-
ing generating functions. For three of the algorithms, the sets of sortable
permutations can be seen to be permutation classes for any nonnegative in-
teger k.

Keywords: permutation, shuffle, sorting, algorithm, stacks, queues,
permutation pattern, insertion encoding
2000 MSC: 05A05, 68P10, 68R01, 68R05

1. Introduction

Algorithms inspired by card shuffling have long been studied by researchers
including an early combinatorial approach by Atkinson [4] that considered
among other things, permutations obtainable by applying a riffle shuffle to
the identity permutation. Applications of this riffle shuffle on permutations
were investigated by others in a variety of contexts, including a study of su-
pervised adaptive learning models by Žliobaitė [21] and a study of dominance
drawings by Bannister, Devanney, and Eppstein [5]. In a more recent paper,
Dimitrov [10] examined shuffle queues with certain restrictions and their use
to sort permutations. While our shuffle algorithms can also be described in
terms of queues and stacks, our approach to the use of these devices leads to
different results than in previous works.

The individual steps of a shuffle algorithm can also be seen to have ap-
plications to biology. For example, all shuffles include cuts and some also

Preprint submitted to Theoretical Computer Science January 23, 2024

include reversals of part of the permutation. These two actions on permu-
tations each represent a genome rearrangement model studied by several
researchers including Cerbai and Ferrari [8].

In this paper, we introduce four different shuffle sorting algorithms which
can also be described in terms of systems of queues and stacks. All consider
the longest increasing prefix as a natural starting point in the sorting process
as a shuffle will cut a permutation into a prefix and suffix. Two of the
algorithms retain the previous entries in the increasing prefix from one stage
to the next. The other two prioritize moving smaller entries to the left of
the permutation, but potentially break the monotonicity property held by the
original increasing prefix. We note that other sorting algorithms such as stack
sort also retain the longest increasing prefix as an increasing subsequence in
the output. Some of our enumerative results include connections to the
Eulerian numbers and Stirling numbers of the second kind. We first give
necessary definitions and notation as well as a brief survey of related results.
In Section 2, we consider two algorithms that consist of a well-defined cut
and a riffle shuffle, and in Section 3 we explore the effects of adding an
intermediate reversal step.

1.1. Permutations

Let Sn be the set of permutations of [n] = {1, 2, . . . , n}. Given π ∈ Sn

and ρ ∈ Sk, we say that π contains ρ as a pattern if there exist 1 ≤ i1 <
· · · < ik ≤ n such that πia < πib if and only if ρa < ρb; in this case we say that
πi1πi2 · · · πik is order-isomorphic to ρ. Otherwise, π avoids ρ. Alternatively,
let the reduction of the word w, denoted red(w), be the word formed by
replacing the ith smallest letter(s) of w with i. Then π contains ρ if there is
a subsequence of π whose reduction is ρ.

Example 1.1. The permutation π = 35841726 contains the permutation
ρ = 3241 since the reduction of the subsequence 5472 is red(5472) = 3241.

A permutation class C is defined to be a set of permutations that is
“downward closed”, that is, if π ∈ C and π contains σ, then σ ∈ C. Specif-
ically, the permutation class Av(ρ) is the set of all permutations that avoid
ρ. The growth rate of any permutation class C, is defined as:

gr(C) = lim
n→∞

n
√

|Cn| where Cn = {τ ∈ C | length of τ is n}.

Note that while it is conjectured that such limits exist and are finite for
classes avoiding any nonempty basis set of permutations, it is only known

2

that lim sup
n→∞

n
√

|Av(B)| exists and is finite for nonempty B by Marcus and

Tardos [14]. We discuss the growth rates of sortable permutation classes in
Section 4.

While patterns will show up in part of our work, a pair of more critical
definitions is that of ascents and descents. An ascent of permutation π is an
index i where πi < πi+1, while a descent is an index i where πi > πi+1. We
denote the number of ascents of π by asc(π) and the number of descents by
des(π).

1.2. Sorting Functions and Sorting Networks

A sorting function is a function f : Sn → Sn such that for all π ∈ Sn, there
exists a non-negative i ∈ Z such that f i(π) = 123 · · ·n. There are many well-
studied sorting functions including bubble sort, insertion sort, and selection
sort. In this paper, we develop four sorting algorithms that correspond to
sorting functions motivated by shuffling cards. In particular, a common way
to shuffle is to cut a deck into two non-empty parts and then to riffle the
two parts together, so that each part remains in order, but the two parts
are interleaved. In practice, a deck can be cut anywhere, and a riffle may
interleave the two parts of the deck in many different ways. However, we
choose conventions that make these operations well-defined.

In particular, in Section 2 we consider two algorithms that consist of
a cut after the longest increasing prefix of the permutation followed by a
riffle shuffle with specific rules on which part contributes the next card to
output. In Section 3, we consider two algorithms that again begin with a cut
after the longest increasing prefix, but then reverse the second part of the
permutation prior to using a riffle shuffle, again with specific rules on which
part contributes the next card to output. The cut (and reverse) portions of
all four algorithms can be modeled by using the standard data structures of
stacks and queues.

A stack is a last-in first-out data structure with push and pop operations.
Knuth [13] studied permutations that are sortable by one pass through a
stack; in other words, there is a sequence of push and pop operations to
transform the permutation π ∈ Sn into the increasing permutation 1 · · ·n as
output. Knuth showed that a permutation is sortable by one pass through a
stack if and only if π avoids the pattern 231. There are Cn such permutations

of length n, where Cn =

(
2n
n

)
n+ 1

is the nth Catalan number. Other researchers

3

have studied networks with multiple stacks in series or in parallel, including
Even and Itai [11], Pratt [16], and Tarjan [19]. For more information on
stack sorting, see the survey by Bóna [7].

On the other hand, a queue is a first-in first-out data structure. It is quick
to see that using a single queue, the only permutation that can be sorted is
the increasing permutation 12 · · ·n. However, networks of multiple queues
or queues and stacks allow for more possibilities.

When we cut a deck and riffle it together, we may view this as a system
of two queues in parallel. After the cut, the elements of one part go into
one queue and the elements of the other part go into the other queue. The
riffle determines the sequence in which the elements of the two queues are
interleaved in output.

When we cut a deck, then reverse the second half before riffling, we may
view this is a system of a queue and a stack in parallel. The elements of
the first part are placed into a queue, while the elements of the second part
are pushed one at a time into a stack, which reverses them. Again, the riffle
determines the sequence in which the elements of the queue and the stack
are interleaved in output.

2. Simple shuffle algorithms

In this section, we consider two algorithms based on a cut-and-riffle shuffle
algorithm. In both cases, the permutation is cut after the longest increasing
prefix. However, we use two different conventions governing the riffle that
interleaves the two parts. The Prefix-preserving Shuffle (PRE) prioritizes
keeping all of the original prefix as part of the maximum increasing prefix of
the newly shuffled permutation. The Minimum Shuffle (MIN) instead prior-
itizes shuffling so that smaller entries appear before larger entries whenever
possible.

Algorithm 2.1. Prefix-preserving Shuffle: PRE
Given a permutation π with first descent at πi−1 > πi, let π

′ = π1 · · · πi−1

and π′′ = πi · · · πn. Then interleave π′ with π′′ as follows:

1. If the next available entry b of π′′ is smaller than the next available
entry a of π′ but larger than the current last entry of output (or b < a
and output is currently empty), then pop b to the end of output.

2. Else, if π′ and π′′ both still have entries, so a < b or b is smaller than
the current last entry of the output, pop a to the end of output.

4

3. Once either π′ or π′′ has been pushed entirely to the output, push the
remaining entries of the other sequence to the output.

We consider the action of algorithm PRE in more detail following an
example of the algorithm at work.

Example 2.2. Let π = 261543. The cut after the longest increasing prefix
gives us π′ = 26 and π′′ = 1543. We illustrate the shuffle process taken by
PRE in Figure 1 that gives an output of PRE(261543) = 125643.

26

1543

π′

π′′

PRE(π)

26

543

1

π′

π′′

PRE(π)

6

543

12

π′

π′′

PRE(π)

6

43

125

π′

π′′

PRE(π)

43

1256

π′

π′′

PRE(π)

125643

π′

π′′

PRE(π)

Figure 1: One iteration of the PRE algorithm applied to π = 261543.

Proposition 2.3. Algorithm PRE is a sorting algorithm.

