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Abstract

We discuss packing permutation patterns into two specific subsets
of words on {1, 1, 2, 2, . . . , n, n}, i.e. those of the form ππr and those
of the form ππ for some permutation π. In both cases we answer
a number of related enumeration questions for packing patterns of
length at most 4.
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1 Introduction

Let Sn be the set of all permutations on [n] = {1, 2, . . . , n}. A permutation
π ∈ Sn may be viewed as a bijection on [n]. When we graph the points (i, πi)
in the Cartesian plane, all points lie in the square [1, n]× [1, n], and thus we
may apply various symmetries of the square to obtain involutions on the set
Sn. For π ∈ Sn, let πr = πn · · · π1 and let πc = (n+ 1− π1) · · · (n+ 1− πn),
the reverse and complement of π respectively. For example, the graphs of
π = 2431, πr = 1342, and πc = 3124 are shown in Figure 1. Two common
permutations are the increasing permutation of length m, denoted Im, and
the decreasing permutation of length m, denoted Jm. Notice that Irm = Icm =
Jm.

π = 2431 πr = 1342 πc = 3124

Figure 1: The graphs of π = 2431, πr = 1342, and πc = 3124

Two common permutation constructions will be useful throughout this
paper. Given π ∈ Sa and τ ∈ Sb, we define π⊕τ ∈ Sa+b to be the permutation
where

(π ⊕ τ)i =

{
πi 1 ≤ i ≤ a

a+ τi−a a+ 1 ≤ i ≤ a+ b

and π 	 τ ∈ Sa+b to be the permutation where

(π 	 τ)i =

{
b+ πi 1 ≤ i ≤ a

τi−a a+ 1 ≤ i ≤ a+ b
.

The permutation π⊕ τ is known as the sum of π and τ , while π	 τ is known
as the skew-sum of π and τ .

We are interested in the notion of patterns in permutations and words.
Given a word (i.e. multiset permutation) w = w1 · · ·wn and ρ ∈ Sm we say
that w contains ρ as a pattern if there exist i1, i2, . . . , im and n such that
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1 ≤ i1 < i2 < · · · < im ≤ n and wia < wib if and only if ρa < ρb. In this
case we say that wi1 · · ·wim is order-isomorphic to ρ, and that wi1 · · ·wim is
an occurrence of ρ in w. If w does not contain ρ, then we say that w avoids
ρ. Of particular interest are the sets Sn(ρ) = {π ∈ Sn | π avoids ρ}. Let

sn(ρ) = |Sn(ρ)|. It is well known that sn(ρ) =
(2n

n )
n+1

for ρ ∈ S3 (see [11]), while
enumeration is much more difficult for patterns ρ of length 4 or more. One
of the oldest results in the area of pattern avoidance is the Erdős-Szekeres
Theorem:

Theorem 1.1 (Erdős-Szekeres [8]). Every permutation of length at least
(a− 1)(b− 1) + 1 must contain either the pattern Ia or the pattern Jb.

Pattern-avoidance has been considered in permutations and in words with
specific symmetries. For example, Ferrari [9] studied pattern avoidance in
centrosymmetric words. Cratty, Erickson, Negassi, and Pudwell [7] defined
the set of double lists on n letters to be

Dn = {ππ | π ∈ Sn}

and completely characterized the members of Dn that avoid a given permu-
tation pattern of length at most 4. More recently, Anderson, Diepenbroek,
Pudwell, and Stoll [2] defined the set of reverse double lists on n letters to
be

Rn = {ππr | π ∈ Sn},

completely characterized members of Rn that avoid a given pattern of length
at most 4, and analyzed a number of special cases for longer patterns. In
each of these situations, the added structure in the words under consideration
allows for a more specific analysis than the general case.

In this paper we are concerned with a complementary optimization prob-
lem. In particular, let ν(ρ, w) be the number of occurrences of ρ in word
w, let A be an infinite family of words, and let An be the members of A of
length n. We define

µAn(ρ) = max
w∈An

ν(ρ, w)

and

dA(ρ) = lim
n→∞

maxw∈An ν(ρ, w)(
n
|ρ|

) .

Any permutation (or word) in An that achieves µAn(ρ) is said to be ρ-optimal.
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When we focus on the case of packing patterns into permutations,

d(ρ) = lim
n→∞

maxw∈Sn ν(ρ, w)(
n
|ρ|

)
is known as the (classical) packing density of ρ. It is known that d(12 · · ·m) =
1 and d(132) = 2

√
3−3. In fact, if ρ is layered (i.e., if ρ ∈ Sn(231, 312)), then

there exists a layered ρ-optimizer in Sn. Price [12] determined the packing
densities of 1432 and 2143, while Albert et al. [1] determined the packing
density of 1243. There still remain a number of open packing densities for
ρ ∈ Sm, m ≥ 4 with partial progress [4, 10, 16, 17, 18]. In addition other
researchers have considered packing patterns into words [3, 6]. In particular,
Burstein, Hästö, and Mansour determined specific packing densities when
ρ ∈ S3 and An = [k]n.

Rather than packing patterns into any word in [k]n, we are concerned with
words that have specific substructures. In particular, we will pack patterns
into the setsDn andRn described above. In Section 2, we determine an upper
bound on µRn(ρ) that is independent of ρ and characterize the patterns ρ for
which this bound is sharp. We also consider the sequences µRn(ρ) for specific
patterns ρ that fall short of the upper bound. In all cases we also analyze the
structure of ρ-optimal members of Rn. In Section 3, we answer analogous
questions for packing patterns into Dn. We conclude with a summary of
remaining opening questions.

