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Abstract

In this paper, we view parking functions viewed as labeled Dyck paths in order to study a notion of
pattern avoidance first considered by Remmel and Qiu. In particular we enumerate the parking functions
avoiding any set of two or more patterns of length 3, and we obtain a number of well-known combinatorial
sequences as a result. Along the way, we find bijections between specific sets of pattern-avoiding parking
functions and a number of combinatorial objects such as partitions of polygons and trees with certain
restrictions.
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1 Introduction

Let Sn be the set of all permutations on [n] = {1, 2, . . . , n}. Given π ∈ Sn and ρ ∈ Sm we say that π contains
ρ as a pattern if there exist 1 ≤ i1 < i2 < · · · < im ≤ n such that πia ≤ πib if and only if ρa ≤ ρb. In this
case we say that πi1 · · ·πim is order-isomorphic to ρ, and that πi1 · · ·πim is an occurrence of ρ in π. If π does
not contain ρ, then we say that π avoids ρ. For example π = 364521 contains the pattern ρ = 2341 because
the digits of π1π3π4π5 = 3452 have the same relative order as the digits of ρ; this is one of two instances
of 2341 in π. Simion and Schmidt [16] enumerated permutations avoiding a pair of patterns of length 3
and many further enumerative results followed (see Bóna [1] and Kitaev [8] for surveys) both for patterns in
permutations and in words. We now consider this notion of pattern applied to the area of parking functions.

Suppose that n cars need to park in n parking spaces along a one-way street. Each car has a favorite
parking spot. Each car will traverse the street exactly once and it will take its favorite spot or the next
available spot after that. A collection of preferences that results in all the cars being parked is called a
parking function. As extreme examples: if all cars prefer spot 1, then we have a parking function since the
ith car will end up in spot i; however if all cars prefer a different spot, such as spot 2 or spot n, we do not
have a parking function since all the cars will bypass spot 1 and there are not enough remaining spots to
park the cars.

It is well known that a collection of preferences is a parking function if and only if for all 1 ≤ i ≤ n
at least i cars prefer spot i or earlier. Further, it is known (see [9, 13]) that there are (n + 1)n−1 possible
parking functions for n cars. For a comprehensive survey of results on parking functions, see [17].

There are multiple ways to represent parking functions that associate them with words and permutations.
For example, Jeĺınek and Mansour [7] view a parking function as a word w ∈ [n]n where for every i = 1, . . . , n,
w has at least i letters less than or equal to i. In this representation, the three parking functions on 2 letters
are represented as 11, 12, and 21. They apply the standard definition of pattern avoidance to these words
and determine pairs of patterns π and π′ where the number of π-avoiding parking functions of size n equals
the number of π′-avoiding parking functions of size n for all n.

*The first author is supported in part by an AMS-Simons Travel Grant.
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Figure 1: The three parking functions of size 2

In a different direction, Garsia and Haiman [4, 5] represent parking functions as Dyck paths with labeled
up-steps. Here a Dyck path is a lattice path from (0, 0) to (n, n) in the Cartesian plane consisting of n
north-steps (N) and n east-steps (E) that never crosses below the line y = x. Dyck paths are counted by
the Catalan numbers, and there is a natural bijection with legally-arranged sequences of parentheses (by
changing each N to a left parenthesis and each E to a right parenthesis). In such a path, we may label each
of the n north-steps with a distinct integer from {1, . . . , n} such that consecutive north-steps must have their
labels in increasing order. In this representation, the labels of north-steps along x = i correspond to the cars
who prefer spot i+ 1. The three parking functions corresponding to 11, 12, and 21 in Jeĺınek and Mansour’s
notation are shown as labeled Dyck paths in Figure 1.

In Garsia and Haiman’s notation, each parking function is represented uniquely by the combination of a
Dyck path and the labels on its north-steps. However, there is also an interesting many-to-one correspondence
between permutations and parking functions that manifests naturally as a result of this representation. In
particular, given a parking function represented as a labeled Dyck path, reading the labels of the north-
steps in order produces a unique permutation. Multiple parking functions may correspond to the same
permutation; for example, the first two parking functions in Figure 1 correspond to the permutation 12,
while the last one corresponds to the permutation 21. However, this many-to-one correspondence gives
another way to study pattern avoidance in parking functions: consider a parking function p represented as
a labeled Dyck path. Let φ(p) be the permutation obtained by reading the labels of p’s north steps in order.
Further, let pfn(ρ) be the number of parking functions p of size n such that φ(p) avoids ρ, and by extension
let pfn(ρ1, ρ2, . . . , ρk) be the number of parking functions of size n such that φ(p) avoids each of ρ1, . . . , ρk
simultaneously.

It is quick to see that
pfn(12) = 1.

The only way to avoid the pattern 12 is to consider the Dyck path of the form (NE)n whose labels appear
in decreasing order, as in the last image of Figure 1. It is similarly quick to see that

pfn(21) = Cn,

where Cn =
(2n

n )
n+1 is the nth Catalan number. Here, for any of the Cn possible Dyck paths, the north-steps

must be labeled in increasing order, as in the first two images of Figure 1.
Remmel and Qiu [14, 15] considered the case of parking functions avoiding 123 and determined that

pfn(123) =

n∑
k=n/2

Ck

n− k + 1

(
n

k

)(
k

n− k

)
,

where Ck is the kth Catalan number, but they did not conduct a more systematic exploration.
While Garsia and Haiman’s representation can be visualized in terms of Dyck paths, for ease of notation,

we may also write parking functions as ordered collections of sets, where the members of the ith set are the
labels of the north-steps along x = i−1 in the Dyck representation. We separate sets by vertical lines. In this
block notation, the three Dyck paths of Figure 1 are written as {1, 2}|∅, {1}|{2}, and {2}|{1} respectively.

In this paper, we continue Remmel and Qiu’s study of pattern avoidance using Garcia and Haiman’s
labeled Dyck path representation of parking functions. In particular, we study parking functions that avoid
any collection of permutation patterns of length 3. We achieve a number of famous combinatorial sequences
as well as a number of new sequences. The rest of this paper is organized according to the number of patterns
to be avoided. By the Erdős-Szekeres Theorem, any permutation that avoids both 123 and 321 must have
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length 4 or less, so we only consider parking functions that avoid at most one of these patterns at a time.
While some results follow from case-work, other arguments require new bijections with combinatorial objects
or computer-assisted induction.

Since the definition of pattern considered in this paper has its roots in permutation patterns, we will find
it helpful to make use of certain permutation notation. Throughout this paper, Sn denotes the set of all
permutations of length n and Sn(P ) denotes the set of all permutations of length n that avoid all patterns
in the list P . In = 12 · · ·n denotes the increasing permutation of length n and Jn = n · · · 21 denotes the
decreasing permutation of length n. Further, given permutations α ∈ Sn and β ∈ Sm, then α⊕ β and α	 β
are permutations in Sn+m known respectively as the direct sum and the skew sum of α and β. In particular,

(α⊕ β)i =

{
αi 1 ≤ i ≤ n
βi−n + n n+ 1 ≤ i ≤ n+m

and

(α	 β)i =

{
αi +m 1 ≤ i ≤ n
βi−n n+ 1 ≤ i ≤ n+m

.

With this direct sum and skew-sum notation, we are prepared to make a simplifying observation. As a
consequence of this labeled Dyck path construction, we see that if there is an ascent-preserving bijection be-
tween Sn(ρ1, ρ2, . . . , ρk) and Sn(σ1, σ2, . . . , σk), then pfn(ρ1, ρ2, . . . , ρk) = pfn(σ1, σ2, . . . , σk). For example,
we know that any π ∈ Sn(132) can be written in the form (α⊕1)	β, where α and β are 132-avoiding. Simi-
larly, any π ∈ Sn(231) can be written in the form α⊕ (1	β) where α and β are 231-avoiding. This structure
can be used recursively to provide an ascent-preserving bijection between Sn(132) and Sn(231) by fixing the
digit n and adjusting the values to its left and to its right. Therefore pfn(132) = pfn(231). A similar argument
shows that pfn(213) = pfn(312). By extension, if |Sn(ρ1, ρ2, . . . , ρk, 132)| = |Sn(ρ1, ρ2, . . . , ρk, 231)|, then
pfn(ρ1, ρ2, . . . , ρk, 132) = pfn(ρ1, ρ2, . . . , ρk, 231), and if |Sn(ρ1, ρ2, . . . , ρk, 213)| = |Sn(ρ1, ρ2, . . . , ρk, 312)|,
then pfn(ρ1, ρ2, . . . , ρk, 213) = pfn(ρ1, ρ2, . . . , ρk, 312). We make use of this observation to reduce the num-
ber of cases required in several proofs throughout the paper.

2 Avoiding five patterns

Since we omit sets that avoid 123 and 321 simultaneously, there are only two sets of size 5 to consider.

Theorem 1.

pfn(123, 132, 213, 231, 312) =

{
3 n = 2,

1 otherwise.

Proof. For n ≥ 3, all subsequences of length 3 must form 321 patterns. In other words, the labels of the
north-steps must all be in decreasing order. This implies that each north-step is on a different vertical line
in the Cartesian plane, so the only relevant parking function is the one of the form (NE)n with decreasing
labels.

Theorem 2.

pfn(132, 213, 231, 312, 321) =

{
3 n = 2,

Cn otherwise.

Proof. For n ≥ 3, all subsequences of length 3 must form 123 patterns. In other words, the labels of the
north-steps must all be in increasing order. Each of the Cn possible Dyck paths can be labeled once in this
way.

3 Avoiding four patterns

There are
(
6
4

)
= 15 distinct sets of four patterns of length 3. However, 6 of these sets involve both 123 and

321 and are addressed by the Erdős-Szekeres Theorem. From the remaining 9 sets of patterns, we get five
different enumeration sequences. A summary of results is shown in Table 1.
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Patterns P pfn(P ), 1 ≤ n ≤ 6 OEIS Result
123, 132, 213, 231

1, 3, 3, 3, 3, 3 A122553 Theorem 3
123, 132, 231, 312
123, 132, 213, 312

1, 3, 4, 5, 6, 7 A065475 Theorem 4
123, 213, 231, 312
132, 213, 231, 312 1, 3, 6, 15, 43, 133 new Theorem 5
132, 213, 231, 321

1, 3, 7, 19, 56, 174 A071716 Theorem 6
132, 231, 312, 321
132, 213, 312, 321

1, 3, 8, 23, 70, 222 A000782 Theorem 7
213, 231, 312, 321

Table 1: Enumeration data for parking functions avoiding four patterns of length 3

Theorem 3. For n ≥ 2,

pfn(123, 132, 213, 231) = pfn(123, 132, 231, 312) = 3.

