Warning, the protected name Chi has been redefined and unprotected There all together, 31, different equivalence classes For the equivalence class of patterns, {{[2, 3, 1], [3, 2, 1], [2, 1, 3, 4]}, {[3, 1, 2], [3, 2, 1], [1, 2, 4, 3]}, {[1, 2, 3], [1, 3, 2], [4, 3, 1, 2]}, {[1, 2, 3], [2, 1, 3], [3, 4, 2, 1]}} the member , {[2, 3, 1], [3, 2, 1], [2, 1, 3, 4]}, has a scheme of depth , 5 here it is: [[[], {}, {}], [[1], {[1, 3]}, {}], [[1, 2], {[1, 1, 0], [0, 2, 3]}, {1}], [[1, 1], {[1, 2, 1], [1, 1, 2], [1, 0, 3], [1, 3, 0]}, {1, 2}], [[2, 1], {[0, 1, 3], [1, 1, 0]}, {}], [[2, 1, 1], {[0, 1, 2, 1], [0, 1, 1, 2], [0, 0, 1, 3], [0, 1, 3, 0], [1, 0, 1, 0]}, {2, 3}], [[3, 2, 1], {[0, 1, 1, 0]}, {1, 2, 3}], [[3, 1, 2], {[1, 1, 1, 0], [0, 1, 1, 3], [0, 2, 1, 0]}, {2}], [[2, 1, 2], {[1, 1, 0, 0], [0, 1, 2, 1], [0, 1, 1, 2], [0, 1, 0, 3], [0, 1, 3, 0]}, {3} ], [[2, 1, 3], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 1, 3, 0], [0, 2, 1, 0]}, {}], [[2, 1, 3, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 2], { [0, 1, 0, 3, 0], [1, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 1], [0, 2, 0, 1, 0]}, {4}], [[2, 1, 3, 3], {[0, 1, 3, 0, 0], [1, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 1, 1, 0, 1], [0, 2, 1, 0, 0]}, {3, 4}], [[3, 1, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 4, 3], { [0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {}], [[2, 1, 4, 3, 1], {[0, 0, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 1, 4, 3, 5], %1, {1, 2, 3, 4, 5}], [[2, 1, 4, 3, 4], {[0, 1, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[2, 1, 4, 3, 3], {[0, 1, 2, 0, 1, 0], [0, 2, 1, 0, 1, 0], [0, 1, 1, 0, 2, 0], [0, 1, 1, 1, 1, 0], [1, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1]}, {4, 5}], [[2, 1, 5, 3, 4], %1, {1, 2, 3, 4, 5}], [[3, 1, 5, 4, 2], %1, {1, 2, 3, 4, 5}], [[2, 1, 4, 3, 2], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 1, 5, 4, 3], %1, {1, 2, 3, 4, 5}], [[3, 2, 5, 4, 1], %1, {1, 2, 3, 4, 5}]] %1 := {[0, 1, 1, 1, 1, 0]} Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 7, 10, 13, 16, 19, 22, 25] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 24, 59, 106, 165, 236, 319, 414, 521] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 148, 484, 1090, 2047, 3436] For the equivalence class of patterns, {{[1, 3, 2], [3, 1, 2], [2, 3, 4, 1]}, {[1, 3, 2], [3, 1, 2], [3, 2, 1, 4]}, {[2, 1, 3], [2, 3, 1], [1, 4, 3, 2]}, {[2, 1, 3], [2, 3, 1], [4, 1, 2, 3]}} the member , {[1, 3, 2], [3, 1, 2], [2, 3, 4, 1]}, has a scheme of depth , 5 here it is: [[[], {}, {}], [[1], {}, {}], [[1, 1], {}, {1, 2}], [[1, 2], {[0, 2, 0]}, {}], [[2, 1], {[0, 2, 0]}, {}], [[1, 2, 1], {[0, 0, 2, 0], [0, 2, 1, 0]}, {3}], [[1, 3, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [[1, 2, 2], {[0, 2, 0, 0]}, {2, 3}], [[1, 2, 3], {[1, 1, 1, 0], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[2, 3, 1], {[0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[3, 1, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 