2 Packing into Reverse Double Lists

In this section, we consider the sequence µRn(ρ) for various patterns ρ. Notice
that if w = ππr contains k copies of ρ, then by symmetry, wr = (ππr)r =
ππr = w contains k copies of ρr and wc = πcπrc contains k copies of ρc, so
µRn(ρ) = µRn(ρr) = µRn(ρc) for all permutations ρ and all n ≥ 0. When
µRn(ρ) = µRn(ρ′) for all n ≥ 0, we say that ρ and ρ′ are Wilf-equivalent.

Before we consider specific cases, we begin with an upper bound on the
number of times any permutation pattern can be packed into a reverse double
list.

Theorem 2.1. Suppose ρ ∈ Sm. Then

µRn(ρ) ≤ 2

(
n

m

)
.
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Proof. Suppose w ∈ Rn. There are exactly
(
n
m

)
ways to choose a collection of

m distinct letters in w. We claim that for any collection of m distinct letters
in w, there are exactly zero or two copies of ρ in w using that alphabet.

Consider a copy of ρ in w using the alphabet a1, . . . , am. Further, suppose
that wi1wi2 · · ·wim is the copy of ρ in w that uses the earliest possible copy
of each of the letters a1, . . . , am that form a ρ pattern and that ij = n − e
is the largest index such that ij ≤ n. Then wi1 · · ·wij−1

wn+e+1wij+1
· · ·wim

is the only other possible copy of ρ using this alphabet. To check, notice
that choosing to use the other copy wi` for i` > ij violates the idea that
wi1wi2 · · ·wim uses the earliest possible copy of each letter that can be used
to form a ρ pattern from this alphabet. Choosing to use the other copy of
wi` for i` < ij forms a subword that is no longer order-isomorphic to ρ since
these letters wi` and wij will be transposed in the new subword. Similarly,
choosing multiple letters from π to replace with their copies in πr transposes
those letters in the chosen subword and no longer forms a ρ pattern. So, for
any alphabet a1, . . . , am, there are either zero copies or two copies of ρ in w
using that alphabet.

Now that we have an upper bound on µRn(ρ), we consider which patterns
ρ achieve this upper bound. We refer to any pattern ρ ∈ Sm for which
µRn(ρ) = 2

(
n
m

)
as maximal. To characterize maximal patterns, recall that a

peak of permutation ρ ∈ Sm is a position 1 < i < m such that ρi−1 < ρi >
ρi+1, and a valley is a position 1 < i < m such that ρi−1 > ρi < ρi+1. Let
pk(ρ) denote the number of peaks of ρ and let vl(ρ) denote the number of
valleys of ρ. Together, we refer to any position that is a peak or a valley as
an extreme point.

Theorem 2.2. Let ρ ∈ Sm. µRn(ρ) = 2
(
n
m

)
for all n ≥ m if and only if

pk(ρ) + vl(ρ) ≤ 1.

Proof. First, assume that pk(ρ) + vl(ρ) ≤ 1. If vl(ρ) = 0, it is easy to check
that there are 2

(
n
m

)
copies of ρ in the word InJn. If vl(ρ) = 1, there are 2

(
n
m

)
copies of ρ in the word JnIn.

On the other hand, assume that pk(ρ) + vl(ρ) ≥ 2. Since peaks and
valleys alternate in a permutation that means there is at least one peak and
at least one valley.

Now, suppose n ≥ (m−1)2+1. This implies that π = w1 · · ·wn has either
an increasing subsequence of length m or a decreasing subsequence of length
m by the Erdős-Szekeres Theorem. If we focus on the digits forming such a
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monotone sequence of length m in π, then in ππr they form a subsequence
of the form ImJm or JmIm. In either case, this subsequence has only one
extreme point and therefore cannot have a ρ subsequence. Since there exists
at least one collection of m letters chosen from {1, 2, . . . , n} that does not
form a ρ pattern, it must be the case that µRn(ρ) < 2

(
n
m

)
and therefore ρ is

not maximal.

By Theorem 2.2, every permutation of length m ≤ 3 is maximal. This
implies that for ρ ∈ Sm with m ≤ 3, µRn(ρ) = 2

(
n
m

)
and

dRn(ρ) = lim
n→∞

2
(
n
m

)(
2n
m

) =
1

2m−1
.

Notice that ρ-optimal members of Rn are not unique. In fact, as shown
in Theorem 2.3, for ρ ∈ {1, 12, 21}, every member of Rn is ρ-optimal. More
generally, if n ≥ 2, there are at least two ρ-optimal members of Rn for any
ρ, as shown in Theorem 2.4.

Theorem 2.3. Let ρ ∈ {1, 12, 21}. Then every member of Rn is ρ-optimal.

Proof. For ρ = 1, every digit of w = ππr ∈ Rn is a ρ pattern, and w = ππr

contains 2n copies of ρ, for any underlying permutation π.
For ρ = 12, consider two distinct digits x and y of π and assume that

x < y. Either x and y form an xyyx subword or a yxxy subword in w = ππr.
In the first case, the first occurrence of x together with either y forms a 12
pattern. In the second case, either x together with the second occurrence of
y forms a 12 pattern. Therefore, no matter the particular permutation π, for
each of the

(
n
2

)
ways to choose two letters of π we get two copies of 12, for a

total of 2
(
n
2

)
copies of 12.

Since 21 = 12r, every word in Rn is also 21-optimal.

Theorem 2.4. Let n ≥ m ≥ 2, ρ ∈ Sm, and π = τxy ∈ Sn. If w = τxyyxτ r

is ρ-optimal then w′ = τyxxyτ r is ρ-optimal.

Proof. We wish to show that there is a bijection between copies of ρ in w
and copies of ρ in w′. Consider an occurrence of ρ in w.

If neither x nor y is involved in the occurrence, then the occurrence is
also in w′. If exactly one of x or y is involved, then the occurrence is also in
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w′. If both x and y are involved, they form either a 12 or a 21 pattern. As
we saw in the proof of Theorem 2.3 there are exactly two copies of 12 (resp.
21) in xyyx and exactly two copies of 12 (resp. 21) in yxxy. In either case,
there are two copies of ρ in w using the particular collection of x, y and m−2
other letters, and there are two copies of ρ in w′ using the same collection of
letters.