Proof. There is an ascent-preserving bijection between Sn(123, 132, 213, 231) and Sn(123, 132, 231, 312), so
we focus on the first case. First we claim that any permutation π ∈ Sn(123, 132, 213, 231) where n ≥ 3 must
be of the form Jn or Jn−2 	 I2. To see this, notice that π1 = n and inductively, since any subpermutation
τ of π avoids the same set of patterns, π2 = n − 1. Continuing this way, it is quick to see that πk =
n − k + 1 for each 1 ≤ k ≤ n − 3. The only possibilities for the last three entries of π are the only two
patterns of length 3 not being avoided, that is, 312 and 321. Next, it is easy to see that there are exactly
two parking functions associated with π = Jn−2 	 I2, namely, {n}|{n − 1}|{n − 2}| · · · |{3}|{1}|{2} and
{n}|{n − 1}|{n − 2}| · · · |{3}|{1, 2}|∅. Together with the unique parking function corresponding to π = Jn,
we obtain the desired result.

Theorem 4. For n ≥ 2,

pfn(123, 132, 213, 312) = pfn(123, 213, 231, 312) = n+ 1.

Proof. There is an ascent-preserving bijection between Sn(123, 132, 213, 312) and Sn(123, 213, 231, 312), so
we focus on the first case. For any π ∈ Sn(123, 132, 213, 312), since π avoids 123 and 132, then either
π1 = n or π1 = n − 1. If π1 = n, then π avoiding 312 means that π = Jn. Otherwise, π1 = n − 1 and
since π avoids 213 and 312 then π = I2 	 Jn−2. In the latter case, there are n possible parking functions,
namely, {n− 1}|{n}|{n− 2}| · · · |{2}|{1} or any of the (n− 1) parking functions of the form {n− 1, n}|{n−
2}| · · · |{k}|∅|{k − 1}| · · · |{2}|{1}. Finally, adding this to the unique parking function corresponding to
π = Jn, we obtain the desired result.

Theorem 5. For n ≥ 2,
pfn(132, 213, 231, 312) = Cn + 1.

Proof. For n ≥ 3, every subsequence of length 3 needs to form either a 123 pattern or a 321 pattern. The
only permutations that accomplish this are the increasing permutation, which can be associated with any of
the Cn possible Dyck paths or the decreasing permutation, which can be associated with the one Dyck path
of the form (NE)n. This yields a total of Cn + 1 total pattern-avoiding parking functions.

Theorem 6. For n ≥ 2,

pfn(132, 213, 231, 321) = pfn(132, 231, 312, 321) = Cn + Cn−1.

Proof. There is an ascent-preserving bijection between Sn(132, 213, 231, 321) and Sn(132, 231, 312, 321), so
we focus on the first case. In the case where π ∈ Sn(132, 213, 231, 321), since π avoids 213 and 231, either
π1 = 1 or π1 = n. If π1 = 1, then avoiding 132 means that π = In. On the other hand, if π1 = n, avoiding
321 means that π is of the form 1	 In−1. The former case yields Cn parking functions. We claim that the
latter case yields Cn−1 parking functions. This is because n is always in a block of size 1 at the beginning
of each parking function, hence counting all such parking functions is equivalent to counting all parking
functions corresponding to In−1. Adding up gives a total of Cn + Cn−1 parking functions.
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Theorem 7. For n ≥ 2,

pfn(132, 213, 312, 321) = pfn(213, 231, 312, 321) = 2Cn − Cn−1.

Proof. There is an ascent-preserving bijection between Sn(132, 213, 312, 321) and Sn(213, 231, 312, 321), so
we focus on the second case. Additionally, when n = 2, we already know there are 2C2 − C1 = 3 parking
functions, so we focus on the case where n ≥ 3.

Suppose π ∈ Sn(213, 231, 312, 321). Then since π avoids 312 and 321, either πn−1 = n or πn = n. In the
first case, since π avoids 231, we see that πn = n− 1, and since π avoids 213, π = In−2 ⊕ J2. In the second
case, since π avoids 213, π = In. There are Cn parking functions corresponding to In. For the case where
π = In−2 ⊕ J2, we may count the parking functions corresponding to In, then exclude the parking functions
where n − 1 and n appear in the same block. When n − 1 and n are in different blocks, we trade their
locations to obtain a parking function corresponding to π = In−2⊕ J2. If n− 1 and n are in the same block,
we may treat them as a single digit, so the number of parking functions of In where n− 1 and n are in the
same block is given by Cn−1 and the parking functions corresponding to In−2 ⊕ J2 is given by Cn − Cn−1.
Combining this with the case where π = In gives 2Cn − Cn−1 parking functions.

4 Avoiding three patterns

There are
(
6
3

)
= 20 distinct sets of three patterns of length 3. However 4 of these sets involve both 123 and

321 and are addressed by the Erdős-Szekeres Theorem. From the remaining 16 sets of patterns, we get 10
different enumeration sequences. A summary of results is shown in Table 2.

Patterns P pfn(P ), 1 ≤ n ≤ 6 OEIS Result
123, 132, 231 1, 3, 5, 7, 9, 11 A005408 Theorem 8
123, 132, 312

1, 3, 6, 10, 15, 21 A000217 Theorem 9123, 213, 231
123, 231, 312
123, 213, 312 1, 3, 7, 13, 21, 31 A002061 Theorem 10
123, 132, 213 1, 3, 6, 17, 43, 123 A143363 Theorem 11
132, 213, 231

1, 3, 8, 22, 64, 196 A014138 Theorem 12
132, 231, 312
132, 213, 312

1, 3, 9, 28, 90, 297 A000245 Theorem 13
213, 231, 312
132, 231, 321 1, 3, 9, 29, 98, 342 A077587 Theorem 14
132, 213, 321

1, 3, 10, 35, 126, 462 A001700 Theorem 15132, 312, 321
213, 231, 321
213, 312, 321 1, 3, 11, 41, 154, 582 A076540 Theorem 16
231, 312, 321 1, 3, 10, 38, 154, 654 A001002 Theorem 17

Table 2: Enumeration data for parking functions avoiding three patterns of length 3

Theorem 8.
pfn(123, 132, 231) = 2n− 1.

Proof. Suppose π ∈ Sn(123, 132, 231). Because, π avoids 123 and 132, either πn−1 = 1 or πn = 1. In
addition, avoiding 231 means that no ascent can appear before 1 in π. Combining these properties, either
π = Jn or π = Jn−k 	 (Jk−1 ⊕ 1) where 2 ≤ k ≤ n. There is one parking function corresponding to the
permutation Jn. In the second case, since the first n− 1 digits of π = Jn−k 	 (Jk−1 ⊕ 1) are decreasing they
must appear in separate blocks. We may choose whether to put 1 and k in the same block or in separate
blocks, so for each of the n− 1 choices of k, there are two parking functions. Combining both cases, we get
a total of 1 + 2(n− 1) = 2n− 1 pattern-avoiding parking functions.
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Theorem 9.

pfn(123, 132, 312) = pfn(123, 213, 231) = pfn(123, 231, 312) =

(
n+ 1

2

)
.

Proof. There is an ascent preserving-bijection between Sn(123, 132, 312) and Sn(123, 231, 312) and another
ascent-preserving bijection between Sn(123, 231, 312) and Sn(123, 213, 231), so we focus on the first case.

Suppose π ∈ Sn(123, 132, 312). Since π avoids 132, all digits before n are larger than all digits after n.
Since π avoids 123, all digits before n are in decreasing order. Since π avoids 312, all digits after n are in
decreasing order. Therefore, π = (Jk ⊕ 1) 	 Jn−k−1, for some 0 ≤ k ≤ n − 1. There are two possible cases
for the structure of such a parking function:

(i) It has the form {n− 1}|{n− 2}| · · · |{n− k}|{n}|{n− k − 1}| · · · |{1}.

(ii) It has the form {n− 1}|{n− 2}| · · · |{n− k, n}|{n− k − 1}| · · · |∅| · · · |{1}.

There are n parking functions of the first form – one for each choice of k. Given a particular choice of
k ≥ 1, there are n − k parking functions of the second form – one for each choice of location of the empty
block. Hence, the total number of possible parking functions is given by:

n+

n−1∑
k=1

(n− k) =

n−1∑
k=0

(n− k) =

(
n+ 1

2

)
.

Theorem 10.
pfn(123, 213, 312) = n(n− 1) + 1.

Proof. Let π ∈ Sn(123, 213, 312). Since π avoids 123 and 213, either π1 = n or π2 = n.
In the first case, since π avoids 312, π = Jn. In the second case, since π avoids 312, all digits after n are in

decreasing order, and we only have a choice of the value of π1. Therefore, in this case, π = (1⊕ Jn−k)	Jk−1,
where 1 ≤ k ≤ n− 1.

There is one parking function corresponding to Jn.
On the other hand, given a choice of 1 ≤ k ≤ n − 1, there are n parking functions corresponding to

(1⊕ Jn−k) 	 Jk−1. One parking function has all blocks of size 1, while the other n − 1 parking functions
begin with the block {k, n}. Since there are no other ascents in the underlying permutation, all blocks after
the inital block must have size at most 1. Then there are n− 1 choices for the location of the empty block.

These cases give a total of 1 + n(n− 1) pattern-avoiding parking functions.

Theorem 11. pfn(123, 132, 213) is equal to the number of rooted ordered trees with n + 1 edges such that
every vertex is either a leaf or adjacent to a leaf.

Theorem 11 is our first result without an explicit formula. These trees are counted in sequence A143363
of the On-Line Encyclopedia of Integer Sequences [12], and they were first studied by Cheon and Shapiro [2].
The exact enumeration is best given by a functional equation satisfied by the relevant generating function.
For our present context, it is of greater interest to show the parallel structure between these trees and the
pattern-avoiding parking functions. A reader interested in the exact enumeration may consult [2] or [12].

