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Abstract

In this paper, we study tilings of rectangular and circular arrays with
specified sets of colored rectangular tiles. In particular, we consider rect-
angular tiles of arbitrarily large size, but where the number of colors
available to use on a particular tile is determined by its position on the
array. While tiling enumeration is often used to prove identities involv-
ing Fibonacci and Lucas numbers, the tilings we examine yield natural
connections with sets of permutations.

1 Introduction

We consider tilings of rectangular and circular arrays with colored tiles. It is
well known that the number of ways to tile an n × 1 rectangle with dominoes
and squares is given by the nth Fibonacci number and the number of ways to
tile an n-cell circular array with dominoes and squares is given by the nth Lucas
number. These types of tilings have been generalized in a number of ways, and
an excellent survey of enumerative and bijective results resulting from tilings is
given by Benjamin and Quinn [1].

A recent paper of Dresden and Xiao [2] considers tilings of n× 1 rectangles
and n-cell circular arrays with tiles of any size i× 1 where 1 ≤ i ≤ n and where
i × 1 tiles come in i different colors. They use these colored tilings to prove
identities involving weighted sums of Fibonacci numbers. In any Fibonacci or
Lucas-type tiling, a tile is uniquely described by its size and position. While
Dresden and Xiao determine the number of colors of a tile by the size, in this
paper we ask the analogous enumeration questions when the number of colors
available to a tile is determined by its position. In particular, we number the
cells of an n × 1 rectangle consecutively from left to right, and we number the
cells of an n-cell circular array consecutively in a clockwise fashion as shown in
Figure 1. We consider a family of six enumeration questions, determined by the
following parameters:

� What board is to be tiled? (n× 1 rectangle or n-cell circular array)

� What is the number of possible colors of a tile? (determined by the biggest
cell that is covered, the smallest cell that is covered, the last value cell that
is covered, or the first value cell that is covered)
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Figure 1: An n-cell rectangular board and an n-cell circular array

In a circular array, the first and last valued cells are determined by reading
the cells in clockwise order. In a rectangle tiling, “first” and “smallest” are
equivalent, as are “last” and “biggest”. The same is true for many tiles on a
circular array; however, in a circular array, tiles of size 2 or more may cover
both cell n and cell 1 simultaneously, and these conventions differ for these
“straddling tiles”.

We explore each of these questions in turn and analyze the resulting enu-
meration sequences. In particular, rather than having connections to Fibonacci
and Lucas numbers, this new family of tilings results in connections with vari-
ous families of permutations. Throughout this paper, we think of permutations
combinatorially, rather than algebraically. That is, a permutation π of size n
is a list of the numbers 1, 2, . . . , n where order matters. In particular, it will
be useful to think about the inversions of the permutations in question. An
inversion in a permutation π = π1 · · ·πn is a pair of entries πi and πj such that
i < j but πi > πj .

In Section 2 we consider tilings of an n×1 rectangle according to two different
conventions for the number of colors available to each tile, and in Section 3 we
consider tilings of an n-cell circular array according to four different conventions
for the number of colors available to each tile. For each tiling problem, we give
both an enumeration of the possible tilings and a bijective connection with a
specific family of permutations.

2 Rectangle tilings

Let rn be the number of tilings of an n × 1 rectangular board with i × 1 tiles
where 1 ≤ i ≤ n. Clearly r0 = r1 = 1. In general, we can divide the tilings into
cases by conditioning on the size of the last tile. If the last tile is of size i, then
the rest of the board is an (n − i) × 1 board with the same tiling rules, so we
have

rn =

n∑
i=1

rn−i.
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This recurrence yields rn = 2n−1 (OEIS A000079). We can see this result more
directly since any tiling of an n×1 rectangle corresponds to a composition of n,
i.e., an ordered list of positive integers whose sum is n. We really must decide
whether each of the n− 1 boundaries between cells is a boundary between two
distinct tiles or not, yielding 2n−1 possible uncolored tilings.

Now that we understand the monochromatic tiling case, we consider colored
tilings where each tile is assigned a color and the number of colors available to
a tile is determined by the tile’s position.