As a consequence of Theorem 2.4, we know that for any ρ ∈ Sm and
n ≥ 2, the number of ρ-optimal words in Rn is even. In the case where
ρ = Im, we can say even more.

Theorem 2.5. The word w = ππr ∈ Rn is Im-optimal for all m ≤ n if and
only if π avoids both 213 and 231.

Proof. By Theorem 2.2, a Im-optimal word in Rn contains 2
(
n
m

)
copies of

12 · · ·m. In other words, there are two copies of Im for each collection of m
distinct letters in {1, 2, . . . , n}.

Suppose that π avoids both 213 and 231. Then for 1 ≤ i ≤ n− 1, either
πi = maxj≥i πj or πi = minj≥i πj. Now, consider a collection of m distinct
letters in {1, 2, . . . , n} and let πk be the letter from this collection closest to
the end of π. We can form a copy of Im in the following way: if πi < πk
choose its instance in π. If πi > πk, choose its instance in πr. If πi = πk, we
can choose either instance. Therefore, w has 2

(
n
m

)
copies of Im, and so w is

ρ-optimal.
On the other hand, suppose that π contains either a 213 pattern or a 231

pattern using the digits πi, πj, and πk with i < j < k. In any collection of
m letters that includes πi, πj, and πk, these three letters appear in the order
πiπjπkπkπjπi. However, if we are to form a copy of Im, we need πi to appear
between copies of πj and πk. Therefore, there is no Im pattern in w that uses
this collection of m letters and w is not ρ-optimal.

Corollary 2.1. For n ≥ m ≥ 2, there are 2n−1 Im-optimal members of Rn.

Proof. We know w = ππr ∈ Rn is Im-optimal if and only if π avoids both
213 and 231. This enumeration follows either from the description in the
proof of Theorem 2.5 or similarly from Proposition 12 of [14].

As an example, there are 23 = 8 members of R4 that are Im-optimal
for m ≤ 4. They are 12344321, 12433421, 14233241, 14322341, 41233214,
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41322314, 43122134, 43211234. For instance, 14233241 has 2
(
4
3

)
= 8 copies

of 123: two using each possible collection of 3 distinct digits.
At this point, we have completely characterized maximal patterns of any

length and enumerated Im-optimal words. The situation for other patterns
is more complex. The smallest non-maximal patterns are of length 4. By
symmetry of reverse and complement, we may partition S4 into eight Wilf
classes, where members of the same class are guaranteed to give the same
values for µRn(ρ). One representative of each class is: 1234, 1243, 1324, 1342,
1423, 1432, 2143, and 2413. By Theorem 2.2, four of these patterns (1234,
1243, 1342, and 1432) are maximal and four are not. A summary of values
of µRn(ρ) and dRn(ρ) for each of these cases is given in Table 1.

Pattern ρ µRn(ρ) dRn(ρ)
number of
ρ-optimal

words in Rn

1234 2
(
n
4

)
1
8

2n−1

1243 2
(
n
4

)
1
8

4
1342 2

(
n
4

)
1
8

2Fn
1432 2

(
n
4

)
1
8

4(n− 2)

2143 (degree 4 quasi-polynomial) 3
32

2(bn2 c+1)

1423 2, 10, 28, 60, 110, . . . (open) > 0.071892
1324 2, 10, 26, 54, 102, . . . (open)
2413 2, 8, 22, 48, 92, . . . (open)

Table 1: Packing data for patterns of length 4 embedded in Rn

2.1 Non-monotone maximal patterns of length 4

By Theorem 2.2, the non-monotone maximal patterns of length 4 are 1243,
1342, and 1432. By definition of maximal, if ρ is one of these three patterns,
there are 2

(
n
4

)
copies of ρ in any ρ-optimal word w ∈ Rn. However, this does

not tell us what the ρ-optimal words look like. We consider each of these
patterns in turn.

Theorem 2.6. For n ≥ 5, w = ππr ∈ Rn is 1243-optimal if and only if
π ∈ {In, In−2 ⊕ J2, In−3 ⊕ 213, In−3 ⊕ 231}.
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Proof. It is straightforward to check that if

π ∈ {In, In−2 ⊕ J2, In−3 ⊕ 213, In−3 ⊕ 231} ,

then for any subset of four letters {a, b, c, d} ⊆ {1, 2, . . . , n}, there is a 1243-
pattern in ππr using the chosen letters a, b, c, and d.

Now, suppose that w = ππr is 1243-optimal. Then any collection of four
letters chosen from {1, 2, . . . , n} must produce a 1243 pattern. We see that
πi 6= n for 1 ≤ i ≤ n−3 since otherwise the subword nπn−2πn−1πnπnπn−1πn−2n
has no 1243 pattern. We can further rule out the possibility that πn−2 = n.
On the one hand, for any j < n− 2, the subword πjnπn−1πnπnπn−1nπj must
have a 1243 pattern which uses πj playing the role of 3. This implies that
{πn−1, πn} = {1, 2}. But now, the subword π1π2nπnπnnπ2π1 has no 1243
pattern. We see that n must play the role of 4 since it is the largest digit and
πn must play the role of 1 since it is the smallest digit in the subword, but
there is no digit between them to play the role of 2. Therefore either πn = n
or πn−1 = n.

In the case where πn = n, any collection of four digits including n draws
a 1243 pattern from taking its smaller two digits in increasing order from π
and its remaining digit from πr. This implies that π = In or π = In−3⊕ 213.