Proof of Theorem 11. Suppose π ∈ Sn(123, 132, 213). Since π avoids 123 and 213 either π1 = n or π2 = n.
If π2 = n, then since π avoids 132, π1 = n − 1. In either case the rest of the permutation can be filled
in recursively. Therefore, if π ∈ Sn(123, 132, 213), then either π = 1 	 π′ where π′ ∈ Sn−1(123, 132, 213)
or π = 12 	 π′ where π′ ∈ Sn−2(123, 132, 213). Due to this structure, the number of such permutations
is counted by the Fibonacci numbers. Also, observe that if π ∈ Sn(123, 132, 213), there are never two
consecutive ascents in π. This implies that in any parking function avoiding {123, 132, 213}, every block has
size at most 2.

We will give a recursive bijection f between the trees described in the theorem statement and the set of
{123, 132, 213}-avoiding parking functions. For the trees, we will call an edge containing a leaf an external
edge and an edge between two internal vertices an internal edge. Given a tree T where every vertex is either
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a leaf or adjacent to a leaf, let f(T ) be the corresponding parking function. In our bijection, if T has i
internal edges then the associated permutation for f(T ) has i ascents.

As base cases, we set:

f


 = ∅

f


 = {1}

For the general case, we consider two cases: either the tree has no internal edges or it has at least one
internal edge.

If the tree has no internal edges, then every edge has the root as one of its endpoints. This tree with
n+1 edges corresponds to the unique parking function associated with the decreasing permutation of length
n. (Notice that the n = 0 and n = 1 examples of this case are exactly the two base cases shown above.)

Now, consider a tree with at least one internal edge. Suppose the root is contained in m edges and ` of
them are internal, called e1, e2, . . . , e`. There are

(
m
`

)
ways these ` edges can be distributed in order among

the m edges containing the root, so let their respective positions be p1, . . . , p` where {p1, . . . , p`} ⊆ [m].
Since e1, e2, . . . , e` are internal edges, they each have a rooted ordered tree below them. Call these trees
t1, . . . , t`.

Since we are forming bijection f recursively, each of t1, . . . , t` corresponds to a pattern-avoiding parking
function. If ti has j + 1 edges, then f(ti) corresponds to a parking function of length j. Accordingly, let
j = |ti|.

To complete the bijection, we consider (a) a parking function p̂ corresponding to the set of edges containing
the root, and (b) an algorithm to incorporate p̂ and the parking functions corresponding to the f(ti)’s into
one single parking function f(T ).

For p̂, create a parking function with underlying permutation

12	 · · · 	 12︸ ︷︷ ︸
` times

	 1	 · · · 	 1︸ ︷︷ ︸
m−`−1 times

,

where ` corresponds to the number of internal edges out of the m total edges containing the root of T . All
empty blocks of the parking function p̂ will appear after the last ascent bottom.

If p1 = 1, the first `− 1 ascents appear in blocks of size 2 while the last ascent appears in two blocks of
size 1, leaving m− ` blocks of size 1 after the last ascent bottom. There are

(
m−1
`−1
)

ways to distribute `− 1
empty blocks after the last ascent bottom.

If p1 > 1, then all ascents appear in blocks of size 2, and there are m− `− 1 blocks of size 1. There are(
m−1
`

)
ways to distribute ` empty blocks after the last ascent bottom.

In both cases, the locations of the internal edges among the final m−1 edges correspond to the locations
of the empty blocks at the end of the parking function.

As some small examples, here are the simplest trees with one internal edge. Both of these have one
internal edge and one external edge descending from the root so m = 2 and ` = 1. The first tree has p1 = 1
while the second has p1 = 2. Both correspond to the permutation 12, but the location of the internal edge
determines whether there is an empty block and where it is.

f




= {1}|{2}
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f




= {12}|∅

Finally, we are ready to incorporate trees t1, . . . , t`. If T has internal edges, we first form a parking
function p̂ with ` ascents followed by m− `− 1 entries in decreasing order, with empty blocks as prescribed
above. We also recursively determine parking functions f(t1), f(t2), . . . , f(t`) of lengths |t1| , |t2| , . . . , |t`|
respectively.

Now, increment the digits in the kth ascent of P by
∑`

i=k+1 |ti|. Also, increment the digits in f(tk) by

2(`− k+ 1) + (m− `− 1) +
∑`

i=k+1 |ti|. Insert this incremented version of f(ti) immediately before the kth
ascent of P .

Figure 2: A rooted ordered tree where every vertex is a leaf or adjacent to a leaf

Before moving to a new result, we consider a concrete example of the bijection in the proof of Theorem
11. Consider the tree shown in Figure 2. The root has 4 children so m = 4 and ` = 2 with p1 = 2 and
p2 = 3. Therefore, parking function p̂, corresponding to the set of edges containing the root has underlying
permutation 12 	 12 	 1 = 45231. Since p1 > 1, we see that 45 will appear in the same block and 23 will
appear in the same block. There are two empty blocks that must appear after the 23, and since the internal
edges are the first two among the last m−1 edges descending from the root, so parking function p̂ has empty
blocks as the first two blocks after {2, 3}, i.e., p̂ = {4, 5}|{2, 3}|∅|∅|{1}.

We know that f(t1) = {1} as a base case above.

We also need to determine f(t2) = f




.

By a similar process, we see the set of edges containing the root of t2 has m = 3 and ` = 1, and therefore
has underlying permutation 231. Since the internal edge is first, we have 2 and 3 in separate blocks, so
f(t2) = {2}|{3}|{1}.

Now, we increment. |t1| = 1 and |t2| = 3, so the digits in f(t1) get incremented by |t2|+2(`−1+1)+(m−
`−1) = 3+2(2)+1 to become {9}. The digits in f(t2) get incremented by 2(`−2+1)+(m−`−1) = 2(1)+1
to become {5}|{6}|{4}. Similarly, digits 45 in the original generation get incremented by 3 to become 78.

This example tree corresponds to the parking function

{9}|{7, 8}|{5}|{6}|{4}|{2, 3}|∅|∅|{1}.

The blue font highlights f(t1), the red font highlights f(t2), and the black font highlights the components
of the parking function that come from the set of edges containing the root of the original tree.
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Theorem 12.

pfn(132, 213, 231) = pfn(132, 231, 312) =

n∑
i=1

Ci.

Proof. There is an ascent-preserving bijection between Sn(132, 213, 231) and Sn(132, 231, 312), so we focus
on the first case. Suppose π ∈ Sn(132, 213, 231). Since π avoids 132 and 231, either π1 = n or πn = n. If
πn = n, then since π avoids 213, π = In. On the other hand, if π1 = n, we may recursively fill in π2 · · ·πn
with any member of Sn−1(132, 213, 231), so π = Jk 	 In−k for some 0 ≤ k ≤ n.

The pattern-avoiding permutations we are concerned with consist of d descents followed by n − 1 − d
ascents, and there is one pattern-avoiding permutation for each choice of 0 ≤ d ≤ n − 1. The initial d
digits appear in decreasing order in π and thus they must appear in blocks of size 1 at the beginning of any
corresponding parking function. However, the remaining n − d digits appear in increasing order in π and
correspond to Cn−d ways to complete the final n−d−1 blocks of the parking function with increasing labels.

Summing over all possible values of d, gives
∑n−1

d=0 Cn−d =
∑n

i=1 Ci pattern-avoiding parking functions.

Theorem 13.
pfn(132, 213, 312) = pfn(213, 231, 312) = Cn+1 − Cn.

Proof. There is an ascent-preserving bijection between Sn(132, 213, 312) and Sn(213, 231, 312), so we focus
on the second case. Suppose π ∈ Sn(213, 231, 312). Since π avoids 231, all digits before n are smaller than
all digits after n. Since π avoids 213 and 312, all digits before n are in increasing order and all digits after
n are in decreasing order. Combining these properties, π = Ik−1 ⊕ Jn−k+1 for some 1 ≤ k ≤ n. In other
words, π begins with a sequence of k − 1 ascents followed by n− k descents.

Let a(n, k) be the number of {213, 231, 312}-avoiding parking functions of size n with exactly k − 1
ascents. This is a refinement of the enumeration we are interested in, and we will prove that a(n, k) is given
by triangle A030237 in the On-Line Encyclopedia of Integer Sequences. In particular, we will show that
a(n, 1) = 1 and a(n, n) = Cn for all n ≥ 0 and for 1 < k < n, a(n, k) = a(n, k − 1) + a(n− 1, k).

When k = 1, the unique permutation with no ascents is Jn, and there is a unique way to write the
decreasing permutation as a parking function, so, indeed a(n, 1) = 1.

Similarly, when k = n, the unique permutation with n− 1 ascents is In, and there are Cn ways to write
the increasing permutation as a parking function, so, a(n, n) = Cn.

Now, consider the situation where 1 < k < n. a(n, k) counts parking functions corresponding to permu-
tations of the form Ik−1⊕Jn−k+1, so a(n, k) counts parking functions corresponding to permutations ending
in k. We consider two cases: either the last block of a parking function counted by a(n, k) is {k} or it is
empty.

In the first case, delete the last block. Then subtract 1 from each digit larger than k. This produces a
pattern-avoiding parking function of size n− 1 ending in k, and there are a(n− 1, k) such parking functions.

In the second case, consider the Dyck path representation of the parking function and find the north-step
labeled k − 1. There must be j east-steps between this north-step and the previous north-step where j ≥ 0.
Remove these east-steps and the north-step labeled k − 1 (deleting a subpath of the form EjN and insert
them immediately before the last east-step as a NEj subpath to get a parking function counted by a(n, k−1).
The final empty block guarantees that this operation still produces a path that stays above y = x.

Together these cases show that a(n, k) = a(n − 1, k) + a(n, k − 1), which is exactly the recurrence
that characterizes Catalan’s triangle. Since we partitioned our parking functions according to the longest
increasing prefix, we are interested in the row sums of this triangle. However, we only have 1 ≤ k ≤ n, so
our rows have n entries and are missing the final entry of Cn in each row of A030237. Since it is known that
the row sums of Catalan’s triangle are given by Cn+1, the missing diagonal guarantees that our row sums
are given by Cn+1 − Cn.