Proof. During algorithm PRE, π′ is an increasing prefix. As long as π′′ is
nonempty, at least the first entry of π′′ is moved to its appropriate position
within among the entries of π′ to form a new increasing prefix in PRE(π).
As such, the output of algorithm PRE on a non-identity permutation π
has a longer increasing prefix than the input. Since the increasing prefix
grows with each iteration until the resulting permutation is the identity, the
permutation will be sorted once the increasing prefix grows to be the entire
permutation.

5

In fact, we can characterize the permutations that require exactly k iter-
ations of algorithm PRE to be sorted.

Proposition 2.4. Any permutation π is sorted after exactly des(π) iterations
of algorithm PRE.

Proof. We know that π′ = π1 · · · πi−1 is increasing and that πi−1 > πi. Fur-
ther, we may locate the first descent of π′′ (if it exists) and decompose it into
π′′⋆ = πi · · · πj−1 and π′′′ = πj · · · πn where π′′⋆ is increasing and πj−1 > πj,
otherwise π′′∗ = π′′ if π′′ has no descents.

Notice that steps 1 and 2 interleave π′ and π′′⋆ in increasing order. How-
ever, since πj < πj−1, based on step 2, all elements of π′′′ are at the end of the
permutation. In other words, the descent between πi−1 and πi is removed. If
π′′ had a descent to begin with, there is still a descent ending in πj and all
descents within π′′′ are still descents in the output.

Since the number of descents of π is reduced by exactly 1 after each
iteration of algorithm PRE, des(π) is the number of iterations required to
sort π.

Given that the number of permutations of length n with exactly k descents
is the Eulerian number A(n, k), the enumeration of the sortable permutations
is known.

Corollary 2.5. For all k ≥ 0, the number of permutations in Sn that are
sortable after exactly k passes of algorithm PRE is given by the Eulerian
number A(n, k) (OEIS A008292).

Eulerian numbers have been connected to other shuffle-based sorting al-
gorithms. For example, Bayer and Diaconis [6] consider sorting via a cut and
riffle shuffle where the cut is arbitrary and divides the deck into a packets of
cards and the riffle is determined probabilistically by the relative sizes of the
parts of the deck. They determine the probability that an a-packet shuffle
results in a particular permutation π based on the number of descents of π.
In a similar vein, they refer to rising sequences as the “basic invariant of riffle
shuffling”, where, naturally the Eulerian numbers count permutations with
a prescribed number of rising sequences.

Next, we introduce MIN, an alternative algorithm to PRE, where we
prioritize moving smaller entries to the left over maximizing the length the
increasing prefix.

6

Algorithm 2.6. Minimum-first Shuffle: MIN
Given a permutation π with first descent at πi−1 > πi, let π

′ = π1 · · · πi−1

and π′′ = πi · · · πn. Then interleave π′ with π′′ as follows:

1. If the next available entry a of π′ is smaller than the next available
entry b of π′′, then pop a to the end of output.

2. Else, if π′ and π′′ both still have entries, so b < a, pop b to the end of
output.

3. Once one sequence has been pushed entirely to the output, push the
remaining entries of the other sequence to the output.

Notice that algorithm MIN is distinct from algorithm PRE. For example,
if π = 261543, both algorithms cut π so that π′ = 26 and π′′ = 1543.
While the output of algorithm PRE is 125643 (shown in Example 2.2), the
output of algorithm MIN is 125436 as shown in Example 2.7. However, the
two algorithms share some interesting features which are noted following
Example 2.7.

Example 2.7. Let π = 261543. The cut after the longest increasing prefix
gives us π′ = 26 and π′′ = 1543. We illustrate the shuffle process taken by
MIN in Figure 2.

Proposition 2.8. Algorithm MIN is a sorting algorithm.

Proof. By definition, π′ is an increasing subsequence of π. The MIN algo-
rithm shuffles the initial prefix with remainder of the permutation retaining
the order of the two subsequences and prioritizing outputting the minimum
entry of each subsequence. Hence all of the entries of the initial increasing
prefix π′ will remain in the same relative order after every iteration of the
MIN algorithm.

Notice any entries that become part of the increasing prefix of the per-
mutation output by the MIN algorithm are now correctly placed relative to
entries of the original π′ that remain part of the increasing prefix. Further,
these new members of the increasing prefix must be part of an increasing
subsequence with all of the entries of the entire original π′.

Specifically, at least the first entry of π′′ is moved to its appropriate
position within the increasing prefix of the output and thus the increasing
subsequence. As such, this increasing subsequence of current and former
members of increasing prefixes of π and the output permutations after ap-
plying the MIN algorithm grows in length after each iteration of the MIN

7

algorithm until there are no new entries available to be inserted into this
increasing subsequence. Thus the permutation will be sorted by MIN once
this increasing subsequence grows to be the entire permutation.

Like the PRE algorithm, we can characterize the permutations that re-
quire exactly k iterations of algorithm MIN to be sorted by again considering
the descents of a permutation and the image of the permutation under MIN.
In fact, the permutations sortable by k iterations of MIN are exactly the
same as those permutations sortable by k iterations of PRE despite the fact
that the intermediate steps may result in different permutation images.

Proposition 2.9. Any permutation π is sorted after exactly des(π) itera-
tions of algorithm MIN.

Proof. We know that π′ = π1 · · · πi−1 is increasing and that πi−1 > πi.
Notice that steps 1 and 2 interleave π′ and π′′ so that πi is no longer

the second entry in a descent in output. All other descents must have both
elements in π′′. However, if πj > πj+1 for two consecutive digits in π′′ and πj

26

1543

π′

π′′

MIN(π)

26

543

1

π′

π′′

MIN(π)

6

543

12

π′

π′′

MIN(π)

6

43

125

π′

π′′

MIN(π)

6

12543

π′

π′′

MIN(π)

125436

π′

π′′

MIN(π)

Figure 2: One iteration of the MIN algorithm applied to π = 261543.

8

is less than the current available element of π′, then so is πj+1, so they will
remain a descent in output.

Since the number of descents of π is reduced by exactly 1 after each
iteration of algorithm MIN until the identity permutation is achieved, des(π)
is the number of iterations required to sort π.

Corollary 2.10. For all k ≥ 0, the number of permutations in Sn that
are sortable after exactly k passes of algorithm MIN is given by the Eulerian
number A(n, k) (OEIS A008292).

3. Reverse shuffle algorithms

While the two algorithms of Section 2 were relatively straightforward
to analyze, in this section, we consider two new algorithms (PRE-REV)
and (MIN-REV) which act as algorithms PRE and MIN respectively, but
where the second part of the original permutation is reversed before being
interleaved with the longest increasing prefix.

Algorithm 3.1. Prefix-preserving Reverse Shuffle: PRE-REV
Given a permutation π with first descent at πi−1 > πi, let π

′ = π1 · · · πi−1

and (π′′)rev = πn · · · πi (i.e. the reversal of πi · · · πn). Then interleave π′ with
(π′′)rev as follows:

1. If the next available entry b of (π′′)rev is smaller than the next available
entry a of π′ but larger than the current last entry of output (or b < a
and output is currently empty), then pop b to the end of output.

2. Else, if π′ and (π′′)rev both still have entries, so a < b or b is smaller
than the current last entry out output, pop a to the end of output.

3. Once one sequence has been pushed entirely to the output, push the
remaining entries of the other sequence to the output.

Example 3.2. Let π = 261543. As stated before in the earlier algorithm
examples, the cut after the longest increasing prefix gives us π′ = 26 and
π′′ = 1543, making (π′′)rev = 3451. We illustrate the shuffle process taken by
PRE-REV in Figure 3.

Algorithm 3.3. Minimum-first Reverse Shuffle: MIN-REV
Given a permutation π with first descent at πi−1 > πi, let π

′ = π1 · · · πi−1

and (π′′)rev = πn · · · πi (i.e. the reversal of πi · · · πn). Then interleave π′ with
(π′′)rev as follows:

9

1. If the next available entry a of π′ is smaller than the next available
entry b of (π′′)rev, then pop a to the end of output.

2. Else, if π′ and (π′′)rev both still have entries, so b < a, pop b to the end
of output.

3. Once one sequence has been pushed entirely to the output, push the
remaining entries of the other sequence to the output.

Example 3.4. Let π = 261543. Once again we note the cut after the longest
increasing prefix gives us π′ = 26 and π′′ = 1543, making (π′′)rev = 3451.
We illustrate the shuffle process taken by MIN-REV in Figure 4.

As in Section 2, the PRE-REV algorithm can be seen to sort every per-
mutation after a sufficient number of iterations by showing the length of the
increasing prefix increases with each implementation of the algorithm.