In the case where πn = n − 1, the subword formed by all copies of any
collection of four digits including n and πn should form a 1243 pattern. If
πn ≤ n−3, then the word πiπjnπnπnnπjπi has no 1243 pattern since πn must
play the role of 1, n must play the role of 4, and there is no digit between
them to play the role of 2. This implies either πn = n − 1 or πn = n − 2.
If πn = n − 1, then in order for πiπjnπnπnnπjπi to have a 1243 pattern for
every 1 ≤ i < j ≤ n − 2, we have π1 < π2 so that π1 and π2 can play the
roles of 1 and 2. By a similar analysis, if πn = n− 2, then πn−2 = n− 1 and
π = In−3 ⊕ 231.

We have now exhausted all possible options to form a 1243-optimal word
in Rn.

Corollary 2.2. For n ≥ 5, there are four 1243-optimal members of Rn.

Theorem 2.7. If n ≥ 5, then w = ππr ∈ Rn is 1342-optimal if and only if
π ∈ Sn(231, 312, 321) or π1 · · · πn−2πnπn−1 ∈ Sn(231, 312, 321).

Proof. First, we show that π ∈ Sn(231, 312, 321) implies ππr is 1342-optimal.
It is known that if π ∈ Sn(231, 312, 321), then π = 1 ⊕ π′ where π′ ∈
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Sn−1(231, 312, 321) or π = J2 ⊕ π′ where π′ ∈ Sn−2(231, 312, 321). In other
words, π ∈ Sn(231, 312, 321) if and only if π is a layered permutation with
all layers of size 1 or 2. Now consider a collection of four letters {a, b, c, d} ⊂
{1, 2, . . . , n} where a < b < c < d. We may always find a 1342 pattern
composed of the digits a, b, c, d in ππr by taking a and c from π and b from
πr. If c and d are in different layers, then we may take d from π. If d and c
are in the same layer, then we may take d from πr. By Theorem 2.4, if ππr

is ρ-optimal then π̂π̂r is ρ-optimal where π̂ = π1 · · · πn−2πnπn−1, so all words
described in the theorem statement are indeed 1342-optimal.

Now, for the converse, we suppose that ππr is 1342-optimal. First, we
know that πi 6= n for i ≤ n− 3 since the word nπn−2πn−1πnπnπn−1πn−2n has
no 1342 pattern. So it must be the case that if ππr is 1342-optimal, then n
is among the final three digits of π. In fact, πn−2 = n is impossible. In order
for πjnπn−1πnπnπn−1nπj to contain a 1342 pattern for all j < n− 2, it must
be the case that the second n plays the role of 4 and πj plays the role of 2
so {πn−1, πn} = {1, n− 1}. However, now consider a collection of four digits
that include 1 and n but not n − 1. We must use n to play the role of 4 in
1342, but there is no digit between 1 and n to play the role of 3. Therefore
n must be one of the last two digits of π.

Suppose ππr is 1342-optimal but π contains 312 or 321. Since πn−1 = n
or πn = n, the digits πi < πj < πk in this pattern do not include n. Consider
n together with these three digits. We either have a subword of the form
πkπiπjnnπjπiπk, πkπjπinnπiπjπk, πkπinπjπjnπiπk or πkπjnπiπinπjπk. In any
case, the digits πi and n must play the roles of 1 and 4 respectively in a 1342
pattern and πk must play the role of 3. However, πk is the first (and last)
digit in each subword, rather than appearing between a copy of πi and a copy
of n. Therefore if ππr is 1342-optimal, π avoids 321 and 321.

Suppose ππr is 1342-optimal but π contains 231. If this copy of 231 does
not involve the digit n, then the digits that form the 231 pattern together
with n (which is either πn−1 or πn) form a subword that avoids 1342, so the
231 must use πn−1 = n playing the role of 3. Now, suppose πn < n − 2. In
this case, the digits (n − 2), (n − 1), n, and πn form a subword that avoids
1342 since the roles of 1 and n must be played by πn and n respectively and
there is no digit between them to play the role of a 3. Therefore, if there
is a 231 pattern in π, it is formed with πn−1 = n and πn = n− 2. Finally,
suppose πn−2 6= n − 1. Then n − 1, πn−2, n and n − 2 form a word that is
order-isomorphic to 31422413, which has no copy of 1342. Therefore, if ππr is
1342-optimal and π contains 231, the sole copy of 231 is formed by the digits
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n − 1, n, and n − 2 in the final three positions of π. However, transposing
the last two digits forms a pattern that avoids 231, 312, and 321.

Corollary 2.3. For n ≥ 5, there are 2Fn 1342-optimal members of Rn where
Fn is the nth Fibonacci number with F0 = 0, F1 = 1, and Fn = Fn−1 +Fn−2.

Proof. We have seen that if w = ππr is 1342-optimal, then either π ∈
Sn(231, 312, 321) or π1 · · · πn−2πnπn−1 ∈ Sn(231, 312, 321) (or both).

In the first case, π ∈ Sn(231, 312, 321) if and only if π consists of a
direct sum of 1 and 21 permutations, which implies |Sn(231, 312, 321)| fol-
lows the Fibonacci recurrence. We know that |S1(231, 312, 321)| = 1 and
|S2(231, 312, 321)| = 2, so |Sn(231, 312, 321)| = Fn+1.

In the second case, if π1 · · · πn−2πnπn−1 ends with one layer of size 2,
π ∈ Sn(231, 312, 321) ends in two layers of size 1, so it has already been
counted in the first case. If π1 · · · πn−2πnπn−1 ends with two layers of size
1, then π ∈ Sn(231, 312, 321) ends in a layer of size 2, so it has also already
been counted in the first case. However, we may also have the situation that
π1 · · · πn−2πnπn−1 ends with a layer of size 2 followed by a layer of size 1. In
this case πn−2πn−1πn forms 231 pattern using the largest three digits, but
π1 · · · πn−3 ∈ Sn−3(231, 312, 321), and so the number of such permutations in
case 2 but not case 1 is given by Fn−2.