1, 2], {[0, 2, 0, 0]}, {1}], [[2, 1, 1], {[0, 0, 2, 0], [0, 2, 1, 0]}, {2, 3}], [[2, 1, 3], {[0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[3, 2, 1], {[0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[1, 2, 3, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 3], {[1, 1, 1, 0, 0], [0, 1, 2, 0, 0], [0, 2, 1, 0, 0]}, {3, 4}] , [[1, 3, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 1], {[1, 0, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 2, 1, 0], [0, 0, 1, 2, 0]}, {1, 4}], [[1, 2, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 4], %6, {}], [[2, 1, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 1], %4, {2, 4}], [[2, 1, 3, 3], {[0, 1, 2, 0, 0], [0, 2, 1, 0, 0]}, {3, 4}], [[3, 1, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 4, 1], %5, {1, 2}], [[2, 1, 3, 4], %6, {}], [[2, 3, 1, 3], {[0, 1, 2, 0, 0], [0, 2, 1, 0, 0]}, {2, 4}], [[3, 4, 1, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 4, 1, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 1, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 1, 1], %4, {3, 4}], [[3, 4, 2, 1], %5, {3}], [[2, 3, 1, 4], %6, {}], [[3, 2, 1, 4], %5, {1, 2}], [[4, 2, 1, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 1, 3], {[0, 1, 2, 0, 0], [0, 2, 1, 0, 0]}, {1}], [[4, 3, 2, 1], %5, {2, 3}], [[4, 3, 1, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 1, 1], %4, {3, 4}], [[3, 2, 1, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 4, 5, 2], %2, {1, 2, 3, 4, 5}], [[1, 2, 3, 5, 4], %2, {1, 2, 3, 4, 5}], [[1, 2, 4, 5, 3], %2, {1, 2, 3, 4, 5}], [[1, 2, 3, 4, 4], %3, {4, 5}], [[1, 2, 3, 4, 3], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 2, 3, 4, 1], {[0, 0, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 3, 4, 5, 1], %2, {1, 2, 3, 4, 5}], [[1, 2, 3, 4, 2], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 2, 3, 4, 5], %1, {1, 2, 3, 4}], [[2, 1, 4, 5, 3], %2, {1, 2, 3, 4, 5}], [[3, 1, 4, 5, 2], %2, {1, 2, 3, 4, 5}], [[2, 1, 3, 4, 3], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 1, 3, 4, 5], %1, {1, 2, 3, 4}], [[3, 2, 4, 5, 1], %2, {1, 2, 3, 4, 5}], [[2, 1, 3, 4, 4], %3, {4, 5}], [[2, 1, 3, 4, 2], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 1, 3, 4, 1], {[0, 0, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 1, 3, 5, 4], %2, {1, 2, 3, 4, 5}], [[2, 3, 1, 5, 4], %2, {1, 2, 3, 4, 5}], [[2, 3, 1, 4, 1], {[0, 0, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[3, 4, 1, 5, 2], %2, {1, 2, 3, 4, 5}], [[2, 3, 1, 4, 3], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 3, 1, 4, 4], %3, {4, 5}], [[3, 4, 2, 5, 1], %2, {1, 2, 3, 4, 5}], [[2, 4, 1, 5, 3], %2, {1, 2, 3, 4, 5}], [[2, 3, 1, 4, 2], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 3, 1, 4, 5], %1, {1, 2, 3, 4}]] %1 := {[0, 1, 2, 1, 1, 0], [0, 2, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [0, 1, 1, 2, 1, 0], [0, 1, 1, 1, 2, 0]} %2 := {[0, 1, 1, 1, 1, 0]} %3 := {[0, 2, 1, 1, 0, 0], [0, 1, 2, 1, 0, 0], [1, 1, 1, 1, 0, 0], [0, 