Proposition 3.5. Algorithm PRE-REV is a sorting algorithm.

Proof. After each iteration of algorithm PRE-REV, all entries of the input’s
longest increasing prefix remain in the prefix of the output, and the entry πn

of input is also put in its appropriate position in the longest increasing prefix

261543
queue for π′stack for π′′

PRE-REV(π)

61543

2

queue for π′stack for π′′

PRE-REV(π)

61

2345

queue for π′stack for π′′

PRE-REV(π)

1

23456

queue for π′stack for π′′

PRE-REV(π)

234561

queue for π′stack for π′′

PRE-REV(π)

Figure 3: One iteration of the PRE-REV algorithm applied to π = 261543.

10

of the output. The longest increasing prefix grows with each iteration of the
algorithm until the entire output is the identity permutation.

Notice that the difference between the output of PRE-REV and that of
MIN-REV when applied to π = 261543 as shown in Figure 3 and Figure 4
respectively occurs when the application of the PRE-REV algorithm pops
the 6 as the penultimate entry of the output preserving the initial increasing
prefix, but the application of the MIN-REV algorithm pops the 1 in that
same position, prioritizing the smaller entry.

It is more difficult to see that algorithm MIN-REV is a sorting algo-
rithm. However, in the next subsection we give a characterization of the
permutations sortable after k iterations of the PRE-REV algorithm and a
characterization of the permutations sortable after k iterations of the MIN-
REV algorithm. In the latter case, this characterization proves MIN-REV is
also a sorting algorithm.

3.1. Characterization

In order to characterize permutations sortable after k iterations of algo-
rithm PRE-REV, we introduce the prefix-suffix decomposition of π as fol-
lows: Let π(1) = π′ = π1 · · · πi−1 be the longest increasing prefix of π and let

261543
queue for π′stack for π′′

MIN-REV(π)

61543

2

queue for π′stack for π′′

MIN-REV(π)

61

2345

queue for π′stack for π′′

MIN-REV(π)

6

23451

queue for π′stack for π′′

MIN-REV(π)

234516

queue for π′stack for π′′

MIN-REV(π)

Figure 4: One iteration of the MIN-REV algorithm applied to π = 261543.

11

πrev(1) = (π′′)rev be the reversal of πi · · · πn. If πrev(1) is empty, then we are
done. Otherwise, given π(1), . . . , π(ℓ), set π(ℓ+1) to be the longest increasing
prefix of πrev(ℓ) and recursively define πrev(ℓ+1) to be the reversal of the re-
maining digits. Then if j is the smallest integer such that πrev(j) is empty,
the prefix-suffix decomposition of pi is π(1)π(2) · · · π(j).

For example, the permutation π = 562793841 has π(1) = 56, πrev(1) =
1483972, π(2) = 148, πrev(2) = 2793, π(3) = 279, πrev(3) = 3, and π(4) = 3.

Theorem 3.6. Consider π ∈ Sn. If there are k + 1 parts in the prefix-suffix
decomposition of π, then algorithm PRE-REV requires exactly k iterations
to sort π.

Proof. As with algorithm PRE, algorithm PRE-REV interleaves two mono-
tone sequences within π and then places the rest of the permutation at the
end. In this case, the two interleaved monotone sequences on the first pass
of the algorithm are π(1) = π′ and π(2), which is the longest increasing prefix
of (π′′)rev. After reversal of π′′ = πi · · · πn, the other elements outside of π(1)

and π(2) are at the end of the permutation, in the reverse of their original
order. More generally, after the ith iteration, all elements of monotone sub-
sequences π(1), . . . , π(i+1) will be interleaved in increasing order as the current
longest increasing prefix, while the remaining elements are at the end of the
permutation. All parts of a (k + 1)-part prefix-suffix decomposition will be
interleaved in increasing order after k iterations of the algorithm.

While the prefix-suffix decomposition of a permutation completely deter-
mines the sortability by PRE-REV, it is not relevant to sorting by MIN-REV
because the two algorithms have different priorities in how they interleave
subsequences. However, we can also completely characterize the set of per-
mutations sortable after exactly k iterations of the MIN-REV algorithm in
terms of the quantities of ascents and descents relative to largest entry of the
permutation.

Theorem 3.7. Consider a non-identity permutation π ∈ Sn. Suppose there
are d descents before n and a ascents after n. Then π requires exactly
max(2d, 2a+ 1) applications of MIN-REV to be sorted.

Proof. First, consider the case where d = 0 and a = 0. This implies that π is
unimodal with the longest increasing prefix ending with n. After cutting the
permutation and reversing the digits after n, we riffle together two increasing

12

subsequences, and so max(0, 1) = 1 iterations of the algorithm are required,
as expected.

Now, suppose at least one of d and a is positive. Let D be the set of
smaller digits involved in a descent before n and let A be the set of smaller
digits involved in an ascent after n in π. Also, let p be the entry of π
immediately after the longest increasing prefix of π. Now, let D⋆ and A⋆ be
the analogous sets for π⋆ where π⋆ is obtained by applying one iteration of
MIN-REV to π. We claim that D⋆ = A and A⋆ = D \ {p}.

First, we show that D⋆ = A. Consider an arbitrary entry πj ∈ A. Since
πj appears after n in π, πj is not part of the longest increasing prefix. Thus
πj is in π′′. Recall π′′ is the part of the permutation that gets reversed during
the algorithm. Specifically, πj+1 appears to the left of πj in (π′′)rev, therefore
πj+1 gets interleaved with π′ before πj. We can see πj+1 also will be shuffled
in to the left of n in this algorithm. This is because n is either part of the
increasing prefix π′ and every element of (π′′)rev will be shuffled in before n
or n appears to the left of πj+1 in π′′ and so n appears to the right of πj+1

in (π′′)rev.
Once πj+1 is placed into its position in π⋆, it must be the case πj is smaller

than the next available digit of π′ (if any exist). Hence πj+1πj becomes a
descent in π⋆. Descents formed this way, in fact, are exactly the descents
of π⋆ before n since there are no descents in the longest increasing prefix,
and the algorithm uses minimums to decide which elements of the prefix and
the non-prefix portion of π to output first. Thus exactly the elements πj

described here will make up the set D⋆.
Next, we claim that A⋆ = D \ {p}. Suppose that πj ∈ D \ {p}. This

means that πj is not part of the longest increasing prefix of π and so πj ∈ π′′.
Since πj > πj+1, and because πj appears before n in π, we will read these
entries after n is placed into the output π⋆. Thus the prefix of π will be
completely output by the time these entries are read and they will be output
as the ascent πj+1πj in π⋆. Thus πj ∈ A⋆. Conversely, any entries of A⋆

appear after n in π⋆ and so must have been before n but after the prefix in
π, so except for p these entries of D \ {p} are the only possible entries of A⋆.

Now, we show p /∈ A⋆. If p appears after n, then n is part of the increasing
prefix, so D = ∅ and thus D \ {p} = ∅. However, if p appears before n in π,
we have p ∈ D, but also p will be the first entry of π′′. Thus p will be the
last entry of π⋆ and so cannot be the first entry of an ascent in π⋆. Hence
p /∈ A⋆

Now, we see that if D contains d elements, then it will take 2d iterations

13

to address all of d elements from D. Specifically, in an odd iteration, one
element, p, is removed from D and the rest are sent to A⋆. In even iterations,
those elements are sent back to set D, so that after 2d iterations is the first
time D = ∅. Similarly, if A contains a elements, it will take 2a+1 iterations
to address all of them. On the first iteration, the elements of A are all sent to
D⋆ and then it takes 2a further iterations for all of them to be addressed.

We are now ready to prove the following:

Corollary 3.8. Algorithm MIN-REV is a sorting algorithm.

Proof. If the input permutation π is the identity, then it requires 0 iterations
of any algorithm to be sorted. Similarly, if π is unimodal (increasing before
n and decreasing after n), then it requires 1 iteration of MIN-REV to be
sorted. Otherwise, we know that if the input permutation π has d descents
before n and a ascents after n, then the output after one iteration has a
descents before n and max(d−1, 0) ascents after n. Since the numbers in the
ordered pair (d, a) decrease with successive iterations, eventually, we have
the first instance where d = 0 and a = 0 which implies we have a unimodal
permutation that can be sorted after one more iteration of the algorithm.

While these two characterizations seem quite different, the simplest case
of permutations sortable after one iteration of either PRE-REV or MIN-REV
is the same.

Proposition 3.9. Both the PRE-REV-sortable permutations and the MIN-
REV-sortable permutations are precisely the unimodal permutations, i.e. the
{213, 312}-avoiding permutations.