Using the Fibonacci recurrence, we have a total of Fn+1 + Fn−2 = (Fn +
Fn−1) + Fn−2 = Fn + (Fn−1 + Fn−2) = 2Fn 1342-optimal words in Rn.

Theorem 2.8. If n ≥ 5, then w = ππr ∈ Rn is 1432-optimal if and only if
π has one of the following forms:

� 23 · · ·n1

� 23 · · · (n− 2)1(n− 1)n

� 23 · · · (n− 1)1n

� 23 · · · (n− 2)1n(n− 1)

� σ ⊕ τ where τ ∈ {123, 132, 312, 321} and σ is any of the n− 3 permu-
tations that reduces to In−4 when the digit 1 is removed.

Proof. One can check by brute force that if π has one of the forms in the
theorem statement, then ππr has a 1432 pattern using any selection of four
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digits. Therefore each of these permutations forms the first half of a 1432-
optimal reverse double list.

Now, suppose that w = ππr is ρ-optimal. First consider the digits n− 2,
n− 1 and n. In a copy of 1432 that uses all three of these digits, these three
letters must play the role of 4, 3, and 2; however, if n− 1 appears first these
three digits form a subword order-isomorphic to 213312 or 231132 which has
no 321 pattern. Therefore, of the digits n− 2, n− 1, and n, either the digit
n− 2 or the digit n appears first in π.

Now, consider the placement of 1 relative to n− 2, n− 1, and n in π.
If 1 appears after n, then any copy of 1432 in w involving both 1 and

n must use the copy of n from πr, and so all other digits must appear in
decreasing order after n in πr, which means they appear in increasing order
before n in π. This results in the situation where π = 23 · · ·n1.

If 1 appears before n but after n−2, then the digits n−2, n−1, and n may
be in the order (n− 2)(n− 1)n or (n− 2)n(n− 1). There are three possible
arrangements of the four digits 1, n−2, n−1, and n, namely (n−2)1(n−1)n,
(n − 2)(n − 1)1n, and (n − 2)1n(n − 1). In all three arrangements, any
copy of 1432 that uses 1 as its smallest digit and n − 2 as its largest digit
must take n− 2 from πr. This implies that the digits 2, 3, . . . , n− 3 appear
in decreasing order after n − 2 in πr, which means they must appear in
increasing order before n−2 in π. This results in π = 23 · · · (n−2)1(n−1)n,
π = 23 · · · (n− 1)1n, or π = 23 · · · (n− 2)1n(n− 1).

If 1 appears before both n and n− 2, again, let b = n− 2 if n− 2 appears
before n in π, and let b = n if n appears before n − 2 in π. Consider the
subword formed by the digits 1, n− 2, n− 1, and n. Any copy of 1432 using
1 as the smallest digit and b as the largest digit must use the copy of b in
πr which implies all smaller digits appear in decreasing order after b in πr,
or equivalently they appear in increasing order before b in πr. This implies
that π = σ ⊕ τ where τ ∈ {123, 132, 312, 321} and σ is any of the n − 3
permutations that reduces to In−4 when the digit 1 is removed.

Corollary 2.4. For n ≥ 5, there are 4(n− 2) 1432-optimal members of Rn.

Proof. When w = ππr is 1432-optimal, we have 4 possible permutations
where 1 appears among the last three digits. Otherwise, the location of 1
uniquely determines the first n− 3 digits of the permutation, and there are
four options for the order of the last three digits.

This yields a total of 4 + 4(n − 3) = 4(n − 2) 1432-optimal members of
Rn.
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2.2 Non-maximal patterns of length 4

Recall that there are four non-maximal patterns of length 4. They are 2143,
1423, 1324, and 2413. In this section we completely characterize 2143-optimal
members of Rn and give a lower bound on dRn(1423).

In Theorem 2.9, we will determine the maximum number of copies of 2143
in a reverse double list, but first we we need an additional definition. Given
a permutation π′ ∈ Sn−1 define insi(π

′) as the permutation π such that

πj =


i j = 1,

π′j−1 j > 1 and π′j−1 < i,

π′j−1 + 1 j > 1 and π′j−1 ≥ i.

In other words, insi(π
′) inserts the number i at the beginning of π′, incre-

menting numbers larger than i accordingly.
Consider the word w�(n) = π(n)π(n)r ∈ Rn defined recursively as follows:

π(1) = 1. Otherwise, if n is even, π(n) = insn
2
(π(n − 1)) and if n is odd,

π(n) = insn+1
2

(π(n− 1))

The graph of w�(11) is given in Figure 2. In general this construction
results in π(n) being a permutation of length n that alternates between an
increasing sequence formed by the largest digits and a decreasing sequence
formed by the smallest digits, so the word w�(n) has a diamond shape.

Figure 2: A 2143-optimal member of Rn

Theorem 2.9. For n ≥ 4,

µRn(2143) =


(3n2 − 8n− 4)(n− 2)n

48
n even,

(3n− 5)(n− 3)(n2 − 1)

48
n odd,

and w�(n) ∈ Rn is one 2143-optimal word that achieves this number of copies.
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Proof. We claim that for n ≥ 4, w�(n) is 2143-optimal among words in Rn.
We can check computationally that this is true for n = 4 and n = 5.

w�(4) = 23144132 has two copies of 2143, as desired, and w�(5) = 3241551423
has ten copies of 2143. These are indeed 2143-optimal words since every
collection of four digits produces two copies of 2143.

We proceed by induction, assuming that w�(n − 1) is 2143-optimal and
showing that w�(n) is also 2143-optimal.

Now consider a 2143-optimal word w = ππr by focusing on its first digit.
There are two cases: either the first digit is involved in the 2143 pattern or
it is not.

We first seek to maximize the number of copies of 2143 using the first
digit of w. Notice that this digit can only appear in a 2143 pattern as the
first (or last) digit of the pattern, so it can only play the role of 2 or 3.