1, 1, 2, 0, 0]} %4 := {[0, 1, 1, 1, 0], [0, 0, 2, 1, 0], [0, 0, 1, 2, 0]} %5 := {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 2, 0]} %6 := {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]} Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 7, 11, 16, 22, 29, 37, 46] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 24, 51, 95, 160, 250, 369, 521, 710] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 148, 367, 821, 1636, 2965] For the equivalence class of patterns, {{[1, 2, 3], [1, 3, 2], [4, 2, 1, 3]}, {[1, 2, 3], [2, 1, 3], [2, 4, 3, 1]}, {[3, 1, 2], [3, 2, 1], [1, 3, 4, 2]}, {[2, 3, 1], [3, 2, 1], [3, 1, 2, 4]}} the member , {[1, 2, 3], [2, 1, 3], [2, 4, 3, 1]}, has a scheme of depth , 2 here it is: [[[], {}, {}], [[1], {[1, 2]}, {}], [[1, 1], {[1, 2, 0], [1, 0, 2], [1, 1, 1]}, {1, 2}], [[2, 1], {[0, 1, 1], [1, 3, 0]}, {1}], [[1, 2], {[1, 2, 0], [0, 1, 1]}, {2}]] Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 7, 12, 20, 33, 54, 88, 143] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 24, 83, 272, 872, 2773, 8790, 27832, 88087] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 148, 1060, 6780, 43679, 276783] For the equivalence class of patterns, { {[1, 2, 3], [3, 2, 1], [2, 1, 4, 3]}, {[1, 2, 3], [3, 2, 1], [3, 4, 1, 2]}} the member , {[1, 2, 3], [3, 2, 1], [2, 1, 4, 3]}, has a scheme of depth , 4 here it is: [[[], {}, {}], [[1], {[3, 0], [0, 3], [2, 2]}, {}], [[1, 1], {[2, 1, 1], [3, 0, 0], [0, 3, 0], [0, 2, 1], [0, 1, 2], [0, 0, 3], [2, 0, 2], [2, 2, 0] }, {1, 2}], [[1, 2], {[0, 3, 0], [0, 1, 1], [3, 1, 0], [2, 2, 0]}, {}], [[2, 1], {[0, 3, 0], [1, 1, 0], [0, 1, 2]}, {}], [[1, 2, 3], {[0, 1, 1, 0]}, {1, 2, 3}], [[1, 2, 2], {[0, 1, 1, 0], [0, 1, 0, 1], [3, 1, 0, 0], [2, 2, 0, 0], [0, 3, 0, 0]}, {2, 3}], [ [1, 2, 1], {[0, 1, 1, 0], [0, 0, 1, 1], [0, 0, 3, 0], [1, 0, 1, 0]}, {1, 3} ], [[1, 3, 2], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[2, 3, 1], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 1, 3, 0], [0, 3, 1, 0], [0, 2, 2, 0]}, {}] , [[3, 2, 1], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 1, 3], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 3, 1, 0], [0, 1, 2, 0]}, {1}], [ [2, 1, 2], {[1, 1, 0, 0], [0, 1, 1, 0], [0, 1, 0, 1], [0, 3, 0, 0]}, {1, 3} ], [[2, 1, 1], {[0, 1, 1, 1], [0, 0, 1, 2], [0, 0, 3, 0], [0, 2, 1, 0], [0, 1, 2, 0], [1, 0, 1, 0]}, {2, 3}], [[3, 1, 2], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[2, 4, 3, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 4, 3, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 4, 2, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 2, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 2, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 2, 2], %1, {3, 4}], [[1, 3, 2, 3], {[0, 1, 1, 0, 0]}, {1, 2, 3, 4}], [[2, 3, 1, 2], %1, {1}], [ [3, 4, 1, 2], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {1, 2}], [[2, 4, 1, 3], { [0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {1, 3}], [[2, 