Theorem 1. Let rbn be the number of tilings of an n × 1 rectangle where the
number of possible colors of a tile t is determined by the biggest cell t covers.
Then for n ≥ 1,

rbn = n · n!. (OEIS A094258)

Proof. Notice that for n ≥ 1, n · n! is the number of permutations of [n+ 1] =
{1, . . . , n+ 1} whose final digit is not n+ 1.

Now consider a tiling of an n × 1 rectangle where the number of colors
available to a tile is determined by the largest cell it covers and name the
tiles t1, t2, . . . , tm from left to right. Given tile ti of length `i and color ci
let f̂(ti) be the sequence 0`i−1, ci. Now, for any tiling t1t2 . . . tm of an n × 1
rectangle, we may associate a sequence s = s1 · · · sn+1 formed by concatenating
0f̂(t1)f̂(t2) · · · f̂(tm). To find the permutation f(t1t2 . . . tm) that corresponds
to the entire tiling, begin with the permutation 12 · · · (n+ 1). Then, for 1 ≤ i ≤
n+ 1, move the digit i to the left si positions. Since sn+1 ≥ 1, this generates a
permutation of [n+ 1] that does not end in n+ 1. In the resulting permutation,
j is the larger digit in sj inversions.

This construction is invertible. Consider a permutation π of length n + 1.
The position of n+1 determines the color of the last tile. Also, after deleting the
digit n+ 1, the longest run of digits where πi = i at the end of the permutation
(possibly of length 0) is one less than the length of the last tile. We can then
delete these final digits and recursively determine the size and length of each
successive tile from right to left.

As an example, consider the tiling t1t2t3t4 in Figure 2. We have f̂(t1) = 02,

f̂(t2) = 004, f̂(t3) = 6, and f̂(t4) = 5. Together this tells us that s = 00200465.
Reading this sequence from left to right, we begin with 12345678. Since s1 =
s2 = 0, we see that 1 and 2 are involved in 0 inversions, but since s3 = 2, the digit
3 appears ahead of 1 and 2, and alters our permutation to 31245678. Similarly,
4 and 5 are involved in no inversions, but s6 = 4 tells us that 6 is involved in
4 inversions so our permutation becomes 36124578. Since s7 = 6, we move 7 to
the left by 6 positions to obtain 73612458. Since s8 = 5 we move 8 to the left by
5 positions to obtain π = f(t1t2t3t4) = 73861245. Similarly, the permutation
π = 3216475 corresponds to the tiling shown in Figure 3. In general, the colors
of tiles correspond to the number of inversions involving a specified digit, so
these tilings are an alternate representation of inversion sequences. In Section
3 we will use variations of this bijection to understand tilings of circular arrays.
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Figure 2: A 7-cell biggest-color rectangle tiling, where each tile is labeled with
its color, corresponding to 73861245

1 2 2 1

Figure 3: A 6-cell biggest-color rectangular board, where each tile is labeled
with its color, corresponding to 3216475

Next we consider an alternate coloring rule that is related to a different
family of permutations.

Theorem 2. Let rsn be the number of tilings of an n × 1 rectangle where the
number of possible colors of a tile t is determined by the smallest cell t covers.
Then

rsn =
(n+ 1)!

2
. (OEIS A001710)

Proof. We prove this inductively.
When n = 1, there is one tiling, as expected.

Now suppose rsn = (n+1)!
2 and consider a tiling of an (n + 1) × 1 board.

Either the last tile is a square with one of n+ 1 colors, and the rest of the tiling
is a tiling of an n × 1 board, or the last tile is a k × 1 tile (k > 1) with the
number of colors determined by its first cell. We can shrink this last tile to be a
(k − 1)× 1 tile with the same color to obtain a tiling of an n× 1 board. Either
way, each n × 1 tiling corresponds to n + 2 different tilings of an (n + 1) × 1
board; n + 1 that end in squares, and one that results from stretching the size

of the final tile. This tells us rsn+1 = (n+ 2) rsn =
(n+ 2)!

2
, as desired.