In w�(n) we see that the first digit is involved in a 2143 pattern using every
combination of letters where it is not the smallest or the largest (take the
smaller two digits from π(n) and the larger two from π(n)r). We further know
that the number of copies of 2143 not involving the first digit is maximized
because these digits form w�(n− 1).

It remains to show that the first digit has been chosen so that the number
of size 4 subsets of {1, 2, . . . , n} using the first digit as it smallest or largest
has been minimized. If the first digit of w is a, there are

(
a−1
3

)
size 4 subsets

where a is largest and there are
(
n−a
3

)
size 4 subsets where a is smallest. The

quantity
(
a−1
3

)
+
(
n−a
3

)
is minimized when n = 2a − 1, or a = n+1

2
, which is

exactly what we have chosen our first digit to be in the case when n is odd.
When n is even, a is chosen to be the nearest integer to n+1

2
.

Now that we know w�(n) is 2143-optimal, we consider the number of
copies of 2143 in w�(n). There are µRn−1(2143) copies of 2143 not involving
the first digit of the word. While there are

(
n−1
3

)
possible collections of

four digits including the first digit of the word, we have seen that when n
is even,

(n
2
−1
3

)
+
(
n−n

2
3

)
of them do not produce a 2143 pattern. Therefore(

n−1
3

)
−
((n

2
−1
3

)
+
(
n−n

2
3

))
collections do, and each of them produce two copies,

which simplifies to n(n−2)(n−3)
4

copies of 2143 involving w�(n)1. When n is

odd,
(n+1

2
−1

3

)
+
(
n−n+1

2
3

)
collections of four digits involving the first digit do not

produce a 2143 pattern. Therefore
(
n−1
3

)
−
((n+1

2
−1

3

)
+
(
n−n+1

2
3

))
collections

do, and each of them produce two copies, which simplifies to (n−1)2(n−3)
4

copies
of 2143 involving w�(n)1.
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Together, we have:

µRn(2143) =


2
(
n
4

)
n ≤ 5,

µRn−1(2143) + n(n−2)(n−3)
4

n even and n > 5,

µRn−1(2143) + (n−1)2(n−3)
4

n odd and n > 5.

It can be verified algebraically that the quasi-polynomial in the theorem
statement uniquely satisfies this recurrence.

Corollary 2.5. For n ≥ 4, there are 2(bn2 c+1) 2143-optimal members of Rn.

Proof. We proceed by induction.
For n = 4, by brute force, there are 23 = 8 reverse double lists with two

copies of 2143. They are 21344312, 21433412, 23144132, 23411432, 32144123,
32411423, 34122143, and 34211243.

Further, we will say a reverse double list w = ππr on n letters has the
diamond property if its smallest dn

2
e digits appear in decreasing order in π

and its largest dn
2
e digits appear in increasing order in π. By Theorem 2.4, if

τxyyxτ r is ρ-optimal, so is τyxxyτ r. If τxyyxτ r has the diamond property
but τyxxyτ r does not, we will say τyxxyτ r has the near-diamond property.
Notice that each of the 2143-optimal words on four letters either has the
diamond property or the near-diamond property.

Now suppose there are 2(bn2 c+1) 2143-optimal members of Rn. Suppose
further that each of these words has the diamond property or the near-
diamond property. We are ready to consider the 2143-optimal members of
Rn+1.

Notice that any copy of 2143 in w = ππr ∈ Rn+1 either uses the digit
π1 or it does not. The maximum number of copies without using the first
(or last) digit is realized by adding a new first (and last) digit to a 2143-
optimal word in Rn. As we saw in the proof of Theorem 2.9, the maximum
number of copies including π1 is realized when π1 is as close to the median
of {1, 2, . . . , n+ 1} as possible, where every collection of four digits including
π1 (where π1 is not smallest or largest) contains a 2143 pattern. We are able
to find 2143-optimal members of Rn+1 by optimizing both of these types of
copies simultaneously, and so we focus on this new first (and last) digit.

If n+1 is odd, then there is exactly one choice for the new first/last digit:
it must be n+2

2
so that there are n

2
smaller digits and n

2
larger digits. Since
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we are adding a new first/last digit to a word with the diamond property
or the near-diamond property, we have maximized copies of 2143 using the
first/last digit. In this situation the number of 2143-optimal reverse double
lists on n letters is the same as the number of 2143-optimal reverse double
lists on n+ 1 letters.

On the other hand, if n+1 is even, then there are two choices for the first
digit. It can be n+1

2
or n+3

2
so that there are n−1

2
smaller digits and n+1

2
larger

digits or vice versa. Since we are adding a new first/last digit to a word with
the diamond property or the near-diamond property, we have maximized
copies of 2143 using the first/last digit. In this case, the number of 2143-
optimal members of Rn+1 is double the number of 2143-optimal members of
Rn, which matches the given enumeration.

In both cases, the 2143-optimal words w = ππr ∈ Rn+1 still either have
the diamond property or the near-diamond property.

Since we have maximized copies of 2143 with and without the first digit
simultaneously, we have constructed all possible 2143-optimal words.

We next consider the pattern 1423, which is much more challenging to
analyze. Based on experimental data, we know that ππr where π = 1⊕Jn−1⊕
1 is 1423-optimal for small n (i.e. n ≤ 9), but for sufficiently large n, there
are layered permutations with more than than three layers and with longer
first and last layers that have more copies. We conjecture that for all n there
exists a layered π such that ππr is 1423-optimal, and we conjecture further
that as n increases, the number of layers required in a 1423-optimal reverse
double list should also increase. In lieu of exact enumeration, we provide a
construction to give a lower bound on its packing density in reverse double
lists.