3, 1, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 1, 3], {[0, 3, 1, 0, 0], [1, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 1, 2, 0, 0], [0, 1, 1, 0, 1]}, {1, 2, 4}], [[2, 3, 1, 1], { [0, 0, 3, 1, 0], [0, 0, 2, 2, 0], [0, 0, 1, 3, 0], [1, 0, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1]}, {3, 4}], [[3, 4, 2, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 3], {[0, 1, 1, 0, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 1, 3, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 2], %1, {3, 4}], [[4, 1, 2, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 2, 3, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}]] %1 := {[0, 1, 0, 2, 0], [1, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 1], [0, 2, 0, 1, 0]} Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 3, 0, 0, 0, 0, 0, 0] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 18, 7, 0, 0, 0, 0, 0, 0] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 80, 21, 0, 0, 0] For the equivalence class of patterns, {{[2, 3, 1], [3, 2, 1], [2, 1, 4, 3]}, {[1, 2, 3], [1, 3, 2], [3, 4, 1, 2]}, {[1, 2, 3], [2, 1, 3], [3, 4, 1, 2]}, {[3, 1, 2], [3, 2, 1], [2, 1, 4, 3]}} the member , {[2, 3, 1], [3, 2, 1], [2, 1, 4, 3]}, has a scheme of depth , 5 here it is: [[[], {}, {}], [[1], {}, {}], [[1, 1], {}, {1, 2}], [[1, 2], {[1, 1, 0]}, {1}], [[2, 1], {[1, 1, 0]}, {}], [[3, 2, 1], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 1, 2], {[1, 1, 0, 0]}, {3}], [[2, 1, 1], {[1, 0, 1, 0]}, {2, 3}], [[3, 1, 2], {[1, 1, 1, 0], [0, 2, 1, 0]}, {2}], [[2, 1, 3], {[1, 1, 1, 0], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[2, 1, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 3], {[1, 1, 1, 0, 0], [0, 1, 2, 0, 0], [0, 2, 1, 0, 0]}, {3, 4}] , [[2, 1, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 2], {[0, 1, 0, 2, 0], [0, 1, 2, 1, 0], [1, 1, 0, 1, 0], [0, 2, 0, 1, 0]}, {4}], [[2, 1, 3, 4], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {}], [[2, 1, 4, 5, 3], %1, {1, 2, 3, 4, 5}], [[2, 1, 3, 4, 5], { [0, 1, 2, 1, 1, 0], [0, 2, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [0, 1, 1, 2, 1, 0], [0, 1, 1, 1, 2, 0]}, {3, 4}], [[3, 1, 4, 5, 2], %1, {1, 2, 3, 4, 5}], [[2, 1, 3, 4, 3], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[3, 2, 4, 5, 1], %1, {1, 2, 3, 4, 5}], [[2, 1, 3, 4, 4], { [0, 2, 1, 1, 0, 0], [0, 1, 2, 1, 0, 0], [1, 1, 1, 1, 0, 0], [0, 1, 1, 2, 0, 0]}, {4, 5}], [[2, 1, 3, 4, 2], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 1, 3, 4, 1], {[0, 0, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 1, 3, 5, 4], %1, {1, 2, 3, 4, 5}]] %1 := {[0, 1, 1, 1, 1, 0]} Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 7, 11, 16, 22, 29, 37, 46] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 24, 59, 115, 196, 306, 449, 629, 850] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 148, 484, 1154, 2311, 4135] For the equivalence class of patterns, {{[1, 3, 2], [2, 3, 1], [2, 1, 3, 4]}, {[1, 3, 2], [2, 3, 1], [4, 