Proof. Permutations avoiding 213 and 312 are precisely the unimodal permu-
tations. Consider a unimodal permutation π where πj = n. The PRE-REV
algorithm will prioritize not creating a descent before πj in the shuffle, but
otherwise interleave entries from the prefix and the reverse of the suffix in in-
creasing order. The MIN-REV algorithm will prioritize smaller entries before
larger entries. These priorities align when shuffling two increasing sequences,
so in this instance, these algorithms act identically. Namely, both algorithms
will interleave the two increasing sequences π1 · · · πj and πn · · · πj+1 to create
one increasing sequence which is simply the identity permutation.

Now, instead suppose that a single application of either reverse shuffle
algorithm can be used to sort π. Then, since the increasing prefix is shuffled

14

with the reverse of the remainder of the permutation, it must be the case
that the entries after the maximum increasing prefix are in descending or-
der. Hence any permutation sortable by PRE-REV or MIN-REV in a single
iteration must be unimodal.

However, as we consider permutations that require k > 1 iterations of the
algorithms, the behaviors of PRE-REV and MIN-REV diverge. Consider, for
example, what Theorem 3.6 and Theorem 3.7 tell us about the permutations
sortable after two iterations.

By Theorem 3.6, the permutations sortable after exactly two iterations
of Algorithm PRE-REV are precisely those that have three parts in their
prefix-suffix decomposition. In other words, these permutations consist of
an increasing prefix, another increasing subsequence, and then a decreasing
sequence. In particular, we have π = π(1)π(3)π(2∗) where π(1) = π1 · · · πi−1 is
increasing, π(3) = πi · · · πj−1 is increasing and π(2∗) = πj · · · πn is the reversal
of π(2) in the original prefix-suffix decomposition, and therefore is decreasing.
We also necessarily have that πi−1 > πi and πj−1 < πj.

On the other hand, by Theorem 3.7, permutations in Sn are sortable af-
ter exactly two iterations of Algorithm MIN-REV are those where there is
exactly one descent before n and no ascents after n. These permutations
also have three parts in their prefix-suffix decomposition, but there is a more
specific condition on the placement of n, so permutations sortable after two
passes of algorithm MIN-REV are a subset of permutations sortable after two
passes of algorithm PRE-REV. This will be examined further in the enumer-
ation section with the above result explicitly stated in Proposition 3.18 and
extended in Theorem 3.21.

Example 3.10. The permutation π = 24816753 requires five iterations of
the MIN-REV algorithm to be sorted:

MIN-REV(π) = 23457618

MIN-REV2(π) = 23457816

MIN-REV3(π) = 23456178

MIN-REV4(π) = 23456871

MIN-REV5(π) = 12345678

15

However, sorting π only requires two applications of the PRE-REV algorithm.

PRE-REV(π) = 23457861

PRE-REV2(π) = 12345678

These algorithms also differ in their worst case scenarios. The largest
number of parts in a prefix-suffix decomposition of π ∈ Sn is n parts, which
requires n − 1 iterations. This occurs with the permutations consisting of
a decreasing prefix of ⌊n+1

2
⌋ elements ending in 1, followed by an increasing

suffix of the remaining elements. This analysis is recorded in Corollary 3.14.
On the other hand, for π ∈ Sn the number of ascents after n is maximized for
the permutation π = n12 · · · (n− 1), which has n− 2 ascents, and therefore
requires 2(n−2)+1 = 2n−3 iterations of algorithm MIN-REV to be sorted.

3.2. Enumeration

In Proposition 3.9, we showed that permutations sortable after one it-
eration of either of these cut, reverse, then riffle algorithms are exactly the
{213, 312}-avoiding permutations, which gives the following corollary.

Corollary 3.11. The number of permutations of length n sortable by at most
one iteration of PRE-REV or MIN-REV is 2n−1.

However, it is also possible to develop a general formula for permutations
sortable after exactly k passes through either of our algorithms. To that
end, let A(n, k) be the number of permutations of length n with exactly k
descents; i.e., A(n, k) is the triangle of Eulerian numbers (OEIS A008292).
Reversing permutations provides a bijection between those with k ascents
and those with k descents, so A(n, k) is also the number of permutation of
length n with exactly k ascents.

We introduce a refinement of the Eulerian numbers where B(n, k, i) is the
number of permutations of length n with exactly k ascents that begin with
the digit i, or equivalently, B(n, k, i) is the number of permutations of length
n with exactly k descents that end with the digit i. While limited numerical
evidence seems to suggest a relationship between B(n, k, i) sequences and
inflated s-Eulerian Polynomials (OEIS A333270) studied by Pensyl and Sav-
age in 2013 [15], we could not find an indication that this refinement of the

16

Eulerian numbers has been studied before. From the definitions for A(n, k)
and B(n, k, i), we have:

A(n, k) =
n∑

i=1

B(n, k, i).

We can also give a recurrence for B(n, k, i).

Proposition 3.12. If B(n, k, i) is the number of permutations of length n
with exactly k ascents that begin with i, then for 1 ≤ i ≤ n and 0 ≤ k ≤ n−1

B(n, k, i) =

1 n = 1

i−1∑
j=1

B(n− 1, k, j) +
n−1∑
j=i

B(n− 1, k − 1, j) otherwise.

Proof. When n = 1, the bounds on i and k imply that i = 1 and k = 0. And
the one permutation of length n = 1 is π = 1 which begins with 1 and has 0
ascents.

For the second case, we consider the relationship between the first digit
i and the second digit j of such a permutation. If 1 ≤ j ≤ i − 1, then
the first two entries in the permutation form a descent, so the rest may be
recursively filled in with a permutation of length n − 1 with k ascents and
first value j on the remaining entries of [n] = {1, 2, 3, . . . , n}. When that
permutation of length n−1 is reduced to a permutation on [n−1], the value
of j remains the same since j < i meaning these permutations are counted

by
i−1∑
j=1

B(n− 1, k, j).

If instead, i + 1 ≤ j ≤ n, then the first two entries in the permutation
form an ascent, so the rest may be recursively filled in with a permutation of
length n−1 with k−1 ascents on the remaining entries of [n]. Now, reducing
the recursively constructed permutation of length n− 1 to a permutation on
[n − 1] will decrease the value of j by 1 in the recursion since j > i. That
is, we sum over i ≤ j ≤ n − 1 and so these permutations are counted by
n−1∑
j=i

B(n− 1, k − 1, j).

We now have the necessary tools to count permutations sortable after k
iterations of the PRE-REV and MIN-REV algorithms.

17

Theorem 3.13. Let pr(n, k) be the number permutations of size n sortable
after exactly k iterations of the PRE-REV algorithm. First we have,

pr(n, 0) = 1 for n ≥ 1.

Then if k > 0 is even, then

pr(n, k) =
n∑

m=0

n−m∑
i=1

m∑
j=1

m−j∑
ℓ=0

B∗
even(n, k,m, i, j, ℓ)

where B∗
even(n, k,m, i, j, ℓ) is equal to

B

(
n−m,

k

2
− 1, i

)
B

(
m,

k

2
, j

)(
ℓ+ n−m− i

ℓ

)(
m− ℓ+ i− 1

i− 1

)
.

Finally, if k is odd, then

pr(n, k) =
n∑

m=0

n−m∑
i=1

m∑
j=1

n−m−i∑
ℓ=0

B∗
odd(n, k,m, i, j, ℓ)

where B∗
even(n, k,m, i, j, ℓ) is equal to

B

(
n−m,

k − 1

2
, i

)
B

(
m,

k − 1

2
, j

)(
ℓ+m− j

ℓ

)(
n−m− ℓ+ j − 1

j − 1

)
.

Proof. The only permutation that requires 0 iterations of any algorithm to
be sorted is the increasing permutation. There is one such permutation of
each length.

For the even case, since any permutation counted requires exactly k itera-
tions of the PRE-REV algorithm to be sorted, the permutation’s prefix-suffix
decomposition has k + 1 parts, so the number of parts is odd. This means
there are k

2
decreasing suffixes (with k

2
− 1 ascents among them) and k

2
+ 1

increasing prefixes (with k
2
descents among them). Furthermore, the first

digit of the innermost suffix must be larger than the last digit of the inner-
most prefix. If there are m digits involved in the increasing prefixes, then
there are n−m digits involved in the decreasing suffixes. Altogether, if the
last prefix ends with digit j (when restricting to only the digits involved in
the prefixes), then there are B

(
m, k

2
, j
)
ways to choose (the reverse of) the

permutation made of the prefix digits and if the first suffix begins with digit

18

i (when restricting to only the digits involved in the suffixes), then there are
B
(
n−m, k

2
− 1, i

)
ways to choose the permutation made of the suffix digits.