Theorem 2.10. For n ≥ 4,

dRn(1423) > 0.071892

Proof. We will count copies of 1423 in ππr for π = Jb ⊕ Ja ⊕ Jb where
b = n−a

2
. While analyzing this construction guarantees there are at least this

many copies of 1423 in some reverse double list, we do not prove that this is
the optimal construction.

Notice that a copy of 1423 can be obtained by choosing the 1 and 4 from
different layers in π and the 23 from the same layer of πr. If 1, 2, and 3 all
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come from the initial Jb, then there are
(
b
3

)
(a+ b) ways to choose four digits

that form a 1423 pattern. If the 1, 2, and 3 all come from the Ja layers,
then there are

(
a
3

)
b ways to choose the four digits that form a 1423 pattern.

Similarly there are
(
b
3

)
(a+ b) +

(
a
3

)
b ways to choose the four digits if the 2, 3,

and 4 all come from the same decreasing layer. Finally, if the 2 and 3 come
from Ja while the 1 and 4 come from Jb layers, there are

(
a
2

)
b2 ways to choose

the digits for a total of
(
a
2

)
b2 + 2

(
b
3

)
(a+ b) + 2

(
a
3

)
b ways to choose four digits

that form a 1423 pattern in ππr. Each of these combinations of four digits
yields two copies of 1423, since we may select the “4” from either π or πr to
get the 1423 pattern.

Using calculus (and a CAS), this number of copies is optimized when

a =

((
6i
√

23− 37
)2/3 − (6i√23− 37

)1/3
+ 13

6(6i
√

23− 37)1/3

)
n ≈ 0.647209n

and yields a packing density of ≈ 0.0718921066 after plugging a into the
exact count of 1423 patterns in the previous paragraph, dividing by

(
2n
4

)
and

taking the limit as n approaches infinity.

We have now considered the packing densities of six of the eight patterns
in Table 1. The cases of 1324 and 2413 are more complicated, and it remains
open to find a construction that illustrates a positive packing density in the
limit.

3 Packing into Double Lists

In this section, we will consider packing patterns into words in Dn.

3.1 Monotone patterns

We first consider packing ρ = Im. We also calculate the packing densities of
these patterns for any m ∈ N.

Theorem 3.1. The only Im-optimal word in Dn is ππ = InIn. Further,
µDn(Im) =

(
n
m

)
(m+ 1) and dDn(Im) = m+1

2m
.

Proof. Consider any combination of m distinct letters in w = ππ. If they
are arranged in ascending order within π, then there are (m + 1) possible

17



ways for these letters to form Im in the entire word, since there are (m+ 1)
ways to choose how many letters come from the first π. If, however, these
m letters are not in ascending relative order in π, then they either form 1 or
0 instances of Im, since, if any were possible at all, there would only be one
option for which letters must come from the first π and which must come
from the second π. Since the word where π = In is the only word where all
combinations of m letters are in increasing order in π, it must be the only
Im-optimal word, and must contain

(
n
m

)
(m+ 1) instances of Im.

From this characterization, it is straightforward to compute

dDn(Im) = lim
n→∞

(
n
m

)
(m+ 1)(
2n
m

) =
m+ 1

2m
.

Table 2 gives the packing densities of Im for whenm ≤ 10. Asm increases,
this density approaches 0.

m dDn(Im)

2 0.75
3 0.5
4 0.3125
5 0.1875
6 0.109375
7 0.0625
8 0.035156
9 0.019531
10 0.01074

Table 2: Packing densities of Im for small values of m

3.2 Layered patterns

Next, we consider layered patterns, i.e., patterns avoiding both 231 and 312.

Theorem 3.2. For n ≥ 3, there exists a 132-optimal word ππ ∈ Dn where
π is layered.
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Proof. Consider any three letters in π. These letters can have any of the six
length-three permutations as their relative order. Table 3 shows how many
total instances of 132 a set of three letters will make in ππ based on their
order in π.

Arrangement Instances of 132

123 123 1
132 132 4
213 213 1
231 231 0
312 312 1
321 321 1

Table 3: Number of instances of 132 any given collection of three letters make
in ππ based on their relative order in π

Based on these counts, if we want to pack 132 into the entire ππ word, it
suffices to pack 132 into π alone if π then also avoids 231. Stromquist (unpub-
lished) and later Barton [3] proved that there exists a layered permutation
that optimally packs 132. Since layered permutations necessarily avoid 231,
this fulfills our requirements.

Now that we know that a layered 132-optimal word exists, we can enumer-
ate the number of instances of 132 in layered words and use this enumeration
to compute dDn(132).

Theorem 3.3. dDn(132) =
3
√

3− 4

4
.

Proof. The 132-optimal permutation π of length n contains µSn(132) copies of
132, each of which yields four copies of 132 in ππ. The other

((
n
3

)
− µSn(132)

)
subsequences of length 3 in π are each of the form 123, 213, or 321 and each
yields one copy of 132 in ππ. Therefore, we have

µDn(132) = 4µSn(132) +

((
n

3

)
− µSn(132)

)
.

Dividing both sides by
(
2n
3

)
and taking the limit as n approaches infinity

yields:
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dDn(132) = lim
n→∞

(
n
3

)
+ 3µSn(132)(

2n
3

) .

On the right, we divide both the numerator and denominator by
(
n
3

)
to

obtain:

dDn(132) = lim
n→∞

1 + 3dSn(132)(
2n
3

)
/
(
n
3

) =
1 + 3(2

√
3− 3)

8
=

3
√

3− 4

4
≈ 0.299.

In Table 3 we listed all the possible arrangements of three distinct letters
in a double list to show that 132 had a layered optimizer. We now present a
similar table, with all the length 4 layered pattern classes. For conciseness,
we have only included layered arrangements of the four digits rather than all
arrangements.

