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Some mathematical ideas can seem so 
straightforward at a first glance that we take them 
for granted and move along to meet more 
complicated ideas. But sometimes a shift in 
perspective on a familiar idea opens up a whole 
new world to explore. For instance, a permutation 
is a list of objects where order matters. There are 

	permutations of n objects 
because there are n choices for the first object, n – 
1 choices for the second object, and so on. For 
example, the ordered lists 123, 132, 213, 231, 
312, and 321 are the  permutations 
of the numbers 1, 2, and 3. Friendly definition, 
friendly computation. What more can be said? 
 
Permutations in Permutations 
We can make permutations more visual by 
graphing them. To graph a permutation, we read 
its entries one at a time, and if the entry in 
position i is the object j, we plot the point (i,j) in 
the xy-plane. Figure 1 displays the graphs of all 
six permutations of 1, 2, and 3. 

 
Figure 1. Graphs of the permutations of three objects. 
 

The graphs of permutations provide a different 
point of view. In list form, one might be tempted to 
group permutations according to the same first 
number, but in figure 1, we might notice that the 
graphs of the permutations 123 and 321 look 
linear while the graphs of the other four 
permutations look triangular.  

Not only do these graphs give a more visual 
interpretation than lists, they allow for an 
interesting twist: finding smaller permutations 
inside of larger ones.  

 

 
Figure 2. The graph of 562719348 with certain 
patterns highlighted. 
 

Let’s look at a larger example like the graph of 
562719348 in figure 2. Suppose we’re not 
interested in the entire permutation, but only 
focus on some of the dots—such as the 2, the 9, 
and the 4 (highlighted in orange).  Notice that the 
least of the three numbers, 2, comes first, followed 
by the largest of the three numbers, 9, followed by 
the middle of the three numbers, 4, just like in the 
graph of 132. These three orange dots form a 
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stretched-out version of the graph of 132 inside of 
the larger permutation, so we say 562719348 
contains 132 as a pattern. Similarly, the dots 5, 6, 
7, and 8 (shown in blue) are in increasing order 
within 562719348; these blue dots form a 1234 
pattern within the larger permutation. On the 
other hand, it’s not possible to find four dots in 
decreasing order in figure 2 (like in the graph of 
4321), so 562719348 avoids the pattern 4321. 
 
Let’s Count! 
While it’s a great game of mathematical hide and 
seek to start with a large permutation and look for 
smaller patterns inside of it, it’s actually an 
interesting research question to start with a small 
permutation and ask “How many permutations of 
length n contain my pattern?” or, equivalently, 
“How many permutations of length n avoid my 
pattern?”  

Once we answer one of these questions, we 
know the answer to the other one because every 
permutation of length n either contains pattern p 
or avoids pattern p. Thanks to this fact, the 
number of permutations avoiding p plus the 
number of permutations containing p always adds 
up to the total number of permutations, or n! for 
length n. These pattern containment and pattern 
avoidance definitions first appeared in computer 
science work in the 1960s, when Donald Knuth 
showed that permutations sortable in a particular 
algorithm were exactly the permutations that 
avoid 231 (The Art of Computer Programming: 
Volume 1, Addison Wesley, 1968). Consequently, 
mathematicians who work in this area tend to 
focus on “How many permutations of length n 
avoid my pattern?” 

Let’s start with small patterns and see how far 
we can get! How many permutations of length n 
avoid the pattern 12? There is only one 
permutation of length 1, and it’s too small to 
contain a 12 pattern, so there’s one 12-avoiding 
permutation of length 1. There are two 
permutations of length 2. One of them is 12, but 
the other, 21, avoids 12, so there’s one 12-
avoiding permutation of length 2.  

 

 
 
Figure 3. Examples of the pattern 12 contained in all 
but one of the permutations of length 3.  
 

In figure 3, the six permutations of length 3 are 
shown with copies of 12 highlighted in red. There 
is exactly one 12-avoiding permutation in this 
figure, and it’s 321.  This is no accident. A copy of 

12 is a smaller value followed by a larger value. If 
a permutation avoids 12, its dots must be in 
decreasing order. There is exactly one 
permutation of each length n that avoids 12. 
Similarly, if a permutation avoids 21, the dots in 
its graph must be in increasing order, so there is 
exactly one permutation of each length n that 
avoids 21 as well. 

Scaling up and trying to avoid the pattern 132 is 
more work, but we get a lovely sequence. Let Cn be 
the number of 132-avoiding permutations of 
length n. The first value is C0 = 1 as there is only 
one way to draw zero dots, and that way avoids 
132 (it avoids everything). Similarly, the next two 
values of the sequence are C1 = 1 and C2 = 2 
because any permutation of length 1 or length 2 is 
not long enough to have three dots and thus also 
avoids 132. For larger permutations, consider the 
graph shown in figure 4.   
 

 
Figure 4. The graph of a 132-avoiding permutation. 
 