An even (resp. odd) permutation is a permutation with an even (resp. odd)
number of inversions. Among the n! permutations of length n (where n ≥ 2),
exactly half of them are even. (To see this, notice that transposing the final two
digits of a permutation provides a bijection between odd permutations and even
permutations of the same length.) Although the proof of Theorem 2 is relatively
succinct, we may also give a bijection g(T ) between the tilings counted by rsn
and the even permutations of length n+ 1.

As a base case, when n = 1, there is one tiling, and there is one even
permutation of length 2, namely 12.

Now, for n ≥ 2, we show that if there is a bijection between tilings counted
by rsn−1 and even permutations of length n, then this extends to a bijection
between tilings counted by rsn and even permutations of length n+ 1.
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tiling T permutation g(T ) tiling T permutation g(T )

1
1234

1 1 1
2143

1 1
2314

1 1 2
2431

1 2
3124

1 1 3
4213

1 1
1342

1 2 1
3241

1 2
1423

1 2 2
3412

1 3
4132

1 2 3
4321

Table 1: All smallest-color tilings of a 3× 1 rectangular board and their corre-
sponding even permutations of length 4

Consider a tiling counted by rsn. If the last tile has length 2 or greater,
find the permutation that corresponds to shrinking the last tile by 1 square and
append n+ 1 on the end of the permutation. This is guaranteed to be an even
permutation because there are still an even number of inversions among the
digits 1, 2, . . . , n, and n+ 1 is involved in no inversions.

Otherwise, the last tile has size 1 and color c where 1 ≤ c ≤ n. Consider the
permutation π′ that corresponds to the tiling where this final tile is removed.
π′ is necessarily even. Now, if c is even, insert n + 1 in position n + 1 − c,
which involves n+ 1 in c inversions and produces an even permutation. On the
other hand if c is odd, then transpose the last two digits of π′ to get an odd
permutation of length n and then insert n + 1 in position n + 1 − c to involve
n+ 1 in an odd number of inversions and produce an even permutation.

This procedure is invertible. The position of the largest digit in an even
permutation uniquely determines whether the last tile has length 1 or is longer.
If the last tile is square, the position of n+ 1 also determines its color. We may
delete digit n + 1 from the permutation and recursively determine the unique
tiling that goes with this new permutation of length n and then either extend
the last tile or add an appropriately-colored square to complete the tiling.

As an example, Table 1 gives the twelve possible smallest-color tilings of a
3× 1 rectangle along with their corresponding even permutations of length 4.

3 Circular array tilings

Next we consider tilings of an n-cell circular array. As in the rectangular case,
it is instructive to first count uncolored tilings. Consider the tile covering 1 to
be the “first” tile. This tile has size i where 1 ≤ i ≤ n, and there are i positions
this tile could have (depending on whether cell 1 is the first, second,... or ith
cell covered by the tile). Then there are n − i remaining cells, which can be
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covered in 2n−i−1 ways if i < n (or 1 way if i = n), since tiling this portion of
the circle is equivalent to covering an (n− i)× 1 rectangle. Therefore, there are

n+
∑n−1

i=1 i2
n−i−1 = 2n−1 (OEIS A000225) ways to tile an n-cell circular array.

We can also see this enumeration more directly; we either choose to include or
omit each of the n boundaries between adjacent cells as a boundary between
distinct tiles, and the only invalid choice is to select 0 such boundaries.

Now, consider the situation where the number of colors available to a tile is
determined by its position. Just as the number of uncolored tilings of a circular
array is a weighted sum of tilings of rectangles, the same general idea holds
when we introduce colored tiles to circular arrays. In this section, we consider
four conventions: the number of colors available to a tile is given by the first,
smallest, last, or biggest cell covered. For many tiles the first two conventions
will be the same and the last two conventions will be the same, but circular
arrays may have tiles that simultaneously cover both cell n and cell 1, and these
cells will be treated differently by the various conventions. For example, a 4× 1
tile that covers cells n− 1, n, 1, and 2 has n− 1 as its first cell, 1 as its smallest
cell, 2 as its last cell, and n as its biggest cell. Similar to the enumerations
in Section 2, in this section we find sequences connected with specific families
of permutations. While two of these enumerations are equal and the resulting
sequence is in the On-Line Encyclopedia of Integer Sequences (OEIS) [3], the
other two appear to be new to the literature.