We present a few examples to illustrate the recurrence in the proof of Theorem 13.
Consider {1, 2}|{3}|∅|{5}|{4}, which is counted by a(5, 4). If we delete the final block and then subtract

1 from each entry larger than 4, we obtain {1, 2}|{3}|∅|{4} which is counted by a(4, 4), as desired.
On the other hand, consider {1, 2}|{3}|{5}|{4}|∅, which is also counted by a(5, 4). Since the final

block is empty, we consider the Dyck path corresponding to this parking function, which has the form
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NNENENENEE. The third north-step is the one labeled with k − 1 = 3, and it is preceded by one east-
step. These steps are highlighted with bold font above. We move them prior to the final east-step to
get NNENENENEE. Since the label 3 remains on the bolded north-step, this corresponds to the parking
function {1, 2}|{5}|{4}|{3}|∅, which is counted by a(5, 3)

Similarly, consider {1, 2}|∅|{3, 5}|{4}|∅, which is also counted by a(5, 4). Since the final block is empty, we
again consider the Dyck path corresponding to this parking function, which has the form NNEENNENEE.
The third north step is the one labeled with k − 1 = 3, and it is preceded by two east-steps. Deleting these
three steps and inserting them in reverse order before the final E gives NNNENENEEE, which corresponds
to the parking function {1, 2, 5}|{4}|{3}|∅|∅, counted by a(5, 3).

Theorem 14.
pfn(132, 231, 321) = Cn + (n− 1)Cn−1.

Proof. Suppose π ∈ Sn(132, 231, 321). Since π avoids 132 and 231, either π1 = n or πn = n. In the first case,
since π avoids 321, π = 1	In−1. On the other hand if πn = n, we may recursively fill in the digits π1 · · ·πn−1
with any member of Sn−1(132, 231, 321). Together these results tell us that π = (1	 Ik−1) ⊕ In−k, where
1 ≤ k ≤ n.

In the situation where k = 1 (i.e., where π = In), there are Cn possible parking functions.
On the other hand, if k > 1, then π begins with a descent, so the first digit must appear in its own

block. However, the remaining n− 1 digits of π appear in increasing order and must be distributed among
n− 1 blocks in one of Cn−1 possible ways. Since there are (n− 1) possible values for k when k > 1, we get
(n− 1)Cn−1 parking functions in this case.

Theorem 15.

pfn(132, 213, 321) = pfn(132, 312, 321) = pfn(213, 231, 321) =

(
2n− 1

n

)
.

Proof. If π ∈ Sn(132, 213, 321) then π = Ik 	 In−k. If π ∈ Sn(132, 312, 321) then π = (Ik 	 1)⊕ In−k−1. If
π ∈ Sn(213, 231, 321) then π = Ik−1 ⊕ (1	 In−k). In all three situations, we consider permutations with at
most 1 descent. Further, the location of the descent uniquely describes the permutation. For this reason, we
know

pfn(132, 213, 321) = pfn(132, 312, 321) = pfn(213, 231, 321),

and it remains to enumerate one of these directly.
Let π ∈ Sn(132, 213, 321). We know that π = Ik 	 In−k for some k, where 1 ≤ k ≤ n. Now, we consider

the Dyck path representation of a parking function that may be associated with π. Since there is a descent
immediately after the digit n in π, we know the north step labeled with n is immediately followed by an
east step. Call this north step N∗ and the subsequent east step E∗. Suppose that there are i east steps
before N∗ where 0 ≤ i ≤ k − 1. There are Ci ways to arrange these east steps with their corresponding
parentheses-matching north steps. Similarly, there are n − 1 − i east steps after E∗ and there are Cn−i−1
ways to arrange these east steps with their corresponding parentheses-matching north steps (some of which
might appear prior to N∗).

Summing over all possible values of i and k and simplifying with a CAS gives

n∑
k=1

k−1∑
i=0

CiCn−i−1 =

(
2n− 1

n

)
.

Theorem 16.

pfn(213, 312, 321) = Cn + (n− 1)(Cn − Cn−1) = nCn − (n− 1)Cn−1.

Proof. Suppose π ∈ Sn(213, 312, 321). Since π avoids 312 and 321, either π1 = 1 or π1 = 2. If π1 = 2, since
π avoids 213, we know πn = 1. Now, since πn = 1 and π avoids 321, it must be the case that π = In−1 	 1.
On the other hand if π1 = 1, we may recursively fill in π2 · · ·πn with any member of Sn−1(213, 312, 321)
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(with each of its digits incremented by 1). Therefore, if π ∈ Sn(213, 312, 321), then π = Ik−1 ⊕ (In−k 	 1),
where 1 ≤ k ≤ n.

When k = n, π = In and there are Cn parking functions associated with π. When k < n, we count the
permutations associated with In where n− 1 and n appear in separate blocks. We can transform any such
parking function into a parking function associated to Ik−1 ⊕ (In−k 	 1) by relabeling n (in its own block)
as k, and by relabeling every digit i with k ≤ i ≤ n− 1 as i+ 1. This transformation can be easily reversed.

Thus, to count the parking functions associated with In where n − 1 and n appear in separate blocks,
we need only subtract the parking functions where n− 1 and n appear in the same block, which is given by
Cn−1, to get a total of Cn − Cn−1 such parking functions. Summing over all possible values for k < n gives
(n− 1)(Cn − Cn−1) parking functions. Combining this with the k = n case proves the theorem.

Theorem 17.

pfn(231, 312, 321) =

bn2 c∑
k=0

1

n+ 1

(
2n− k
n+ k

)(
n+ k

k

)
.

Proof. The expression given above is known to be the number of dissections of a convex (n+2)-gon into
triangles and quadrilaterals by nonintersecting diagonals (see OEIS A001002 and [10]). We will prove this
theorem by giving a bijection between {231, 312, 321}-avoiding parking functions and these dissections.

First, notice that the number of parking functions corresponding to the increasing permutation is given
by the nth Catalan number, as is the number of dissections of an (n+ 2)-gon into triangles. We first give a
bijection between these two special cases of the sets in question.

The orientation of the polygon partitions matters; in other words, each polygon can be considered to
have a specific distinguished edge along its perimeter. Call the triangle that uses this edge the distinguished
triangle. When n = 1, the polygon is a triangle. This corresponds to the one parking function of size 1.

When n > 1, we consider 3 cases:

(i) The distinguished edge is the first of two consecutive distinguished triangle edges reading clockwise
around the perimeter of the polygon.

(ii) The distinguished edge is the second of two consecutive distinguished triangle edges reading clockwise
around the perimeter of the polygon.

(iii) The distinguished edge is the only edge of the distinguished triangle on the perimeter of the polygon.

This orientation of the distinguished triangle tells us about the relationship between n and n − 1 in the
corresponding parking function.

In case (i), n − 1 and n appear in different but consecutive blocks. We may remove the distinguished
triangle to obtain a triangulation of an (n + 1)-gon. The edge that was formerly part of the distinguished
triangle is now the distinguished edge and we proceed recursively.

In case (ii), n− 1 and n appear in the same block, and an empty block appears at the end of the parking
function. We may remove the distinguished triangle to obtain a triangulation of an (n + 1)-gon. The edge
that was formerly part of the distinguished triangle is now the distinguished edge and we proceed recursively.

Notice that in a triangulation with only case (i) and case (ii) triangles, the parking function has all of
the digits 1, . . . , n in a sequence of consecutive blocks, so all empty blocks come after all non-empty blocks.

In case (iii), n − 1 and n appear in different blocks with at least one empty block between them. We
may remove the distinguished triangle to obtain two smaller triangulated polygons – one to the left of the
distinguished triangle and one to the right. For each of these smaller polygons, the edge that was formerly
part of the distinguished triangle is now the distinguished edge and we proceed recursively. Call the parking
function corresponding to the right polygon P1 and the parking function corresponding to the left polygon
P2. If there are k digits in P1, add k to every digit in P2 so that it uses the digits k + 1, . . . , n− 1. P1 can
be partitioned into P ′1 and P ′′1 where P ′1 is the initial blocks of P1, ending with the last non-empty block,
and P ′′1 consists of any empty blocks at the end of P1. We construct the larger parking function as follows:
Take all blocks of P ′1 and merge the last block of P ′1 with the first block of P2, follow with all of P2, an
empty block, a block containing n, and then P ′′1 . In other words the empty block between n− 1 and n arises
because k and k + 1 appear in the same block earlier in the parking function.
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Now that we have a bijection between triangulations of the (n+2)-gon and parking functions correspond-
ing to the increasing permutation, we address the more general situation of the theorem.

First observe that permutations that avoid 231, 312, and 321 are by definition direct sums of 1 and 21
permutations. We claim that the number of quadrilaterals in a partition of an (n + 2)-gon corresponds to
the number of consecutive 21 patterns in the underlying permutation of the corresponding parking function.
In particular, consider a partition of an (n+ 2)-gon into triangles and quadrilaterals. There is a unique way
to partition each quadrilateral into two triangles so that we always see case (i) and case (iii) triangles arise
from the quadrilateral. In particular, when we arrive at the quadrilateral in our recursive reading, draw
the diagonal that uses the left endpoint of the distinguished edge on the perimeter of the polygon. Now,
find the parking function that corresponds to the triangulation. By construction, the two digits used in any
quadrilateral appear in separate blocks, and so we may transpose them from a 12 pattern into a 21 pattern
while still having a legal parking function.

5 Avoiding two patterns

There are
(
6
2

)
= 15 distinct pairs of patterns of length 2. The pair {123, 321} is already addressed by

the Erdős-Szekeres Theorem. From the remaining 14 pairs of patterns, we get 11 different enumeration
sequences. A summary of results is shown in Table 3.

Patterns P pfn(P ), 1 ≤ n ≤ 6 OEIS Result
123, 231 1, 3, 8, 17, 31, 51 A105163 Theorem 18
123, 312 1, 3, 9, 21, 41, 71 A064999 Theorem 19
123, 132 1, 3, 8, 24, 75, 243 A000958 Theorem 20
123, 213 1, 3, 9, 28, 90, 297 A000245 Theorem 21
132, 231 1, 3, 10, 36, 137, 543 A002212 Theorem 22
132, 213

1, 3, 11, 45, 197, 903 A001003 Theorem 23
132, 312
213, 231
231, 312
132, 321 1, 3, 12, 52, 229, 1006 new Theorem 24
213, 321 1, 3, 13, 60, 275, 1238 new Theorem 25
213, 312 1, 3, 12, 54, 259, 1293 new Theorem 26
231, 321 1, 3, 12, 55, 273, 1428 A001764 Theorem 27
312, 321 1, 3, 13, 63, 324, 1736 new Theorem 28

Table 3: Enumeration data for parking functions avoiding a pair of patterns of length 3

Theorem 18.

pfn(123, 231) =

(
n+ 1

3

)
+

(
n

2

)
+ 1.