The purple dot in figure 4 represents the 
position of the number n. First, we can observe 
that “n appears somewhere”, so perhaps the 
purple dot belongs in the first column, in the last 
column, or somewhere in between.  Being a little 
more precise, let’s say n appears in column i with 

 That means there are i – 1 dots to the 
left of the purple dot and n – i dots to its right.  If 
any of the dots on the left were lower than any of 
the dots on the right, we could build a 132 pattern 
by using one dot on the left, one dot on the right, 
and the purple dot in between them; so every dot 
to the left of the purple dot must be higher than 
every dot to the right of the purple dot. In other 
words, all the other dots in the graph of the 132-
avoiding permutation must be inside of the blue 
box, containing i – 1 dots, and the green box, 
containing n – i dots, shown in figure 4. As long as 
we fill in the blue box with one of the Ci–1 132-
avoiding permutations of length i – 1 and fill in the 
green box with one of the Cn–i 132-avoiding 
permutations of length n – i, then, voila! We’ve 
produced a larger 132-avoiding permutation of 
length n. Considering all possible options for i—the 

1≤ i≤ n.



position for the largest object n—we get the 
recurrence 

 
We can check that C2 = C0C1 + C1C0 = 1 + 1 = 2, as 
expected. We can also compute C3 = 5, C4 = 14, 
and C5 = 42. 

In general, it turns out that a closed formula for 
Cn is given by 

, 

and this is actually quite a famous sequence 
known as the Catalan numbers. They appear in 
literally hundreds of counting problems in addition 
to our exploration of pattern-avoiding 
permutations. (Richard Stanley, Catalan Numbers, 
Cambridge University Press, 2015). For example, 
while it is more work, it can be shown that the 
number of permutations of length n avoiding p 
where p is your favorite permutation of length 3 is 
also Cn. 

While we’re focused on patterns of length 3, let’s 
see if we can avoid multiple patterns at the same 
time: How many permutations of length n avoid all 
three of 132, 213, and 123 at the same time? Take 
a minute and gather some data on your own. How 
many permutations of length 1 avoid these 
patterns? How about of length 2? Length 0? 
Length 3? Can you find a pattern? We’ll let Fn be 
the number of these permutations. As before, F0 = 
1, F1 = 1, and F2 = 2 because the permutations in 
question are too short to contain the length 3 
patterns. We now have some extra restrictions 
compared to the picture in figure 4. In fact, our 
permutations must now fit into one of the two 
cases shown in figure 5.   
 

 
 
Figure 5. Graphs of permutations avoiding the 
patterns 132, 213, and 123 simultaneously. 
 

Why? The first observation is that the digit n 
must appear in column 1 or column 2. If not, then 
the numbers in the first two columns together with 
n must form either form a 213 pattern or a 123 
pattern. If n is in the second position, we know 
that avoiding 132 forces the dot before the n to be 
larger than all the dots after the n. Thus, if n is 
second, then n – 1 must be first.  

Thus, if n is in position 1, we can fill in the blue 
box, shown on the left in figure 5, with one of the 
Fn–1 pattern-avoiding permutations of length n – 1 
to get a pattern-avoiding permutation of length n. 
If n is in position two (so that n – 1 is in position 
one), we fill in the green box on the right of figure 
5 with one of the Fn–2 pattern-avoiding 
permutations of length n – 2 to get a pattern-
avoiding permutation of length n. In other words, 
Fn = Fn–1 + Fn–2. This recurrence, along with the 
initial conditions, demonstrates that the number of 
permutations of length n avoiding the patterns 
132, 213, and 123 is given by the Fibonacci 
numbers—yet another famous sequence! 
 
Zooming Out 
We have counted the permutations avoiding 12 (1 
of each length), avoiding 132 (Cn of length n), and 
avoiding 132, 213, and 123 simultaneously (Fn of 
length n). Of course, we could avoid more patterns 
at the same time, or we could avoid longer 
patterns. It turns out that although there are 4! = 
24 permutation patterns of length 4, if you ask 
“How many permutations of length n avoid p?” 
when p is a pattern of length 4, only three distinct 
counting sequences arise. The number of 1234-
avoiders is 1, 1, 2, 6, 23, 103, 513, 2761, … the 
number of 1342-avoiders is 1, 1, 2, 6, 23, 103, 
512, 2740, …, and the number of 1324-avoiders is 
1, 1, 2, 6, 23, 103, 513, 2762, … (Miklos Bóna, 
Combinatorics of Permutations, Chapman & Hall, 
2004).  

The first two of these sequences were explored 
by researchers in the 1990s, and there are known 
formulas for expressing the nth term in each of 
these sequences; however, to this day no one know 
the precise number of 1324-avoiding permutations 
of length 1,000,000 or more. We have computed 
upper and lower bounds on how fast this sequence 
grows, but its exact values for large values of n 
remain a mystery. A simple definition, given in 
pictures, leads to interesting and challenging 
counting questions quite quickly.  

Even more broadly, this isn’t just an 
enumeration game. As mentioned earlier, 
counting permutations that avoid patterns 
originally grew out of questions asked by 
computer scientists. Beyond counting, pattern-
avoiding permutations have shown up in biology, 
physics, and chemistry questions and more. 
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A talk including the content of this paper is at 
www.youtube.com/watch?v=B7DPo9YQTgw. 