It remains to choose the actual values that are involved in the prefix
versus the suffix. Suppose there are ℓ digits in the prefix that are larger than
i. Clearly 0 ≤ ℓ, but we can also see ℓ ≤ m − j. This is because the last of
the prefix portion of the permutation is the jth largest entry of those first
m entries, but is also smaller than the first entry of the suffix portion of the
permutation which implies that at least j of the m prefix digits are smaller
than the ith largest entry of the suffix portion of the permutation. There are
exactly n − m − i digits larger than the first entry of the suffix portion of
the permutation within the suffixes, so there are

(
ℓ+n−m−i

ℓ

)
ways to choose

which of the largest ℓ + n − m − i are part of the prefixes and which are
part of the suffixes. Similarly, there are m− ℓ digits less than the first entry
of the suffix portion of the permutation in the prefixes and i − 1 digits less
than that first entry of the suffix portion of the permutation in the suffixes,
so there are

(
m−ℓ+i−1

i−1

)
ways to choose which of the smallest m − ℓ + i − 1

digits are part of the prefixes and which are part of the suffixes.
For the odd case, we have a similar argument, however now there are k+1

2

prefixes and k+1
2

suffixes. Also, the last digit of the innermost prefix must be
larger than the first digit of the innermost suffix, so we use ℓ to count digits
larger than than j in the suffix portion of the permutation.

Theorem 3.13 gives a direct way to count permutations requiring exactly
k iterations of algorithm PRE-REV in terms of refined Eulerian numbers.
The difference in the odd vs. even cases will make finding a simpler form
challenging. However, this recurrence is sufficiently efficient to provide enu-
merative data. Table 1 shows the exact values of pr(n, k) for small values of n
and k. Of note – while we explicitly addressed the k = 0 and k = 1 columns
already, another nice pattern exists in the n = k+1 diagonal. Permutations
requiring a maximum number of sorts are exactly the

(
n−1
⌊n−1

2
⌋

)
permutations

initially described in conclusion of Subsection 3.1.

Corollary 3.14. There are
(

n−1
⌊n−1

2
⌋

)
permutations of length n that require

the maximum number of iterations, namely k = n − 1, to be sorted by the
PRE-REV algorithm. The permutations are precisely the permutations that
are formed by the concatenation of a decreasing sequence of length ⌈n−1

2
⌉, the

entry 1 and then followed by an increasing subsequence of length ⌊n−1
2
⌋.

19

n\k 0 1 2 3 4 5 6 7

1 1
2 1 1
3 1 3 2
4 1 7 13 3
5 1 15 58 40 6
6 1 31 221 325 132 10
7 1 63 774 2086 1711 385 20
8 1 127 2577 11655 16841 7931 1153 35

Table 1: Values of pr(n, k) for small n and k

Proof. This proof again utilizes the prefix-suffix structure developed for The-
orem 3.6 and the corresponding result, namely that a permutation having
k+1 parts in the prefix-suffix decomposition requires exactly k iterations of
the PRE-REV algorithm to be sorted. As a permutation of length n has a
maximum of n parts, k = n− 1 is indeed the maximum number of iterations
required to sort any permutation in Sn.

Further, these parts would be ⌈n
2
⌉ increasing sequences followed by ⌊n

2
⌋

decreasing sequences. For a permutation to have n − 1 parts, if n is odd,
the 1 must be the last increasing “sequence” and if n is even, the 1 must be
the last (leftmost) decreasing “sequence”. Such a permutation can thus be
described as beginning with ⌈n−1

2
⌉ descents followed by ⌊n−1

2
⌋ ascents. These

permutations are enumerated by
(

n−1
⌊n−1

2
⌋

)
because they are found by choosing

the ⌊n−1
2
⌋ entries that make up the increasing sequence that follows the 1

and placing all other entries in decreasing order before the 1.

Example 3.15. The permutation π = 53124 requires exactly 4 iterations of
the PRE-REV algorithm to be sorted. Similarly, the permutation τ = 652134
requires exactly 5 iterations of the PRE-REV algorithm to be sorted.

Next, we give a formula for the number of permutations of length n
sorted by exactly k iterations of the MIN-REV algorithm. This formula is
also dependent on the parity of k, but the refinement of the Eulerian numbers
is not needed here and each expression requires only two summations.

Theorem 3.16. Let mr(n, k) be the number of permutations of size n sortable

20

after exactly k iterations of the MIN-REV algorithm. We have

mr(n, 0) = 1 for n ≥ 1 and

mr(n, 1) = 2n−1 − 1 for n ≥ 1.

Further, if k > 1 is even, then

mr(n, k) =
n−1∑
i=0

k
2
−1∑

a=0

A

(
i,
k

2

)
A(n− i− 1, a)

(
n− 1

i

)
.

Finally, if k > 1 is odd, then

mr(n, k) =
n−1∑
i=0

k−1
2∑

d=0

A (i, d)A

(
n− i− 1,

k − 1

2

)(
n− 1

i

)
.

Proof. The k = 0 case addresses the already-sorted increasing permutation.
The k = 1 case was addressed in Corollary 3.11.

By Theorem 3.7, we know the number of iterations required to sort per-
mutation π ∈ Sn is given by min(2d, 2a+1) where d is the number of descents
before n in π and a is the number of ascents after n.

If k = max(2d, 2a + 1) is even, then d = k
2
and 2a + 1 ≤ 2d. Combining

these observations yields that a ≤ k−1
2
. If there are i digits before the n,

we may choose the relative order of the digits of the permutation before n
with d = k

2
descents in A

(
i, k

2

)
ways. We may choose the relative order of

the digits of permutation after n, which has n− i− 1 digits an a ascents in
A(n− i−1, a) ways. Then, we have

(
n−1
i

)
ways to choose the actual values of

the digits that go before n versus after n. Summing over all possible values
of a and i yields the result.

If k = max(2d, 2a+ 1) is odd, then a = k−1
2

and 2d ≤ 2a+ 1. Combining
these observations yields that d ≤ k

2
, and since k is odd and d is an integer,

we can more precisely write this bound as d ≤ k−1
2
. A similar argument to

the even case yields the result.

This result is simpler than the formula for pr(n, k) and it is even more
efficient at quickly providing exact values of mr(n, k) for small values of n
and k. A table of initial values is given in Table 2.

It follows from Theorem 3.16 and known values of A(n, k), that

mr(n, 2) = 3n−1 − (n+ 1)2n−2,

21

n\k 0 1 2 3 4 5 6 7 8 9 10 11

1 1
2 1 1
3 1 3 1 1
4 1 7 7 7 1 1
5 1 15 33 39 15 15 1 1
6 1 31 131 211 141 141 31 31 1 1
7 1 63 473 1123 1128 1148 488 488 63 63 1 1

Table 2: Values of mr(n, k) for small n and k

mr(n, 3) = 4n−1 − (2n+ 1)3n−2 +
(n2 − n)2n

8
,

and

mr(n, 4) = 5n−1 − (3n+ 1)4n−2 +
(5n2 − 3n− 2)3n

54
− (n3 − 2n2 − n+ 2)2n

32
.

It can be shown that the leading term of mr(n, k) is (k+1)n−1 for arbitrary
k. Via Comtet [9] it is known that

A(n, k) =
k+1∑
j=0

(−1)j
(
n+ 1

j

)
(k − j + 1)n,

which has leading term (k + 1)n. Focusing on leading terms, the even case
of our expression for mr(n, k) has leading term

n−1∑
i=0

(
k

2
+ 1

)i(
k

2

)n−i−1(
n− 1

i

)
= (k + 1)n−1.

Similarly, the odd case of our expression for mr(n, k) has leading term

n−1∑
i=0

(
k − 1

2
+ 1

)i (
k − 1

2
+ 1

)n−i−1(
n− 1

i

)
= (k + 1)n−1.

In both cases, the simplification of the summation is an application of the
binomial theorem. More patterns or perhaps even a more direct path to these
closed formulas may be possible with further analysis in this direction. For

22

example, in these smaller cases, there appears to be a pattern in mr(n, k)
where the second term is −((k − 1)n+ 1)kn−2.

The proof of the formula for the case when k ≤ 2 using inclusion-exclusion
is given in Proposition 3.17 below.