Proof. Suppose π ∈ Sn(123, 231). Either π1 = n or πi = n where i ≥ 2. In the first case π = 1 	 π′ where
π′ ∈ Sn−1(123, 231). In the second case, since π avoids 231, all digits before n must be smaller than all
digits after n, and since π avoids 123, all digits before n must appear in decreasing order. However, since
π avoids 123, this also means that all digits after πi−1 = 1 must also appear in decreasing order, and thus
π = Ji−1⊕Jn−i+1. Putting these two cases together, we see that any permutation that avoids both 123 and
231 has the form Ja 	 (Jb ⊕ Jn−a−b) where a, b ≥ 0. If b = 0, there is 1 possible permutation, i.e., Jn. If
b > 0, then there are

(
n
2

)
ways to choose the positions that begin and end the Jb subpermutation, for a total

of
(
n
2

)
+ 1 such permutations.

Now we consider how many parking functions correspond to these permutations. When b = 0, we have
the decreasing permutation which must be written on the Dyck path (NE)n, so there is only one possible
parking function in this case.

If b > 0, the only ascent in the permutation is between the last digit of Jb and the first digit of Jn−a−b.
Either all digits are written in blocks of size 1, or the digits of this ascent appear in one block of size 2, and
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an empty block appears later. If all blocks are of size 1, we need only know a and b to uniquely determine
the corresponding parking function. There are

(
n
2

)
choices for a and b in this situation, since choosing the

position where the Ja subsequence ends and then choosing the position where the Jb subsequence ends
uniquely determines their lengths.

In the situation where there is a block of size 2, we must still determine the location for the end of the
Ja subsequence and the position for the end of the Jb subsequence, but now we must also determine the
position of the empty block. There are

(
n+1
3

)
ways to choose such a combination.

Theorem 19.

pfn(123, 312) = 2

(
n+ 1

3

)
+ 1.

Proof. Suppose π ∈ Sn(123, 312). Since π avoids 123, all digits before n appear in decreasing order, and since
π avoids 312, all digits after n appear in decreasing order. Further, all digits before n must be consecutive,
since any instance of πi+1 < πi − 1 would imply that πi and πi+1 are the first two digits in a 312 pattern.
In summary, π = (Ja ⊕ Jb)	 Jn−a−b with a, b ≥ 0.

If a = 0, then we have the decreasing permutation which can only be written in one way as a parking
function, written on the Dyck path (NE)n.

If a 6= 0, the only ascent begins with the last digit of the Ja subsequence. This means that any corre-
sponding parking function either has all blocks of size 1, or it has one block of size 2 and an empty block
later. Both situations can be encoded by a permutation of the digits 1, . . . , n and a null character such that
the digits 1, . . . , n avoid 123 and 312. If the null character appears between the digits of the sole ascent, then
we write a parking function with only blocks of size 1. If the null character appears later, then the digits of
the sole ascent appear in a block of size 2, and the null character represents the location of the empty block

Consider the set {1, 2, . . . , n + 1}. For any choice of 3 digits from this set with i < j < k, we can make
two parking functions. In both cases, i is the location of the last digit of the Ja subsequence. j and k are the
locations of the last digit of the Jb subsequence and the null character, which may appear in either order.

Theorem 20.

pfn(123, 132) =

n+1∑
k=2

b(n, k)

where

b(n, k) =


0 k < 2,

1 k = 2 and n ∈ {1, 2},
2 k = 3 and n = 2,

2b(n− 1, k − 1) +
∑n−1

j=k−1 b(n− 2, j) otherwise.

Proof. Suppose π ∈ Sn(123, 132). Since π avoids 132, every digit before n is larger than every digit after
n. Further, since π avoids 123, any digits before n appear in decreasing order. Thus, either π1 = n or
π1 = n − 1. As a result, any parking function avoiding 123 and 132 has as its first block {n}, {n − 1} or
{n− 1, n}.

In the first case, removing {n} produces a pattern-avoiding parking function of size n− 1.
In the second case, removing {n−1} and replacing n with n−1 produces a parking function of size n−1.
In the final case, the initial block of size 2 implies that there must be an empty block later in the parking

function. In fact, we may consider the up-step in the corresponding Dyck path representation that has label
n − 1 and find its non-crossing matched east step to locate the empty block. Removing the initial block of
size 2 and the corresponding empty block produces a pattern-avoiding parking function of size n − 2. To
reverse the process, we only need to know the parking function of size n− 2 and the location of the empty
block. To this end, given a pattern-avoiding parking function, consider the action of adding a new block
of size 2 to the beginning. We call a location where an empty block could be legally placed in this larger
parking function an active site. In a parking function of size n with all blocks of size 1, there are n + 1
active sites – the beginning, the end, and between any pair of blocks. However, if there are already some
blocks of size 2 and 0, each block of size 2 has a corresponding block of size 0, and they pair as parentheses,
with a block of size 2 corresponding to an open parenthesis and a block of size 0 corresponding to a closed
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parenthesis. In this situation, positions inside a matched pair of blocks are not active sites. Every parking
function, thus, has at a minimum 2 active sites (at the beginning and the end) and a maximum of n + 1
active sites (in the case where all blocks are of size 1).

Let b(n, k) be the number of parking functions of size n with exactly k active sites. Then, pfn(123, 132) =∑n+1
k=2 b(n, k), as desired.
The one parking function of size 1 has 2 active sites. The parking function {1, 2}|∅ has 2 active sites,

while the other parking functions of size 2 have 3 active sites, which addresses our base cases.
More generally, we consider the effect of a new first block on active sites. Any parking function beginning

with {n} or with {n− 1} has one more active site than the size n− 1 parking function obtained by removing
the first block. The behavior of a parking function beginning with {n − 1, n} is more complex. Given a
parking function of size n − 2 with k active sites, we can obtain k different parking functions by putting
{n − 1, n} at the front and ∅ in an active site. When the ∅ goes in the first available active site, there are
k+ 1 active sites in the new larger parking function; when it goes in the second site, there are k active sites,
and so on, until when ∅ goes in the last possible location, there are 2 active sites in the new larger parking
function.

Altogether, this analysis tells us that for n ≥ 3,

b(n, k) = 2b(n− 1, k − 1) +

n−1∑
j=k−1

b(n− 2, j).

The first term covers the two cases where the parking function begins with a block of size 1. The latter sum
runs over all scenarios for beginning with {n− 1, n} and inserting ∅ into an active site in a parking function
of size n− 2.

Although the recurrence in Theorem 20 is more complicated than many of the other results we have
presented, it has nice structure. Initial values in the triangle b(n, k) are given in Table 4. Although this
triangle appears to be new to the literature, some interesting patterns appear. For example, b(n, n + 1) =
2n−1. We can see this readily from the recurrence, which simplifies to

b(n, n+ 1) = 2b(n− 1, n) +

n−1∑
j=n

b(n− 2, j) = 2b(n− 1, n)

in this case. This accounts for the parking functions where every digit is in its own block, and therefore
matches the total number of {123, 132}-avoiding permutations of size n. However, we are interested in the

row sums. It turns out that b(n + 2, 2) = 2b(n + 1, 1) +
∑n+1

j=1 b(n, j) =
∑n+1

j=1 b(n, j), and so b(n + 2, 2) =
pfn(123, 132).

Moreover, we can derive the generating function
∑

n≥1 pfn(123, 132)xn, using the kernel method described
by Hou and Mansour [6] as follows. First, we write

∞∑
n=1

pfn(123, 132)xn = B̂(x) +
x

1− 2x
,

where B̂(x) =
∑n

k=2 b(n, k)xn. To understand B̂(x), we define

B(x, y) =
∑
n≥2

n∑
k=2

b(n, k)xnyn−k,

and note that B̂(x) = B(x, 1). The recurrence given in Theorem 20 implies that

−B(x, y) + x2 + 2xB(x, y) +
x2y(B(x, y)−B(xy, 1))

1− y
− x3(2xy − y − 1)

4x2y − 2xy − 2x+ 1
= 0.

Now, replace x with x
y to obtain

−B
(
x

y
, y

)
+
x2

y2
+

2xB
(

x
y , y
)

y
+
x2
(
B
(

x
y , y
)
−B(x, 1)

)
y(1− y)

− x3(2x− y − 1)

y3
(

4x2

y − 2x− 2x
y + 1

) = 0. (1)
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Letting K(y) be the coefficient of B
(

x
y , y
)

, we find K(y) = x + 1
2 +

√
1−4x
2 . Setting y = K(y) in Equation

1 gives

B̂(x) = B(x, 1) = −2x4 + 2x2
√

1− 4x+ 2x3 + x
√

1− 4x− 2x2 −
√

1− 4x− 3x+ 1

2x2(x+ 2)(2x− 1)
.

Therefore,
∞∑

n=1

pfn(123, 132)xn = B̂(x) +
x

1− 2x
=
−(x+ 1)(2x2 +

√
1− 4x+ 2x− 1)

2x2(x+ 2)
.

Interestingly, pfn(123, 132) matches OEIS sequence A000958, which counts ordered rooted trees with n+ 1
edges having root of odd degree. It remains open to find a bijective proof of this fact.

n\k 2 3 4 5 6 7 8 9 10 11
1 1
2 1 2
3 1 3 4
4 3 5 8 8
5 8 14 17 20 16
6 24 40 49 50 48 32
7 75 123 147 151 136 112 64
8 243 393 465 473 432 352 256 128
9 808 1294 1519 1540 1409 1176 880 576 256
10 2742 4358 5087 5144 4721 3986 3088 2144 1280 512

Table 4: Values of b(n, k) for small n and k

Theorem 21.
pfn(123, 213) = Cn+1 − Cn

Proof. Suppose π ∈ Sn(123, 213). Since π avoids 213, every digit before 1 must be larger than every digit
after 1, and since π avoids 123 all digits after 1 appear in decreasing order. In other words, any permutation
avoiding both of these patterns is a skew sum of permutations of the form 1 ⊕ Jk with k ≥ 0. We will call
these 1⊕ Jk subpermutations the intervals of the permutation. Notice that any interval of size 1 is involved
in no ascents. However, an interval of size 2 or more has one ascent. The digits of such an ascent may appear
in separate blocks, or they may be in the same block, with an empty block later in the parking function.

