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Occasionally a new angle on an old question gives a new and beautiful perspec-
tive. This article shows a new occurrence of the Catalan numbers in a familiar
location – among permutations.

1 Catalan numbers

Our main characters are the Catalan numbers. The sequence begins:

1, 1, 2, 5, 14, 42, 132, . . .

The On-Line Encyclopedia of Integer Sequences [3], a database with hundreds of
thousands of mathematically-interesting sequences, says of the Catalan numbers
“This is probably the longest entry in the OEIS, and rightly so.” In fact,
there exists an entire book by Richard Stanley [8] that gives over 200 counting
problems whose answer is the Catalan numbers. For example: “how many ways
can we legally arrange n pairs of parentheses?” or “how many ways can a regular
(n + 2)-sided polygon be partitioned into n triangles?” are both answered by
“the nth Catalan number”.

While the Catalan numbers have a direct formula of Cn =

(
2n
n

)
n + 1

, they are

more easily recognized recursively. The Catalan numbers can be defined as
C0 = 1 and for n ≥ 1,

Cn =

n∑
i=1

Ci−1Cn−i.

To see how this recurrence matches the parentheses problem, consider a legal
arrangement of n pairs of parentheses, i.e., an arrangement of n left parenthe-
ses and n right parentheses such that there are always at least as many left
parentheses as right parentheses when reading from left to right. There is 1
way to arrange 0 pairs of parentheses (write nothing down!), which matches the
initial condition that C0 = 1. Now, for n ≥ 1, consider the first parenthesis. It
must be a left parenthesis, which matches with a right parenthesis later in the

1



arrangement. Further, everything between this pair must be a legal arrange-
ment of i − 1 parentheses pairs and everything after this pair must be a legal
arrangement of the remaining n − i parentheses pairs, as shown in Figure 1.
Summing over all possible values of i matches the recurrence.(

i− 1 pairs of parentheses
)

n− i pairs of parentheses

Figure 1: A generic legal parenthesis arrangement

2 Permutations

One of the many places the Catalan numbers have been sighted is in the context
of pattern-avoiding permutations. A permutation is a list where order matters.
We are interested in permutations of the digits 1, 2, . . . , n. For example, the
permutations of the digits 1, 2, and 3 are 123, 132, 213, 231, 312, and 321. A
pattern is a smaller permutation embedded in a larger permutation in a very
precise way. Consider, for example, the permutation p = 18274653. If, instead
of looking at all eight digits, we focus on the digits 8, 4, and 6, we notice that the
largest of these three digits comes first, the smallest of these digits comes second,
and the middle of the three digits comes last, just as in the permutation 312.
The digits 846 are called a 312 pattern inside p. More generally, permutation p
contains permutation q as a pattern if we can find |q| digits of p that appear in
the same relative order as the digits of q. We have already seen that permutation
p, above, contains 312. It also contains 123, 132, 231, and 321 (can you find the
examples?). On the other hand, p does not contain 213, so p is said to avoid
213.

Pattern-avoiding permutations have provided many delightful counting prob-
lems in recent decades. For example, the number of permutations that avoid
213 are counted by... the Catalan numbers! To see why, let the number of 213-
avoiding permutations be denoted by an. There there is 1 permutation of length
0 and it avoids 213, so a0 = 1. When we consider a 213-avoiding permutation of
length n ≥ 1, the digit 1 appears somewhere. Let’s suppose that it’s in position
i. The i− 1 digits before 1 must be all larger than the n− i digits after the 1;
otherwise we’ll have a 213 pattern using the actual digit 1 as the smallest digit
in the pattern. As long as we arrange the i− 1 digits before 1 in one of the ai−1

213-avoiding ways, and we arrange the n− i digits after the 1 in one of the an−i

213-avoiding ways, we’ll produce a length n permutation that itself avoids 213.
Summing over all possible locations for the digit 1 gives

an =

n∑
i=1

ai−1an−i,

which is exactly the Catalan recurrence.
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Even better, suppose q is a permutation of the digits 1, 2, and 3. No matter
what permutation you picked as q, it turns out the number of q-avoiding per-
mutations is given by the Catalan numbers! The arguments for avoiding 132,
231, or 312 are quite similar to our 213-avoiding argument above, while the
arguments for avoiding 123 and 321 tend to be more complex. However, there
are a plethora of bijections explaining this phenomenon. See [1] for a sampling
of them.

And yet, another Catalan example lurks. To see it, we need to switch context
to one of the oldest theorems that can be phrased in terms of permutation
patterns.

Theorem 1 (Erdős-Szekeres Theorem). Any permutation of length at least
(a − 1)(b − 1) + 1 either contains the increasing pattern 1 · · · (a − 1)a or the
decreasing pattern b(b− 1) · · · 1.

This theorem dates back to 1935 [2], long before mathematicians were think-
ing about pattern-avoiding permutations. There are many beautiful proofs of
it, including a particularly friendly and concise one by Seidenberg [7].