Proposition 3.17. The number of permutations of length n ≥ 1, that
require k ≤ 2 iterations of algorithm MIN-REV shuffles to be sorted is
3n−1 − (n− 1)2n−2.

Proof. Such permutations of length n can have at most one descent before
the n and no ascents after the n and so can consist of at most two monotone
increasing subsequences followed by at most one decreasing subsequence.
There are 3n−1 ways to place the entries 1, 2, . . . , n− 1 into one of the three
monotone sequences. However, this enumeration counts each unimodal per-
mutation beginning with exactly j entries before the n of the permutation
j + 1 times for the j + 1 ways to break up a single increasing sequence into
two parts (where one part is possibly empty). Thus, we subtract out the

overcount of
n−1∑
j=0

(
n− 1

j

)
j = (n− 1)2n−2 to get the aforementioned enumer-

ation. That is,

mr(n, 2) + mr(n, 1) + mr(n, 0) = 3n−1 − (n− 1)2n−2.

The case when k = 2 is where the sorting power of the PRE-REV al-
gorithm and MIN-REV algorithm diverge. Further, the earlier structures
of sortable permutations under both algorithms can be used to explicitly
describe and count the permutations that are sorted by two iterations of
PRE-REV, but not by two iterations of MIN-REV.

Proposition 3.18. Every permutation sortable after two iterations of algo-
rithm MIN-REV is also sortable after two iterations of algorithm PRE-REV.

Proof. The permutations sortable only after exactly two iterations of algo-
rithm MIN-REV have one descent before n and no ascents after n. That is,
they consist of two increasing sequences followed by a decreasing sequence.
The prefix-suffix decomposition of such permutations have exactly these three
parts.

23

Theorem 3.19. The permutations of length n that are sortable by after two
iterations of algorithm PRE-REV, but not two iterations of MIN-REV are
counted by S(n, 3) where S(n, k) denotes the Stirling numbers of the second
kind.

Proof. To prove this theorem, we must show these permutations sortable by
PRE-REV, but not MIN-REV are in bijection with the number of ways to
place the entries of [n] into three nonempty sets. From Proposition 3.17, we
know that the permutations sortable by at most k = 2 iterations of the MIN-
REV algorithm are either unimodal or have k = 3 parts in the prefix-suffix
decomposition and have n being the end of the second increasing subsequence
in the prefix-suffix decomposition.

Thus permutations we are counting are those of the form
π = π1 · · · πi−1πi · · · πj−1πj · · · πn where

1. π1 · · · πi−1 is the maximum length increasing prefix and πi−1 = n,

2. πi · · · πj−1 is a nonempty increasing subsequence,

3. πj · · · πn is a nonempty decreasing subsequence where πj is a peak of
π,

4. and each of these sequences is nonempty.

Notice these three sequences of entries are in natural bijection with unlabeled
sets containing the corresponding entries because n is always in the first
sequence and of the other two sequences, {πj, . . . , πn} contains the largest
remaining entry.

Given that S(n, 3) =
3n−1 + 1

2
− 2n−1, we have the following result.

Corollary 3.20. The number of permutations sortable after two iterations

of algorithm PRE-REV of length n ≥ 1 is
3n + 1

2
− (n+ 1)2n−2.

Proof. Combining the results of Proposition 3.17, Proposition 3.18, and The-
orem 3.19, one can see the number of permutations of length n sortable after
two iterations of algorithm PRE-REV is

3n−1 − (n− 1)2n−2 +
3n−1 + 1

2
− 2n−1 =

3n + 1

2
− (n+ 1)2n−2.

24

The numerical evidence given Tables 1, 2 shows for at least small values
of n and k, PRE-REV sorts at least as many permutations as MIN-REV
does after k iterations. In fact, we can also extend Proposition 3.18 to show
the application of PRE-REV k times sorts every permutation sorted by MIN-
REV applied k times. That is, the PRE-REV algorithm is at least as efficient
as the MIN-REV algorithm for sorting any permutation.

Theorem 3.21. Any permutation sorted by k iterations of the MIN-REV
algorithm can be sorted by at most k iterations of the PRE-REV algorithm.

Proof. Suppose a permutation π requires exactly k iterations of MIN-REV
to be sorted. The prefix-suffix structure of the permutation can be par-
tially determined as described in Theorem 3.7 and then further investigated
depending on whether k is even or odd.

Let d be the number of descents in π occurring before n appears and a be
the number of ascents in π occurring after n. Regardless of the parity of k,
we know π = ρ1ρ2 · · · ρd+1ρd+2 · · · ρd+a+2 where ρ1, ρ2, . . . , ρd+1 are increasing
subsequences and ρd+2, ρd+3, . . . , ρd+a+2 are decreasing subsequences. The
position of the n means that we can say either ρd+2 begins with n or ρd+1

ends with n.
In the case when k is even, k = 2d and a < d. The first a + 1 in-

creasing subsequences ρ1, ρ2, . . . , ρa+1 and the a+1 decreasing subsequences
ρd+2, ρd+3, . . . , ρd+a+2 are part of the prefix-suffix decomposition of π utilized
in Theorem 3.6. Note that ρa+2 is also preserved in the prefix-suffix decom-
position of π, but will be handled with the remaining parts.

The remaining part of the prefix-suffix decomposition of π comes from
balancing the monotone subsequences of π that are not already accounted
for, namely ρa+2ρa+3 · · · ρd+1. However, because this consists of precisely d−a
increasing subsequences, the prefix-suffix decomposition from this portion
can have a maximum of d−a increasing subsequences and d−a−1 decreasing
subsequences.

Thus π has at most 2(a+ 1) + (d− a) + (d− a− 1) = 2d+ 1 parts in its
prefix-suffix decomposition and can be sorted in at most 2d = k iterations of
the PRE-REV algorithm.

The case when k is odd is similar in a symmetric sense. Now k = 2a+ 1
and d ≤ a. The d + 1 increasing subsequences ρ1, ρ2, . . . , ρd+1 and the last
d + 1 decreasing subsequences ρa+2, ρa+3, . . . , ρd+a+2 are part of the prefix-
suffix decomposition of π utilized in Theorem 3.6.

25

The rest of the prefix-suffix decomposition of π again involves balancing
what remains of π in ρd+2ρd+3 · · · ρa+1. However, because this portion of π
consists of a−d decreasing subsequences, the prefix-suffix decomposition here
can have a maximum of a− d increasing subsequences and a− d decreasing
subsequences.

Thus once again, π has at most 2(d+1)+(a−d)+ (a−d) = 2a+2 parts
in its prefix-suffix decomposition and can be sorted in at most 2a + 1 = k
iterations of the PRE-REV algorithm.

At the end of Section 3, we showed that the worst case scenario for MIN-
REV is the input π = n12 · · · (n − 1), which requires 2n − 3 iterations of
the algorithm, as it is the only permutation to have n − 2 ascents after n.
However, there is also the numerical evidence showing there is also exactly
one second-worst permutation of length n ≥ 2 requiring 2n − 4 iterations
of the MIN-REV algorithm that can be explained by the simple reversal
bijection which when applied to π gives πrev = (n−1) · · · 21n, a permutation
with n− 2 descents before n which gives us the following result.

Proposition 3.22. For n ≥ 2, there is a single permutation of length n
requiring the maximum 2n−3 iterations of the MIN-REV algorithm. Further,
there is exactly one permutation of length n requiring 2n−4 iterations of the
MIN-REV algorithm.

Using the same technique as was used in the more general Theorem 3.16,
we can enumerate the permutations of length n ≥ 3 requiring 2n−5 iterations
of MIN-REV to be sorted and apply the reverse bijection to get the same
enumeration for permutations requiring 2n− 6 iterations of MIN-REV.

Proposition 3.23. For n ≥ 3, there are 2n−1 − 1 permutations of length n
requiring 2n−5 iterations of the MIN-REV algorithm. Further, there are also
2n−1−1 permutations of length n requiring 2n−6 iterations of the MIN-REV
algorithm if n ≥ 4.

Proof. When n = 3, the 23−1 − 1 = 3 permutations requiring 2 · 3 − 5 = 1
iteration of the MIN-REV algorithm have already been determined to be the
non-identity unimodal permutations 132, 231, and 321.

When n ≥ 4, the permutations requiring 2n − 5 iterations of MIN-REV
are exactly the permutations with n−3 ascents after n. These consist of two
types of permutations. One type is made up of the n− 1 permutations that
begin with any entry other than n, have n in the second position, and then

26

have the remaining entries in ascending order. The other type is made up of
the 2n−1 − n permutations beginning with n followed by a permutation on
[n− 1] having exactly one descent. This gives us the desired enumeration of
2n−1 − 1 such permutations.