We may encode such parking functions with sequences of dots and legally-arranged parentheses in the
following way: draw n dots, representing the n digits of the {123, 213}-avoiding permutation in the order they
appear. Before the first dot of each interval, place a left parenthesis. If each number in that interval appears
in a separate block, place a right parenthesis after the first dot. If the first two numbers in that interval
appear in a single block, there is an empty block later in the parking function. Place a right parenthesis
between the two dots representing the numbers that are on either side of that empty block.

This representation uniquely encodes the parking functions in question because the number of left paren-
theses gives the number of intervals and distances between successive left parentheses tell the sizes of the
intervals. The dots and the left parentheses uniquely identify the underlying permutation for the park-
ing function. The right parentheses then uniquely identify the location of any empty blocks, and their
corresponding left parentheses tell which values appear in blocks of size 2.

Now, we give a recurrence that counts the dot and parenthesis arrangements. As base cases, there is 1
way to arrange 0 dots, and there is 1 way to arrange 1 dot with a pair of parentheses as described; namely,
(·). More generally, let f(n) be the number of such arrangements with n dots. In the first case, we have only
1 dot inside the first pair of parentheses and in the second case we have 2 or more dots inside the first pair
of parentheses.

In the first case, there may be 0 ≤ j ≤ n − 1 dots before the next left parenthesis (or the end of the
arrangement). This leaves n−1−j remaining dots to arrange with parentheses and can be done in f(n−1−j)
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ways. Summing over all relevant values of j gives

n−1∑
j=0

f(n− 1− j)

ways to begin with one point inside the first pair of parentheses. This corresponds to parking functions
where every digit in the first interval appears in its own block of the parking function.

In the second case, there are i ≥ 2 dots inside the first pair of parentheses. There may still be j ≥ 0 dots
after the first pair of parentheses and before the next non-nested left parentheses. There are f(n − i − j)
ways to arrange dots and parentheses after these initial points. While there must be at least k ≥ 2 dots
inside the first parentheses and before the next left parenthesis, the remaining i − k dots may be arranged
with nested parentheses. In this case, after summing over all possible values of i, j, and k, we get

n∑
i=2

n−i∑
j=0

i∑
k=2

f(i− k)f(n− i− j)

possible arrangements of dots and parentheses where there are at least 2 dots inside the first pair of paren-
theses. This corresponds to parking functions where the first interval has size 2 or more and the first two
digits of the first interval appear in a block of size 2.

Together we have that f(0) = f(1) = 1 and

f(n) =

n∑
i=2

n−i∑
j=0

i∑
k=2

f(i− k)f(n− i− j) +

n−1∑
j=0

f(n− 1− j).

We wish to show that

f(n) =
3(2n)!

(n+ 2)!(n− 1)!
= Cn+1 − Cn.

We will prove this with computer-assisted induction.
First, direct computation from the recurrence shows that f(n) = Cn+1 − Cn for 0 ≤ n ≤ 10. Now,

suppose that f(k) = Ck+1 − Ck for k < n and consider the sum
∑n−1

j=0 f(n − 1 − j). By the induction
hypothesis,

n−1∑
j=0

f(n− 1− j) =

n−1∑
j=0

3(2(n− 1− j))!
((n− 1− j) + 2)!((n− 1− j)− 1)!

,

and by CAS simplification we get that

n−1∑
j=0

f(n− 1− j) =
(n+ 1)(2n)!

((n+ 1)!)2
.

Also, considering the nested sum and invoking the induction hypothesis gives

n∑
i=2

n−i∑
j=0

i∑
k=2

f(i− k)f(n− i− j) =
(2n3 + 4n2 − 2n− 4)(2n)!

((n+ 2)!)2
,

after simplification by CAS.
Together this gives that

f(n) =
(2n3 + 4n2 − 2n− 4)(2n)!

((n+ 2)!)2
+

(n+ 1)(2n)!

((n+ 1)!)2
=

3(2n)!

(n+ 2)!(n− 1)!
,

which is exactly what we wanted to show.

Notice that together Theorem 21 and Theorem 13 provide an example of two different pattern sets of
different sizes that yield the same enumerative result. In particular, the proof of Theorem 13 is bijective,
while the proof of Theorem 21 requires computer-assisted analysis. It remains open to find a simpler bijective
proof of Theorem 21.
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Theorem 22.

pfn(132, 231) =

n−1∑
k=0

(
n− 1

k

)
Cn−k.

Proof. Suppose π ∈ Sn(132, 231). Since π avoids 231, all digits before the 1 are decreasing, and since π avoids
132, all digits after the 1 are increasing. Therefore, the permutation is uniquely determined by choosing the
digits that appear before the 1. If 1 is in position k + 1, this can be done in

(
n−1
k

)
ways.

Further, if πk+1 = 1, notice that the digits of the initial decreasing portion of the permutation must all
appear in blocks of size 1. However, 1 and all digits after it are in increasing order and may be written on
any of the Dyck paths of size n − k. Therefore, there are Cn−k parking functions that correspond to any
permutation that avoids 132 and 231 and has 1 in position k+1. Summing over all possible values of k gives
the result.

Theorem 23.
pfn(132, 213) = pfn(132, 312) = pfn(213, 231) = pfn(231, 312).

Futhermore,

pfn(132, 213) = pfn−1(132, 213) + 2

n−1∑
i=1

pfi(132, 213)pfn−i−1(132, 213).

Proof. There are ascent-preserving bijections between permutations avoiding each consecutive pair of pat-
terns in the theorem statement, so we focus on pfn(132, 213). Suppose π ∈ Sn(132, 213). Since π avoids
132, all digits before n are larger than all digits after n, and since π avoids 213, all digits before n appear in
increasing order. In other words, π = Ia	π′ where π′ ∈ Sn−a(132, 213). This implies that π is a skew-sum of
increasing permutations and is uniquely described by the locations of its ascents. Since each pair of adjacent
digits in the permutation either forms an ascent or a descent, there are 2n−1 such permutations.

Now, we consider how many members of Sn(132, 213) can be drawn on a particular Dyck path. While the
labels along a particular vertical line segment must appear in increasing order, we have two choices between
consecutive vertical segments: the last label on the first segment either starts an ascent or a descent. In other
words, the number of permutations drawn on a particular path corresponds to the number of two-colorings
of the (EN) corners, and summing over all Dyck paths with two-colored (EN) corners gives the total number
of pattern-avoiding parking functions. Let an be the number of such two colored paths. Then we have
a0 = a1 = 1 and more generally, if the first return to y = x is at (n, n) there are an−1 options, while if the
path returns to y = x at (i, i), then there are ai ways to write the initial path segment, an−i−1 ways to write
the ending path segment and 2 choices for the color of the (EN) corner at (i, i). Summing over all possible
values for i gives the recurrence.

The recurrence and initial conditions in Theorem 23 match the recurrence for OEIS A001003, which is
known as the Super-Catalan numbers.

Before we prove our next two results, we consider the following lemma about unlabeled Dyck paths with
specific restrictions.

Lemma 1. Let hn,m be the number of Dyck paths of semilength n where the mth north step is immediately

followed by an east step and let Cn =

(
2n
n

)
n+ 1

be the nth Catalan number. Then

hn,m =



0 m < 1 or m > n,

Cn−1 m = 1,

Cn m = n,
m−1∑
i=1

Ci−1hn−i,m−i +

n∑
i=m

hi−1,m−1Cn−i otherwise.

.

Proof. The initial cases of this recurrence are easy to verify. By definition, 1 ≤ m ≤ n. If m = 1, then
any Dyck path counted by hn,m begins with NE, and it may be followed by any of the Cn−1 Dyck paths of
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semilength n− 1. On the other hand if m = n, we know that the last north step in any Dyck path must be
followed by an east step, and so hn,m counts all Dyck paths of semilength n.

For the general case where 1 < m < n, we decompose a Dyck path counted by hn,m according to its first
return to the line y = x. Let this first return be at the point (i, i) where 1 ≤ i ≤ n. We consider two cases:
i < m and i ≥ m.

In the first case, we may use any of the Ci−1 Catalan paths between the first N and the first E that
returns to y = x. Now, we need the (m− i)th north step in the remainder of the path to be followed by an
east step, so we may fill in the path after the first return in one of hn−i,m−i ways.

In the second case, any of the Cn−i Catalan paths of semilength n may appear after the first return to
the line y = x. For the initial part of the path, we have a north step, followed by a path of semilength
i− 1, followed by an east step. If the mth north step of the entire path is followed by an east step, then the
(m − 1)st north step of the path between the initial N and the first E to return to y = x must be followed
by an east step. There are hi−1,m−1 ways to complete this portion of the path.

Summing over all relevant values of i in each case gives the recurrence.

Although the recurrence of Lemma 1 gives an efficient way to compute hn,m for any value of n and m,
it is also possible to find a multivariate generating function for these hn,m values. In particular, let C(x) be

the generating function for the Catalan numbers, i.e., C(x) = 1−
√
1−4x
2x . Then the generating function

H(x, y) =
∑
n≥1

n∑
m=1

hn,mx
nym

can be derived as a convolution from Lemma 1, so

H(x, y) =
y(C(x)− C(xy))

(1− y)C(x)
.

Interestingly, the triangle of numbers hn,m matches the values in entry A028364 of the OEIS. It remains an
open problem to find a decomposition of the paths counted by hn,m that matches the direct formula given
in the OEIS. We are now ready for our next two enumerative results. Each produces a sequence new to the
OEIS.

Theorem 24.

pfn(132, 321) = Cn +

n−1∑
m=1

(n−m) · hn,m =
n2 + n+ 4

4
Cn −

4n−1

2
.