While the Erdős-Szekeres Theorem tells us that, for sufficiently long permu-
tations, it’s impossible to avoid both an increasing pattern of length a and a
decreasing pattern of length b, one might ask: what do the longest 1 · · · (a− 1)a
and b(b− 1) · · · 1 avoiders look like? In other words: how many permutations of
length (a − 1)(b − 1) avoid both of these patterns? Others have already asked
this question. For example, in the problem section of American Mathemati-
cal Monthly in 1969 [4] we see the case where a = b answered in detail. The
solver, Richard Stanley, author of the aforementioned Catalan Numbers text,
makes use of a famous bijection known as the Robinson-Schensted correspon-
dence that maps permutations of length n to pairs of standard Young tableaux
of the same shape [6]. A delightful expression known as the hook-length formula
[5] can then be used to enumerate these pairs of tableaux, giving not just the
solution to the a = b case, but all the values in Table 1 and more.

a\b 2 3 4 5
2 1
3 1 4
4 1 25 1764
5 1 196 213444 577152576

Table 1: Number of permutations of length (a−1)(b−1) avoiding both 1 · · · (a−
1)a and b(b− 1) · · · 1 for small a and b

This is all great mathematical infrastructure if you’ve delved deep into the
theory of pattern-avoiding permutations, but we wish to focus on a specific slice
of this larger story. Notice the numbers in the b = 3 column:

4, 25, 196, . . .
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While these aren’t Catalan numbers, they can be rewritten quite nicely as:

22, 52, 142, . . .

In other words, these values are Catalan numbers squared ! This isn’t new
information; these values are computed using techniques that have been around
for over 60 years. However, it’s still a lovely sequence hiding inside a larger
technical story. This allows us to ask: is there an explanation for this Catalan
appearance that doesn’t involve all the technical machinery, an explanation that
a newcomer to permutation patterns can enjoy?

It’s a tale as simple as pairs of parentheses. Well, make that pairs of paren-
theses arrangements. We know that there are Cn ways to legally arrange n
pairs of parentheses. That means there are (Cn)

2
ways to pick two pairs of legal

arrangements of n parentheses. We’ll use this information to bijectively prove
the following result:

Theorem 2. There are (Ca−1)
2

permutations of length 2(a−1) that avoid both
12 · · · a and 321.

Before we begin the proof, we need two friendly definitions.

Definition. Given permutation p, the digit pi is called a left-to-right maxima
if pi > pj for all j < i.

For example, in the permutation, p = 41256387, the left-to-right maxima
are p1 = 4, p4 = 5, p5 = 6, and p7 = 8. As the name suggests, when we read
the digits of p in order from left to right, a digit is a left-to-right maxima if it’s
the largest digit that’s been read so far.

Definition. Given permutation p, the inverse of p, denoted p−1, is the permu-
tation where pi = j if and only if

(
p−1
)
j

= i.

For example, the inverse of p = 41256387 is p−1 = 23614578. Notice that
in the inverse, the permutation values and the positions exchange roles. For a
visual interpretation, plot the points (i, pi) in the Cartesian plane and call this
the graph of p. Reflecting over the line y = x produces the graph of p−1. If p
avoids q, then by reflecting both the graphs of p and q over the line y = x, we
see that p−1 avoids q−1. For our particular proof, notice that 12 · · · a and 321
are their own inverses, and so, conveniently, if p avoids 12 · · · a and 321, then so
does p−1.

Proof. Consider a permutation p of length 2(a−1) that avoids both 12 · · · a and
321. Let A be the set of all values that are left-to-right maxima of p, and let B
be the set of all positions that are locations of left-to-right maxima of p.

We make the following observations. First, left-to-right maxima of p ap-
pear in increasing order by definition of left-to-right maxima. Further, the
members of {1, 2, . . . , 2(a − 1)} \ A appear in increasing order in p, because
otherwise the two decreasing digits, together with the right-most previous left-
to-right maxima would form a 321 pattern in p. As a consequence, |A| =
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|{1, 2, . . . , 2(a− 1)} \A| = a− 1, since otherwise one of the two sets would con-
tain a 12 · · · a pattern. This also implies that |B| = |{1, 2, . . . , 2(a− 1)} \B| =
a − 1. In summary, exactly half the digits of p are left-to-right maxima, and
exactly half are not. Each of these halves appears in increasing order within p.

We’ll now use the sets A and B to construct a pair of legal parentheses
arrangements. For the first set, construct a legal parentheses arrangement by
recording a right parenthesis in position i when i ∈ A, and a left parenthesis
otherwise. For the second set, construct a legal parentheses arrangement by
recording a left parenthesis in position i when i ∈ B, and a right parenthesis
otherwise.

To show these are legal parentheses arrangements, we need only show that
in each arrangement for any 1 ≤ i ≤ 2(a − 1), there are at least as many left
parentheses in the first i entries as there are right parentheses. Suppose, to the
contrary that there exists some point j where there are more right parentheses
than left in the second arrangement, coming from B and its complement. Then,
take the non-left-to-right maxima in the first j positions (encoded by right
parentheses) together with the left-to-right maxima after position j to get an
increasing subsequence of length longer than a − 1, which contradicts that p
avoids 12 · · · a.

Similarly, notice that if p avoids 12 · · · a and 321, then so does p−1. Since
the second parentheses arrangement for p−1 must be a legal arrangement, by
taking inverses, we see that the first parentheses arrangement for p must also
be legal, giving our bijection.

A quick example of this bijection in action is in order. According to our
theorem there are (C2)

2
permutations of length 4 avoiding both 123 and 321.

They are 2143, 2413, 3142, and 3412. Table 2 shows each of these permutations,
followed by their left-to-right-maxima values and left-to-right-maxima positions.
The final column shows the corresponding parentheses arrangement pair for each
permutation.

permutation left-to-right maxima positions parentheses pairs
2143 {2,4} {1,3} ()(), ()()
2413 {2,4} {1,2} ()(), (())
3412 {3,4} {1,2} (()), (())
3142 {3,4} {1,3} (()), ()()

Table 2: Small examples of the permutation to parentheses bijection

As an even larger example, the permutation p = 31672485 avoids both 12345
and 321. Its left-to-right maxima are {3, 6, 7, 8} and they appear in positions
{1, 3, 4, 7}, so this permutation corresponds to the following pair of parentheses
arrangements:

(()(())), ()(())().
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