Arrangement 1432 2143 1243 1324

1234 1234 0 0 1 1
1243 1243 1 1 5 1
1324 1324 1 0 1 5
1432 1432 5 1 1 1
2134 2134 0 1 0 1
2143 2143 1 5 1 1
3214 3214 1 1 0 1
4321 4321 1 1 0 0

Table 4: Number of copies of length 4 layered patterns in ππ based on the
relative order of four digits in π

Table 4 allows us to compute one more density with ease by building on
previous results. The 2143-optimal permutation given in [12] is of the form
Jn/2 ⊕ Jn/2 for even n and with one layer larger than the other by a single
letter when n is odd. This 2143-optimal permutation is layered and it avoids
1234 and 1324, and so using the same methodology as in Theorem 3.3 we
have the following:

Theorem 3.4. dDn(2143) = 5
32
.
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Proof. The 2143-optimal permutation of length n contains µSn(2143) copies
of 2143, each of which yields five copies of 2143 in ππ. All other subsequences
of length 4 in π are of the form 1432, 3214, or 4321 and each yields one copy
of 2143 in ππ. Therefore, we have

µDn(2143) = 5µSn(2143) +

((
n

4

)
− µSn(2143)

)
.

Dividing both sides by
(
2n
4

)
and taking the limit as n approaches infinity

yields:

dDn(2143) = lim
n→∞

(
n
4

)
+ 4µSn(132)(

2n
4

) .

On the right, we divide both the numerator and denominator by
(
n
3

)
to

obtain:

dDn(2143) = lim
n→∞

1 + 4dSn(2143)(
2n
4

)
/
(
n
4

) =
1 + 4

(
3
8

)
16

=
5

32
= 0.15625.

Unfortunately this strategy does not work directly for other layered pat-
terns ρ. Note that the optimal permutation for packing 1432, given in [12]
contains both 1234 and 2134 for sufficiently large n. Similarly the 1243-
optimal permutation given in [1] contains 4321 for sufficiently large n and
the 1324-optimal permutation is known to be layered, but the exact packing
density in permutations remains open.

However, we can use previous work to give a bound on one more packing
density. In [1] the 1243-optimal permutation of length n is shown to be
In/2 ⊕ Jn/2 when n is even and where the lengths of the increasing and
decreasing subpermutations differ by one letter if n is odd. We use this
permutation to give a lower bound on dDn(1243).

Theorem 3.5. dDn(1243) ≥ 576
√
3

12167
+ 13751

194672
.

Proof. Consider the word ππ where π = Ia ⊕ Jn−a. We wish to count copies
of 1243 in this word.

Any choice of two digits from the smallest a digits and two digits from
the largest n− a digits produces five copies of 1243 in ππ, while any choice
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of three digits from the smallest a digits and one digit from the largest n− a
digits produces one copy of 1243 and any choice of one digit from the smallest
a digits and three digits from the largest n − a digits produces one copy of
1243 in ππ. While choosing four digits from the largest n−a does not produce
any copies of 1243, choosing four digits from the smallest a digits produces
one copy. This enumeration gives a total of(

a

2

)(
n− a

2

)
+

(
a

3

)
(n− a) + a

(
n− a

3

)
+

(
a

4

)
copies, which (using calculus and a CAS) is optimized when a =

(
5+4
√
3

23

)
n.

This computation yields a lower bound of

dDn(1243) ≥ 576
√

3

12167
+

13751

194672
≈ 0.152634.

Two interesting pieces are at work here. In the context of permutations,
it is known that dSn(2143) = dSn(1243) = 3

8
. In the context of double

lists, we have shown that dDn(2143) = 5
32

and the maximum is achieved by
concatenating two copies of the 2143-optimal permutation. On the other
hand, the lower bound we obtain for dDn(1243) has more copies of 1243
than concatenating two copies of the 1243-optimal permutation, and our
lower bound is still below 5

32
. It still remains to determine the exact packing

density of 1243 in double lists, and to determine it the packing density for
other patterns ρ.

4 Future Work

The question of packing permutations into words of the form ππr and ππ
is the natural packing analogue to the pattern avoidance work done in [2]
and [7]. In the case of packing into ππr words, we note that packing a
copy of ρ into ππr is equivalent to packing a copy of some shuffle of ρ1 · · · ρi
and (ρi+1 · · · ρm)r into π, so these packing problems are a special case of
the packing definitions for sets given in [1]. Nonetheless, even with this
machinery, the sets of patterns to be packed are complicated (i.e. generally
not all layered), and are challenging to study. The following problems would
be interesting extensions of this paper, requiring tools and techniques beyond
the scope of the work here.
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1. Is µRn(1423) always attained by a layered π? If so, what can be said
about the layers?

2. Determine dRn(1423), dRn(1324) and dRn(2413).

3. We showed that µDn(ρ) is optimized by using the permutation that
optimizes µSn(ρ) concatenated with itself when ρ = Im, ρ = 132, or
ρ = 2143. However, we know this is not the case for ρ = 1243. For
what permutations is it true that µDn(ρ) is optimized by concatenating
two copies of a ρ-optimal permutation?

4. Is it true that if ρ is layered then the word µDn(ρ) is obtained by some
word ππ where π is layered?

In another direction, a Gray code is a list of all members of a set where
two consecutive members differ in a pre-determined small way. While the
canonical use of a Gray code is to list all binary strings of a specific length
so that two consecutive strings differ by only one digit, analogous ideas have
been used by various authors to systematically list all permutations or all
permutations with a specific property (such as avoidance of a given pattern)
[5, 13, 15]. Any Gray code listing of permutations can be extended naturally
to a listing of the members of Dn or Rn. It is worth investigating how
the techniques for systematically generating permutations could be used to
further the packing results of this paper.
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[8] P. Erdős and G. Szekeres, (1935), A combinatorial problem in geometry,
Compos. Math. 2 (1935), 463–470.

[9] L. Ferrari, Centrosymmetric words avoiding 3-letter permutation pat-
terns, Online J. Anal. Comb. 6 (2011), #2.
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