Proof. Suppose π ∈ Sn(132, 321). These permutations are the reversals of the permutations in Sn(123, 231),
which we analyzed in the proof of Theorem 18, and so by symmetry, either π = In, π = Im 	 In−m, or
π = (Im 	 I`)⊕ In−m−`. Further, if we allow ` = n−m, the second case is a special case of the third case,
so we will consider them together.

There are Cn parking functions corresponding to the increasing permutation In. Now, for parking
functions whose associated permutations are of the form (Im 	 I`) ⊕ In−m−` where 1 ≤ ` ≤ n −m, notice
that there is a descent immediately after the mth digit, and it is the only descent. There are exactly hn,m
Dyck paths where the mth north step is immediately followed by an east step, in order to accommodate this
descent. After the descent, we have n −m choices for the remaining digits – all of which are in increasing
order, based on how many are smaller than the initial m digits versus how many are larger. Summing over
all possible values of m gives the recursive result.

Further, notice that
∑n−1

m=1(n−m)hn,m is the coefficient of xn in
(
x d
dxH(x, y)− d

dyH(x, y)
)
|y=1, which

is x
2(
√
1−4x)3 −

x
2(1−4x) . Therefore, pfn(132, 321) = n2+n+4

4 Cn − 4n−1

2 .

Theorem 25.

pfn(213, 321) = Cn +

n−1∑
m=1

m · hn,m =
4n−1

2
+
n2 − 3n+ 4

4
Cn.
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Proof. Suppose π ∈ Sn(213, 321). These permutations are the reversals of the permutations in Sn(123, 312),
which we analyzed in the proof of Theorem 19, and so by symmetry, either π = In, π = Im 	 In−m, or
π = I` ⊕ (Im−` 	 In−m). Further, if we allow ` = 0, the second case is a special case of the third case, so we
will consider them together.

There are Cn parking functions corresponding to the increasing permutation In. Now, for parking
functions whose permutations are of the form I` ⊕ (Im−` 	 In−m) where 0 ≤ ` ≤ m − 1, notice that there
is a descent immediately after the mth digit, and it is the only descent. There are exactly hn,m Dyck paths
where the mth north step is immediately followed by an east step, in order to accommodate this descent.
Before the descent, we have m choices for the remaining digits – all of which are in increasing order, based
on how many are smaller than the final n−m digits versus how many are larger. Summing over all possible
values of m gives the result.

Further, notice that
∑n−1

m=1mhn,m is the coefficient of xn in
(

d
dyH(x, y) |y=1 −x d

dxC(x)
)

, which is

1−4x+x2

2x(1−4x) −
1−6x+7x2

2x(1−4x)3/2 . Therefore, pfn(213, 321) = 4n−1

2 + n2−3n+4
4 Cn.

Theorem 26.

pfn(213, 312) =

n−1∑
k=0

k∑
i=0

(
n− 1

i

)
·

(k + 1)
(
2n−2−k
n−1−k

)
n

.

Proof. Suppose π ∈ Sn(213, 312). Then since π avoids 213, all digits before n are increasing, and since π
avoids 312, all digits after n are decreasing. Since there are

(
n−1
k

)
ways to choose the k digits after n, there

are
(
n−1
0

)
+
(
n−1
1

)
+ · · ·+

(
n−1
n−1
)

= 2n−1 such permutations. When we write such a permutation, with k digits
after n, on a Dyck path, the fact that these digits are in decreasing order forces them to be on single north
steps, both preceded and followed by east steps.

Now consider a Dyck path where the last k north steps are single north steps. Any permutation with at
most k digits after n may be written on this Dyck path, so it is helpful to determine the number d(n, k) of
Dyck paths of size n whose final k north steps are single north steps. We omit counting the initial north step
in the path (NE)n since it is a single step by default. We have d(1, 0) = d(2, 0) = d(2, 1) = 1 corresponding
to NE, NNEE, and NENE respectively. Now, consider a Dyck path of the form (D1)N(D2)E. If D2 is the
empty path, then the number of single north steps at the end of the path increases by 1. If D2 is non-empty,
since the first north step of D2 is preceded by a north step, the single north steps at the end of D1 are
irrelevant, and the number of single north steps at the end of (D1)N(D2)E is just equal to the single north
steps at the end of D2.

We have

d(n, k) = d(n− 1, k − 1) +

n−1∑
i=k+1

Cn−i−1d(i, k),

where the first term accounts for paths ending in NE and the sum accounts for paths where D2 is of
semilength i. In particular, Cn denotes the nth Catalan number, and there are Cn−i−1 ways to fill in the
corresponding path D1. Computationally, the triangle d(n, k) produces equal values to A033184 for small
inputs; however, this particular recurrence for the values appears to be new. Instead we will show that d(n, k)
satisfies the recurrence d(n, k) = d(n, k − 1)− d(n− 1, k − 2) with boundary conditions that d(n, 0) = Cn−1
and d(n, n − 1) = 1, which is the existing description of A033184. Also d(n, k) = 0 if k < 0 since it is not
possible to have a negative number of north steps.

For the boundary conditions, we notice that the unique way to get n − 1 singleton north steps at the
end of a path is to use the path (NE)n. On the other hand, for a path to have no singleton north steps at
the end, the final north step must be the middle term in a NNEE factor. Replacing this with NE produces
a path of length n − 1 with no restriction on the number of singleton north steps, so there are Cn−1 such
paths.

We may rearrange the recurrence d(n, k) = d(n, k − 1)− d(n− 1, k − 2) as:

d(n, k) + d(n− 1, k − 2) = d(n, k − 1).

We will give a bijection between the paths accounted for on each side of this equation.
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Suppose we have a path of semilength n ending with k − 1 singleton northsteps. Either the path ends
with ENE or it ends with EE.

If the path ends with ENE, then delete the final NE to get a path of semilength n−1 with k−2 singleton
north steps at the end. This is easily reversible by replacing the NE at the end.

If the path ends with EE, remove the final E. Locate the last NN factor. Find the longest consecutive
string of Es followed by Ns that ends in this NN factor. This subpath has the form EiN j where i > 0.
If j ≥ 3, replace this path with EiN j−1EN to incorporate the final E and generate one more singleton
north step. If j = 2, then this process actually generates more than one additional singleton north step. To
compensate for this, replace EiNN with NEi+1N , which incorporates the final E and puts the first N at
the end of a factor of other N steps so that we have only generated one additional singleton.

Since we have showed that lattice paths with k singleton north steps at the end follow the same boundary

conditions and recurrence as A033184, it follows that d(n, k) =
(k + 1)

(
2n−2−k
n−1−k

)
n

.

Since d(n, k) =
(k + 1)

(
2n−2−k
n−1−k

)
n

and each of the paths counted by d(n, k) can be labeled in
∑k

i=0

(
n−1
i

)
ways that avoid both 213 and 312, we have the desired enumeration.

Theorem 27.

pfn(231, 321) =

(
3n
n

)
2n+ 1

.

Proof. It is known that

(
3n
n

)
2n+ 1

counts the number of non-crossing trees on n+ 1 vertices (see [3]). Consider

n+ 1 labeled points drawn on the perimeter of a circle. Designate one to be the root vertex, and label the
others from 1 to n. A non-crossing tree is a rooted labeled tree that includes all n+ 1 vertices, and has no
two edges that cross as chords of the circle. We will show that there is a bijection between non-crossing trees
on n+ 1 vertices and parking functions of size n avoiding both 231 and 321.

First, there is a simpler useful bijection between rooted ordered trees on n + 1 vertices and unlabeled
Dyck paths of semilength n. Recursively, we see that both of these sets are counted by the Catalan numbers
as follows: For a rooted ordered tree, identify the rightmost edge e emanating from the root. Deleting e
decomposes the original tree into two subtrees: T1 which is rooted at the original root of T and T2 which
is rooted at the other endpoint of e. Since T1 and T2 can be of any size where the number of vertices in
T1 and the number of vertices in T2 adds to n + 1, we see that rooted ordered trees satisfy the Catalan
recurrence. Similarly, we may decompose a Dyck path by identifying the east step that matches with the
first north step. This decomposes the Dyck path into P = NP1EP2 where P1 and P2 are Dyck paths whose
semilengths sum to n− 1. For a recursive bijection, in the base case, the one tree on 2 vertices corresponds
to the one Dyck path of semilength 1. If we assume there is a bijection f from rooted ordered trees on i+ 1
vertices to Dyck paths of semilength i for i < n, then we have f(T ) = Nf(T1)Ef(T2), which captures the
Catalan structure of both sets of objects. The non-recursive interpretation of this bijection is as follows:
Begin at the root, visit all edges e1, e2, . . . ek that have an endpoint at the root, then traverse the subtree
below e1, then the subtree below e2, etc. Rather than focusing on vertices, focus on the edges. The first time
an edge is traversed, record a north step. Each time we start to visit the subtree below an edge, record an
east step. Since each edge is visited exactly twice (once along with all its sibling edges, and once as leading
to its subtree), we get an equal number of north and east steps, and each east step is preceded by the north
step for that edge.

Now, we will show that all ways to arrange a rooted ordered tree on a circle as a non-crossing tree
correspond to parking functions written on the corresponding Dyck path to that tree.

Notice that if π ∈ Sn(231, 321), then either π1 = 1 or π2 = 1. This is true recursively as well: once we
know the location of the 1, the 2 must be in one of the earliest remaining two positions, and so on. This is
equivalent to the permutation being a direct sum of sub-permutations of the form (1	 Ik) where k ≥ 0.

Next, we give a process to fill in the entries of a parking function so that it gives a {231, 321}-avoiding
permutation. If we know the sizes of the blocks in a parking function, we can fill in the values of the blocks
from left to right as follows. If the first block has size j, we know the first j − 1 entries are 1, 2, . . . j − 1,
however the last element may be j or it may be larger. Temporarily fill in this value with an X. Now
suppose the first b non-empty blocks have been filled in with the digits 1, . . . ,m plus the placeholder symbol
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X and the next block to be filled has size j. There are j + 1 options for how this block may be filled. One
of the values v of {m + 1, . . . ,m + j} replaces the X in the previous block and then the block consists of
{m + 1, . . . ,m + j} \ {v} followed by X, or X remains in its current earlier block, and the new block has
the entries {m+ 1, . . . ,m+ j}. We repeat this process until all blocks have been considered, and we have a
parking function filled with the entries 1, . . . , n− 1. Replace the X (which could be the last entry of any of
the non-empty blocks) with n to complete the parking function.