Then, if n ≥ 4, the reversal of all of the permutations described above
not only guarantee a permutation with n − 3 descents before the n, but
also, with at most one entry after the n after the reversal is complete, it is
impossible that the permutation could have any ascents after the n. Thus
these permutations all require 2n− 6 iterations of the MIN-REV algorithm.

The symmetry in the previous propositions continues to hold for smaller
values of k provided that we can guarantee there are not as many ascents
after the n than than descents before the n after reversing the permutations
whose sortability was determined by the ascents after n.

4. Permutation Classes

We now consider the possible description of permutations sortable by at
most k shuffles in terms of pattern classes.

For both MIN and REV, recall the patterns sortable by at most k shuffles
are exactly those permutations that have at most k descents. Because the
insertion of new elements into a permutation can never decrease the number
of descents in a permutation, for each value k the permutations sortable by
k iterations of PRE or MIN can also be described using classical pattern
avoidance. For example, the permutations that have at most one descent
and are thus sortable by (at most) one iteration of either the PRE or MIN
algorithm are the permutations that avoid 321, 2143, and 3142.

As mentioned in the justification for Corollary 3.11, the permutations
sortable by at most one iteration of either PRE-REV or MIN-REV are the
{213, 312}-avoiding permutations. For larger values of k, recall the permu-
tations sortable by k iterations of the PRE-REV algorithm have structure
defined by their prefix-suffix decomposition. Once again, there is no way
to “repair” an unsortable permutation by the insertion of more elements.
That is, the insertion of more elements into a permutation will not reduce
the number of components in its prefix-suffix decomposition. Thus, for each
value of k, the permutations sortable by k iterations of PRE-REV form a

27

permutation class as they are characterized by pattern avoidance. We give
the characterization for the case of k = 2 next.

Proposition 4.1. The permutations sortable by at most k = 2 iterations of
PRE-REV avoid the permutations in the basis

B = {3214, 4213, 4312, 21435, 21534, 31425, 31524, 41523}.

Proof. One can verify all of the permutations in B have four components
in their prefix-suffix decomposition. That is, these permutations begin with
two contiguous increasing subsequences and end with two contiguous decreas-
ing subsequences with no way to reduce to beginning with two contiguous
increasing subsequences followed by only one contiguous decreasing subse-
quence.

Conversely, consider a smallest permutation σ ordered by pattern contain-
ment that has at least, and thus exactly, four components in its prefix-suffix
decomposition. That is, a permutation that begins with two contiguous in-
creasing subsequences and end with two contiguous decreasing subsequences
with no way to reduce to beginning with two contiguous increasing subse-
quences followed by only one contiguous decreasing subsequence. As such,
the permutation σ contains at least two descents followed by at least one
ascent.

First, any permutation that begins with an increasing sequence of length
greater than one can be reduced to a smaller permutation with the same
number of components in its prefix-suffix decomposition by removing all but
the last entry in this increasing sequence. Thus (σ1, σ2) forms a descent and
so σ2 would be the first entry of our second contiguous increasing subsequence
in the prefix-suffix decomposition.

In the case that σ2 ̸= 1, we claim (σ2, σ3) forms a second descent. To
see this, suppose that instead there is a longer than length one contiguous
increasing subsequence starting at σ2. At some point, there must be a descent
and later an ascent after which σ will be complete. Thus the 1 of σ must
appear as part of the first contiguous descending subsequence and thus the
other entries of both the second contiguous increasing sequence and the first
contiguous decreasing subsequence besides σ2 and 1 can be removed leaving
a smaller forbidden permutation σ1σ21σm. The only permutations of this
form are 3214, 4213, 4312.

Otherwise, if σ2 = 1, then (1, σ3) must form an ascent. Then, as before,
(σ3, σ4) a descent as otherwise, the entries after 1 and before the first entry

28

of the second descent are again redundant. Similarly, (σ4, σ5) form an ascent
completing σ. Permutations of this form do not contain 3214, 4213, 4312
exactly when σ1 < σ3. Thus the only remaining elements of the basis are
21435, 21534, 31425, 31524, 41523.

We can say more about the generating functions Pk(x) =
∑
n≥0

pr(n, k)xn

using the notion of insertion encoding introduced by Albert, Linton, and
Rus̆kuc [2], utilized in works including that of Vatter and the second au-
thor [18], and further studied by Vatter [20].

Definition 4.2. A permutation can be defined in terms of a word describing
the insertion encoding. This is done by considering how a permutation would
be constructed inserting one entry at a time in increasing order of the values
of the entries into slots which will be spaces that will be filled by at least one
entry. The possible letters of the word are:

• li: Indicates the insertion of πj into the leftmost position of slot i.
Hence ⋄ → πj⋄.

• mi: Indicates the insertion of πj into a middle position of slot i. Hence
⋄ → ⋄πj⋄.

• ri: Indicates the insertion of πj into the rightmost position of slot i.
Hence ⋄ → ⋄πj.

• fi: Indicates the insertion of πj into the last available entry of slot i.
Hence ⋄ → πj.

Note that the label on a slot is relative to the other slots at that moment
in the algorithm. The resulting word will give the insertion encoding of the
permutation.

Example 4.3. The permutation π = 6725143 has insertion encoding m1m1r3f3f2l1f1

29

where the procedure is:

⋄1
⋄11⋄2 m1

⋄12 ⋄2 1⋄3 m1m1

⋄12 ⋄2 1 ⋄3 3 m1m1r3

⋄12 ⋄2 143 m1m1r3f3

⋄125143 m1m1r3f3f2

6 ⋄1 25143 m1m1r3f3f2l1

6725143 m1m1r3f3f2l1f1

Using insertion encoding as well as the structure of each permutation class
of permutations sortable by at most k iterations of PRE-REV, we will show
each class forms a regular language by invoking Corollary 10 from the paper
“The insertion encoding of permutations” by Albert, Linton, and Rus̆kuc [2].
This corollary tells us that any permutation class that can be constructed
by an insertion encoding where the number of slots is bounded is a regular
language. Since regular languages have rational generating functions, this
completes our proof.

Theorem 4.4. For any nonnegative integer k, the generating function

Pk(x) =
∑
n≥0

pr(n, k)xn

is rational.

Proof. Consider a nonnegative integer k. The permutations sortable by k
iterations of PRE-REV have at most k + 1 components in their prefix-suffix
notation. That is, these permutations begin with at most ⌈k+1

2
⌉ increasing

sequences followed by ⌊k+1
2
⌋ decreasing sequences.

To see that the class of permutations sortable by k iterations of PRE-REV
is regular, we will show that this class can be constructed by an insertion
coding that never has more than k open slots. First, consider the number of
open slots appearing starting at the left side of encoding of a permutation.
Each open slot that appears before an already inserted entry and will be
filled by a larger entry, and thus will result in a descent.

30

There are at most ⌈k+1
2
⌉ increasing sequences at the start of this per-

mutation before at most ⌊k+1
2
⌋ decreasing sequences at the end of the per-

mutations, so we can have up to ⌈k+1
2
⌉ open slots for the descents that will

eventually indicate the end of these increasing sequences. Then, by a sym-
metric argument, there can be at most ⌊k+1

2
⌋ − 1 open slots to the right

of entries forming the up to ⌊k+1
2
⌋ decreasing sequences because these slots

would be ascents indicating the end of a decreasing sequence (and the start
of a new sequence).

Hence the class of permutations sortable by k iterations of PRE-REV
has an insertion encoding that only has k open slots at any stage and is thus
regular. Since this permutation class is regular, it has a rational generating
function.

We remark that Theorem 4.4 can also be seen as a special case of Theorem
8.1 of “Geometric grid classes of permutations” by Albert, Atkinson, Bouvel,
Rus̆kuc, and Vatter [1]. Further, we can obtain the growth rate of this class
of sortable permutations.

Theorem 4.5. Let PRk be the class of permutations sorted after k iterations
of the PRE-REV algorithm. Then gr(PRk) = k + 1 for any nonnegative
integer k.

Proof. The permutations of PRk are exactly the juxtapositions of ⌈k+1
2
⌉Av(21)

permutations followed by ⌊k+1
2
⌋Av(12) permutations. Thus, as noted in work

by Albert, Pantone, and Vatter [3], the growth rate of the entire class is the
sum of the k + 1 individual growth rates of the monotone classes.