Theorem 3. Let cln be the number of tilings of an n-cell circular array where
the number of possible colors of a tile t is determined by the last cell t covers,
and let cfn be the number of tilings of an an n-cell circular array where the
number of possible colors of a tile t is determined by the first cell t covers. Then

cln = cfn = (n+ 1)!− 1. (OEIS A033312)

Proof. Consider an uncolored tiling T of an n-cell circular array whose tiles
have last cells c1, . . . , cm. Rotating this tiling counterclockwise by one position
yields tiling T ′ whose tiles have first cells c1, . . . , cm. Therefore the number of
colorings of T counted by cln equals the number of colorings of T ′ counted by
cfn.

Now, we focus on cln and show that cln = rbn + cln−1. Consider a tiling
counted by cln. Either the colored tile covering position n also covers position
1 or not. If not, by cutting the circular array between cells 1 and n, we have a
tiling equivalent to one of the rbn tilings counted by Theorem 1. Alternatively,
if the colored tile covering position n also covers position 1, then we may shrink
the tile by 1 square and remove position n from the circular array to obtain a
colored tiling counted by cln−1, provided n > 1.

Assuming that cln = (n + 1)! − 1, consider cln+1 = rbn+1 + cln. Using
Theorem 1, rbn = n · n! and by our inductive hypothesis we conclude that
cln+1 = (n+ 1) · (n+ 1)! + (n+ 1)!− 1 = (n+ 2)!− 1, as desired.

While Theorem 3 enumerates the relevant circular array tilings, we can also
find a bijection between the tilings counted by cln and the permutations of n+1
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that are not the identity permutation. Consider a tiling where cell n and cell 1
are covered by different tiles. Since this tiling is equivalent to a tiling counted
by rbn, then via bijection f in the proof of Theorem 1 it can be mapped to a
unique permutation of length n+1 where n+1 is not last. On the other hand, if
cells n and 1 are covered by the same tile, suppose that there are i cells covered
by this tile to the left of 1. Delete these i cells and shrink this tile by size i to
obtain a tiling counted by cln−i where cells 1 and n− i are covered by different
tiles. We can find the unique permutation of length n+ 1− i corresponding to
this tiling via bijection f and then append the digits n− i+2, . . . , n+1 in order
to complete the non-identity permutation of length n+ 1.

Theorem 4. Let cbn be the number of tilings of an n-cell circular array where
the number of possible colors of a tile t is determined by the biggest cell t covers.
Then

cbn = n

n∑
k=1

n!

k!
. (OEIS A345887)

Proof. Let rbi
k be the number of tilings of an k× 1 rectangle where the number

of possible colors of a tile t is determined by the biggest cell t covers, starting at
position i + 1. With this notation, Theorem 1 addresses the case where i = 0.
When i > 0, we understand positions 1, . . . , i to be all covered by the first tile,
whose size is at least i+ 1.

Consider a tiling counted by cbn. Then the tile covering position n covers i
positions to the right of n where i ≥ 0. If i = 0, by cutting the circular array
between cells n and 1, we obtain one of the rbn = n · n! tilings of a rectangular
array. Alternatively, if i > 0, we can remove the positions 1, 2, . . . , i from the
tiling without changing the number of tilings. There are exactly rbi

n−i such
tilings. These can be counted in a manner similar to Theorem 1, where the
ordering of 1, . . . , i+ 1 in the corresponding permutation does not matter, and
thus rbi

n−i = n n!
(i+1)! . We sum over all relevant values of i to determine

cbn =

n−1∑
i=0

rbi
n−i =

n−1∑
i=0

n
n!

(i+ 1)!
= n

n∑
k=1

n!

k!
.