This algorithm for filling in the entries of a parking function can be translated to the placement of a
rooted ordered tree as a non-crossing tree on a circle as follows: First, denote the root vertex on the circle,
which is contained in edges e1, e2, . . . , ek. Suppose e1, . . . , ek are labeled so that their second endpoints go
clockwise around the circle from the root. Let |T | denote the number of vertices in tree T . Since we know
the sizes |Ti| of the k subtrees, we already know that T1 occupies the first |T1| vertices counting clockwise
from the root, T2 occupies the next |T2| vertices, and so on. The only decision that must be made is which
of the first |T1| vertices is the second endpoint of e1, which of the next |T2| vertices is the second endpoint
of e2, and so on. In general, if Ti’s root has degree d, then there are d+ 1 options for the second endpoint of
ei: this is because ei could be left of all edges of Ti, right of all edges of Ti, or could be between two adjacent
subtrees descending from Ti’s root.

We finally have all the ingredients to map a non-crossing tree to a {231, 321}-avoiding parking function.
First, consider the underlying rooted ordered tree, and find the corresponding Dyck path. This Dyck path
underlies our parking function and determines block sizes. Each block of size k corresponds to a collection
of k edges sharing the same root. While the first block (corresponding to the edges descending from the
root of the entire tree) must be 1, . . . , j − 1 plus the placeholder character X, for any subsequent block that
must be populated with all but one of {m + 1, . . . ,m + j} ∪ {X}, we look at the corresponding subtree in
the non-crossing tree. If the edge leading to the root of the subtree is to the right of all of the subtrees
(reading their second vertices in clockwise order), leave X in its current position and populate the block with
{m+1, . . . ,m+j}. On the other hand, if the edge leading to the root of the subtree is to the left of i subtrees,
then replace X with m+ i and populate the new block with m+ 1, . . . ,m+ i− 1,m+ i+ 1, . . . ,m+ j,X.

This correspondence is reversible. Given a parking function, we can construct the underlying rooted
ordered tree from the Dyck path. The values in a particular block give the endpoints of the edge leading to
the relevant subtree.

As an example of the bijection in the proof of Theorem 27, consider the tree in Figure 3, where
the vertex labeled 0 represents the root. The underlying tree itself is in bijection with the Dyck path
N2ENEN3E2NE3, and therefore corresponds to a parking function with blocks of size 2, 1, 3, 0, 1, 0, and
0.

We now consider the orientation of the tree edges to fill the blocks one at a time as follows:

� The first non-empty block has size 2, so it begins with entries {1, X}.

� So far, we have used the digit m = 1. Edge a is the only edge descending from the root that has a
nontrivial subtree below it. Edge a has its second vertex at vertex 2. Reading clockwise, edge a is to
the left of one subtree, and therefore m + 1 = 2 replaces X in the first block. The next non-empty
block has size 1 and it is populated with {X}. Our current partial parking function is {1, 2}|{X}.

� So far we have used the digits 1 and m = 2. Edge c is the only edge descending from vertex 2. Reading
clockwise, edge c is to the left of 2 subtrees below vertex 4 (those beginning with edge e and edge f).
So, X is replaced by m + 2 = 4 in the second block. The next non-empty block has size 3 and it is
populated with {3, 5, X}. Our current partial parking function is {1, 2}|{4}|{3, 5, X}.

� So far we have used the digits 1, 2, 3, 4 and m = 5. Edge e is the only edge descending from vertex 4
with a nontrivial subtree below it. Reading clockwise, edge e is to the left of no subtrees below vertex
7. So, X remains in its current location. The next non-empty block has size 1 and it is populated with
{6}. Our current partial parking function is {1, 2}|{4}|{3, 5, X}|∅|{6}|∅|∅.

� We have found all but one digit of the parking function so we replace X with n = 7 to get the parking
function {1, 2}|{4}|{3, 5, 7}|∅|{6}|∅|∅.
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Figure 3: A non-crossing tree on 8 vertices

Theorem 28. Let Dn be the set of all Dyck paths of semilength n. Given d ∈ Dn, let w(d) be the word of
positive integers that consists of the lengths of the maximal consecutive strings of north steps of d.

pfn(312, 321) =
∑
d∈Dn

|w(d)|−1∏
i=1

(w(d)i + 1).

While the statement of the formula in Theorem 28 is more complicated than our prior results, the
structure of these parking functions is remarkably similar to those counted in Theorem 27.

Proof. Suppose π ∈ Sn(312, 321). Then either πn−1 = n or πn = n. This is true recursively as well: once we
know the location of the n, then n−1 must be in one of the last remaining two positions, and so on. Next, we
give a process to fill in the entries of a parking function so that it gives a {312, 321}-avoiding permutation.
If we know the sizes of the blocks in a parking function, we can fill in the values of the blocks from right to
left as follows. If the last block has size j, we know the last j − 1 entries are n − (j − 2), n − (j − 3), . . . n,
however the first element of this block may be n− (j− 1) or it may be smaller. Temporarily fill in this value
with an X. Now suppose the last b non-empty blocks have been filled in with the digits n −m, . . . , n plus
the placeholder symbol X and the next block to be filled has size j. There are j + 1 options for how this
block may be filled. One of the values v of {n−m− j, . . . , n−m− 1} replaces the X in the previous block
and then the block consists of {n−m− j, . . . , n−m− 1} \ {v} followed by X, or X remains in its current
earlier block, and the new block has the entries {n−m− j, . . . , n−m− 1}. We repeat this process until all
blocks have been considered, and we have a parking function filled with the entries 2, . . . , n. Replace the X
(which could be the first entry of any of the non-empty blocks) with 1 to complete the parking function.

While there was one choice for how the parking function was filled when we had only addressed the last
block, each successive block of size j has j+1 options for how it may be filled, so the total number of parking
functions is the product of w(d)i + 1 where w(d)i is the size of the ith block and i runs over all blocks except
the final block.

6 Open Questions and Future Work

In this paper we have surveyed the combinatorial sequences that arise when avoiding a set of patterns of
length 3 in the context of parking functions. We have completely addressed the enumeration of parking
functions avoiding any set of 2 or more such patterns.

As a direct result of our arguments, the following problems remain open:

1. Find a bijective proof that pfn(123, 132) is the number of ordered rooted trees with n+ 1 edges having
a root of odd degree.

2. Find a proof for Theorem 21 that is purely bijective, rather than requiring computer-assisted induction.

3. Find a combinatorial argument that the values hn,m in Lemma 1 match OEIS A028364.
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In addition, the majority of cases for avoiding a single pattern of length 3 remain open. Remmel and Qiu’s
result for pfn(123) was the motivation for this paper. Brute force data for avoiding the other patterns of
length 3 appears in Table 5. In general, these sequences appear to be much more challenging to describe than
those considered earlier in this paper. However, intriguingly, the initial data for avoiding 132 or avoiding 231
matches initial terms for OEIS entry A243688, which is described in that database as “number of Sylvester
classes of 1-multiparking functions of length n”, based on [11].

Pattern P pfn(P ), 1 ≤ n ≤ 6 OEIS

123 1, 3, 11, 48, 232, 1207
new

(Remmel & Qiu [14, 15])
132

1, 3, 13, 69, 417, 2759
A243688

231 (conjectured)
213

1, 3, 14, 81, 533, 3822 new
312
321 1, 3, 15, 97, 728, 6024 new

Table 5: Enumeration data for parking functions avoiding one pattern of length 3

This leads to one more explicit open problem, directly following our work:

4. Find formulas for pfn(ρ) where ρ ∈ S3 \ {123}.

More generally, we know that if there exists an ascent-preserving bijection between Sn(ρ1, . . . , ρm) and
Sn(σ1, . . . , σ`), then

pfn(ρ1, . . . , ρm) = pfn(σ1, . . . , σ`).

Such sets of patterns are said to be Wilf-equivalent. However, while this is a sufficient condition for Wilf
equivalence, it is not a necessary condition, since, for example, Theorem 13 and Theorem 21 yield the same
enumeration while the corresponding sets of pattern-avoiding permutations are not in bijection. This leads
naturally to:

5. What other conditions imply two sets of patterns are Wilf-equivalent in the context of parking function
patterns in this paper?

More general open questions remain, such as avoiding longer patterns, or considering statistics on pattern-
avoiding parking functions. This paper is largely motivated by enumerative combinatorics, while parking
functions tend to be algebraically motivated. It would also be interesting to consider these definitions from
an algebraic perspective.
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[7] V. Jeĺınek and T. Mansour, Wilf-equivalence on k-ary words, compositions, and parking functions,
Electron. J. Combin. 16 (2009), #R58, 9pp.

[8] S. Kitaev, Patterns in Permutations and Words. Springer, Berlin Heidelberg (2011).

[9] A. G. Konheim and B. Weiss, An occupancy discipline and applications, SIAM J. Applied Math. 14
(1966), 1266–1274.

[10] T.S. Motzkin, Relations between hypersurface cross ratios and a combinatorial formula for partitions of
a polygon, for permanent preponderance and for non-associative products, Bull. Amer. Math. Soc. 54
(1948), 352–360.

[11] J-C. Novelli and J-Y. Thibon, Hopf algebras of m-permutations, (m + 1)-ary trees, and m-parking
functions, Adv. in Appl. Math. 117 (2020), Article 102019.

[12] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2023. Available at https://

oeis.org.

[13] R. Pyke, The supremum and infimum of the Poisson process, Ann. Math. Statist. 30 (1959), 568–576.

[14] D. Qiu, Patterns in ordered set partitions and parking functions, Permutation Patterns 2016 (slides).
Available at https://www.math.ucsd.edu/~duqiu/files/PP16.pdf.

[15] D. Qiu and J. Remmel, Patterns in words of ordered set partitions, J. Comb., 10 (2019), 433–490.

[16] R. Simion and F. Schmidt, Restricted permutations, European J. Combin. 6 (1985), 383–406.

[17] C. H. Yan, Parking functions, Handbook of Enumerative Combinatorics, Chapman and Hall/CRC, Boca
Raton, FL (2015), 835–894.

24