There is no classical pattern class for MIN-REV for k = 2 which can be
determined by the enumeration shown in Table 2 that indicates we have 5
sortable permutations of length three, but 15 of length 4. This is because
every principle class of permutations avoiding one permutation of length 3 is
enumerated by the Catalan numbers as shown by Knuth [12] and so only has
14 permutations of length 4. Looking closer at the sortable permutations, we
can specifically see that 312 is the only permutation of length three that is
not sortable by two iterations of MIN-REV. However, 3142, which contains
312 is sortable by two iterations in MIN-REV since (MIN-REV)2(3142) =
MIN-REV(2341) = 1234.

It is expected inserting a larger element in the permutation will continue
to change the process substantially enough so that MIN-REV will not yield

31

pattern classes for any k > 2, but we have not further studied what the
characterizations might be in terms of mesh patterns, what the generating
functions would look like, or what the asymptotic behavior for the class might
look like.

5. Conclusion

It is our hope that this analysis of deterministic shuffle sorting increases
interest in these specific algorithms as well as in the broader areas of sorting
and shuffling algorithms. In addition to the enumerative results found in this
paper, numerical evidence indicates many additional directions to explore
and we note a few options here.

The formulas given for pr(n, k) in Theorem 3.13 and mr(n, k) Theo-
rem 3.16 completely determine the enumeration of sortable permutations
for both PRE-REV and MIN-REV, but it would be nice to have simpler
descriptions if possible.

Open Question 5.1. Is there a simpler formula for either pr(n, k) or mr(n, k)
for general k or specific values of k beyond what was found here?

In particular, values mr(n, k) are directly related to the Eulerian numbers
and we used the Eulerian numbers to determine the leading term of mr(n, k)
for any fixed k and arbitrary n. What more can be said about subsequent
terms? We conjecture the following pattern, but it remains open to prove it.

Open Question 5.2. Is it true that the second term of mr(n, k) is −((k −
1)n+ 1)kn−2?

Proposition 3.9 shows the number of permutations sortable after one iter-
ation of either PRE-REV or MIN-REV is 2n−1, i.e., the number of unimodal
permutations. Theorem 3.21, gives the enumeration of the permutations
sortable by two iterations of PRE-REV, but not two iterations of MIN-REV
as the Stirling number of the second kind S(n, 3). Further, in Theorem 3.21,
we showed that all permutations sorted by k iterations of MIN-REV are also
sorted by k iterations of PRE-REV. Finding b(n) = pr(n, k)−mr(n, k), i.e.,
the generalized numerical difference in the number of permutations sorted
by k iterations of each algorithm, could be useful in determining simpler
formulas for pr(n, k) and mr(n, k).

Open Question 5.3. What can be determined about b(n, k) for k > 2?

32

Even determining b(n, 3) could lead to nice ways to describe pr(n, 3) and
mr(n, 3). There is limited numerical evidence that suggests b(n, 3) could be
related to a known sequence in OEIS. Specifically, that evidence suggests
b(n, 3) could be twice an offset of sequence a(n) defined in A102296 from the
OEIS [17].

Open Question 5.4. Does b(n, 3) = 2a(2(n − 5)) = (1/3)((2(n − 5) +
1)(10[2(n− 5)]2 +17[2(n− 5)] + 12)? If so, why? Either way, is there a nice
combinatorial way to describe the difference b(n, 3) = pr(n, 3)−mr(n, 3)?

We have only taken a limited look at the relationship between our al-
gorithms and pattern classes, so there is much more to investigate here,
particularly in regards to the permutation classes formed by the sortable
permutations by k iterations of PRE-REV.

Open Question 5.5. What are the explicit permutation classes that form the
sortable permutations by k > 2 iterations of PRE-REV? In fact, any further
characterization or simplification the enumeration of the permutations sort-
able by k iterations of PRE-REV would be interesting.

We have determined some specifics about the PRE-REV algorithm that
establish certain characteristics of the bivariate generating function

P (x, y) =
∑
n≥0

pr(n, k)xnyk

including the main diagonal where n = k+1, from Corollary 3.14, However,
we have not explored the general properties of P (x, y).

Open Question 5.6. What else can be said about P (x, y)? Specifically, is
P (x, y) a rational generating function and what is the asymptotic behavior of
P (x, y)?

Looking the permutations sortable by k > 1 iterations of MIN-REV is
also a potentially interesting question.

Open Question 5.7. Can the permutations sortable by k > 1 iterations of
MIN-REV be described nicely in terms of mesh patterns?

6. Acknowledgements

The authors wish to thank the referees for helpful feedback that improved
the presentation of this paper. They also thank Jay Pantone for helpful input
that informed the lines of exploration taken in this project.

33

References

[1] M. H. Albert, M. D. Atkinson, M. Bouvel, N. Rus̆kuc, and V. Vatter,
Geometric grid classes of permutations, Transactions of the American
Mathematical Society 365.11 (2013) 5859–5881.

[2] M. H. Albert, S. Linton, and N. Rus̆kuc, The Insertion Encoding of
Permutations, Electron. J. Comb. 12 (2005) #R47.

[3] M. H. Albert, J. Pantone, and V. Vatter, On the growth of merges
and staircases of permutation classes, The Rocky Mountain Journal of
Mathematics 49.2 (2019).

[4] M. D. Atkinson, Restricted permutations, Discrete Math. 195, 1-3
(1999), 27–38.

[5] M. J. Bannister, W. E. Devanny, and D. Eppstein, Small superpatterns
for dominance drawing, In 2014 Proceedings of the Eleventh Workshop
on Analytic Algorithmics and Combinatorics (ANALCO), Society for
Industrial and Applied Mathematics, 92–103.

[6] D. Bayer and P. Diaconis, Trailing the Dovetail Shuffle to its Lair, Ann.
Appl. Probab. 2 (1992) 294–313.

[7] M. Bóna, A survey of stack-sorting disciplines, Electron. J. Comb. 9.2
(2002-3) #A1.

[8] G. Cerbai and L. Ferrari, Permutation patterns in genome rearrange-
ment problems: the reversal model, Discret. Appl. Math. 279 (2020)
34–48.

[9] L. Comtet, Permutations by Number of Rises; Eulerian Numbers. Sec-
tion 6.5 in Advanced Combinatorics: The Art of Finite and Infinite
Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, p. 243, 1974.

[10] S. Dimitrov, Sorting by shuffling methods and a queue, Electron. J.
Comb. 29.3 (2022) #P3.23.

[11] S. Even and A. Itai, Queues, stacks, and graphs, In Theory of machines
and computations (Proc. Internat. Sympos., Technion, Haifa, 1971).
Academic Press, New York, 1971, 71–86.

34

[12] D. E. Knuth, The art of computer programming. Volume 1, Addison-
Wesley Publishing Co., Reading, Mass., 1969. Fundamental algorithms,
Addison-Wesley Series in Computer Science and Information Processing.

[13] D. E. Knuth, The art of computer programming. Volume 3, Addison-
Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1973.
Sorting and searching, Addison-Wesley Series in Computer Science and
Information Processing.

[14] A. Marcus and G. Tardos, Excluded permutation matrices and the Stan-
ley–Wilf conjecture, J. Combin. Theory Ser. A 107.1 (2004) 153–160.

[15] T. W. Pensyl and C. D. Savage. Rational lecture hall polytopes and
inflated Eulerian polynomials, The Ramanujan Journal 31.1-2 (2013),
97–114.

[16] V. R. Pratt, Computing permutations with double-ended queues, par-
allel stacks and parallel queues, In STOC-73: Proceedings of the fifth
annual ACM symposium on Theory of computing (New York, NY, USA,
1973), ACM Press, 268–277.

[17] N. J. A. Sloane, editor, The On-Line Encyclopedia of Integer Sequences,
published electronically at https://oeis.org, 2022.

[18] R. Smith and V. Vatter, The enumeration of permutations sortable by
pop stacks in parallel, Inform. Process. Lett. 109 (2009), 626–629.

[19] R. Tarjan, Sorting using networks of queues and stacks, J. Assoc. Com-
put. Mach. 19 (1972), 341–346.

[20] V. Vatter, Finding regular insertion encodings for permutation classes,
Journal of Symbolic Computation 47.3 (2012), 259–265.

[21] I. Žliobaitė, Controlled permutations for testing adaptive classifiers,
In International Conference on Discovery Science (Berlin, Heidelberg
2011), Springer, 365–379.

35

https://oeis.org

	Introduction
	Permutations
	Sorting Functions and Sorting Networks

	Simple shuffle algorithms
	Reverse shuffle algorithms
	Characterization
	Enumeration

	Permutation Classes
	Conclusion
	Acknowledgements