While cbn is new to OEIS, cbn

n is given by A002627, which is known to be
the number of permutations of proper subsets of a set of n objects. We can see
this by modifying bijection f from the proof of Theorem 1. Consider a tiling and
focus on the tile covering cell n. Suppose this tile covers i cells to the right of n.
Necessarily, 0 ≤ i ≤ n− 1. Delete cells 1, . . . , i from the tiling (and shrink this
tile by i cells) to obtain a tiling of cells i+ 1, . . . , n of the circular array. Now,
to generate a (partial) permutation, begin with i+ 1 blanks, and then proceed
similarly to bijection f , reading tiles from left to right. When a tile has color c
and covers cells j, . . . , j + a, append the digits j − i, . . . , j + a− i− 1 to the end
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Figure 4: A 6-cell biggest-color circular array tiling and its corresponding partial
rectangular board tiling, which map to the ordered arrangement 316 of the
subset {1, 3, 6}

of the partial permutation, and then place digit j+a− i in the (c+1)st position
from the end. This produces a permutation consisting of i+1 blanks along with
the digits 1, . . . , n− i. Since there are always n choices for the color of the last
tile, there are always n possible positions of the digit n+ 1 relative to the other
digits in any underlying partial permutation. If digit n+ 1 is removed, then we
produce all ways to generate a permutation of i+ 1 blanks and n− i− 1 digits.
Now, if there is a digit in position p, consider p to be in our chosen subset, and
if there is a blank in position p, p is not in the subset. The digits 1, . . . , n− i in
the non-blank positions produce a permutation of our chosen elements. Since
there is always at least one blank, we always have a proper (possibly empty)
subset of {1, . . . , n} that has been chosen.

As an example, consider the coloring of a 6-cell circular array shown in the
left of Figure 4. In this diagram, the tile covering cell 6 also covers cells 1 and
2 so, i = 2, and if we ignore the first two cells, we have a rectangular tiling of
cells 3, 4, 5, and 6 of the form shown on the right of Figure 4. Since i = 2, we
begin with three blanks. Now, the tile covering cell 3 is of size 1 and has color
2, so we place the digit 1 in the third position from the right to obtain 1

. Next, the tile covering cell 4 is of size 1 and has color 4, so we place the
digit 2 in the fifth position from the right to obtain 2 1 . Finally, the
tile covering cells 5 and 6 has size 2 and color 5, so we place 3 at the end of
the partial permutation and then place 4 in the sixth position from the end to
obtain 2 4 1 3. Disregarding the 4 gives 2 1 3. There are digits
in positions 1, 3, and 6, and so this corresponds to a permutation of the subset
{1, 3, 6}. Since the 1 is in position 3, the 3 comes first; since the 2 is in position
1, the 1 comes second, and finally 6 comes last. This tiling corresponds to the
ordered arrangement 316.

Theorem 5. Let csn be the number of tilings of an n-cell circular array where
the number of possible colors of a tile t is determined by the smallest cell t
covers. Then
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csn =

n+1∑
k=2

k!

2
. (OEIS A345889)

Proof. Consider a tiling counted by csn. Either the tile covering position n also
covers position 1 or it does not. For the first case, since the tile covering position
n also covers position 1, we can remove position n from the circular tiling and

shrink the tile by size 1 to obtain one of csn−1 =

n∑
k=2

k!

2
possible colored tilings

of an (n− 1)-cell circular array. For the later case, since the tile covering array
position n does not cover position 1, by cutting the array between cells n and

1, we obtain one of the rsn = (n+1)!
2 colored tilings of Theorem 2. Since these

cases are mutually exclusive, we conclude that csn =

n∑
k=2

k!

2
+

(n+ 1)!

2
=

n+1∑
k=2

k!

2

as desired.

While csn is new to OEIS, csn− csn−1 is given by A001710, which we saw
in Theorem 2 as the number of even permutations of size n+ 1. In other words,
csn corresponds to the number of even permutations of size at most n+ 1 (and
at least 2). We can see this as a corollary to the proof of Theorem 5 since, if we
consider the tile covering cell 1 and delete the i cells left of 1 (0 ≤ i ≤ n − 1)
that are covered with this tile, we obtain a tiling of an n− i cell circular array
where different tiles cover cell 1 and cell n − i. In this situation, the tiling is
equivalent via bijection g to a tiling counted by rsn−i, which we know to be in
bijection with the even permutations of size n− i+ 1, so after running over all
possible values of i, we have tilings in correspondence with all even permutations
of lengths between 2 and n+ 1 inclusive.
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