3, 1, 2]}, {[2, 1, 3], [3, 1, 2], [1, 2, 4, 3]}, {[2, 1, 3], [3, 1, 2], [3, 4, 2, 1]}} the member , {[1, 3, 2], [2, 3, 1], [2, 1, 3, 4]}, has a scheme of depth , 4 here it is: [[[], {}, {}], [[1], {[1, 2]}, {}], [[1, 1], {[1, 2, 0], [1, 0, 2], [1, 1, 1]}, {1, 2}], [[2, 1], {[1, 2, 1], [0, 1, 2], [1, 3, 0]}, {}], [[1, 2], {[1, 1, 0], [0, 2, 0]}, {}], [[1, 3, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 3, 1], {[0, 1, 1, 0]}, {1, 2, 3}], [[1, 2, 1], {[0, 0, 2, 0], [0, 1, 1, 1], [0, 0, 1, 2], [0, 2, 1, 0], [1, 0, 1, 0]}, {1, 3}], [[1, 2, 2], {[1, 1, 0, 0], [0, 2, 0, 0]}, {2, 3}], [[1, 2, 3], {[1, 1, 1, 0], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[3, 1, 2], {[1, 1, 1, 0], [0, 1, 1, 2], [0, 2, 1, 0]}, {1}], [[2, 1, 1], { [1, 1, 1, 0], [0, 1, 1, 1], [0, 0, 1, 2], [1, 0, 2, 1], [1, 0, 3, 0], [0, 1, 2, 0]}, {2, 3}], [[2, 1, 2], {[1, 1, 0, 0], [0, 2, 0, 0], [0, 1, 1, 1], [0, 1, 0, 2], [0, 1, 2, 0]}, {1, 3}], [[3, 2, 1], {[1, 3, 1, 0], [1, 2, 2, 0], [1, 2, 1, 1], [0, 1, 2, 1], [0, 1, 1, 2], [0, 1, 3, 0]}, {1}], [[2, 1, 3], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[1, 2, 3, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 3], {[1, 1, 1, 0, 0], [0, 1, 2, 0, 0], [0, 2, 1, 0, 0]}, {3, 4}] , [[1, 3, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 4], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {1, 2, 3}], [[2, 1, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 3], {[1, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 1, 2, 0, 0], [0, 1, 1, 0, 1], [0, 2, 1, 0, 0]}, {3, 4}], [[2, 1, 3, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}]] Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 7, 11, 16, 22, 29, 37, 46] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 18, 34, 54, 78, 106, 138, 174, 214] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 80, 149, 227, 314, 410] For the equivalence class of patterns, {{[1, 2, 3], [2, 3, 1], [1, 4, 3, 2]}, {[2, 1, 3], [3, 2, 1], [4, 1, 2, 3]}, {[1, 2, 3], [3, 1, 2], [3, 2, 1, 4]}, {[1, 3, 2], [3, 2, 1], [2, 3, 4, 1]}} the member , {[1, 2, 3], [3, 1, 2], [3, 2, 1, 4]}, has a scheme of depth , 5 here it is: [[[], {}, {}], [[1], {}, {}], [[1, 1], {}, {1, 2}], [[2, 1], {[0, 2, 0]}, {}], [[1, 2], {[0, 1, 1]}, {}], [[1, 2, 3], {[0, 1, 1, 0]}, {1, 2, 3}], [[1, 2, 1], {[0, 1, 1, 0], [0, 0, 2, 0], [0, 0, 1, 1]}, {1, 3}], [[1, 2, 2], {[0, 1, 1, 0], [0, 1, 0, 1]}, {2, 3}], [[2, 3, 1], {[0, 1, 1, 1], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[1, 3, 2], {[0, 1, 1, 1], [0, 1, 2, 0]}, {}], [[3, 1, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 1, 1], {[0, 0, 2, 0], [0, 2, 1, 0]}, {2, 3}], [[2, 1, 2], {[0, 2, 0, 0], [0, 1, 1, 0], [0, 1, 0, 1]}, {1, 3}], [[2, 1, 3], {[0, 1, 1, 1], [0, 2, 1, 0]}, {}], [[3, 2, 1], {[0, 1, 1, 1], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[1, 3, 2, 2], {[0, 1, 0, 2, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 1]}, {3, 4}] , [[1, 4, 2, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 4, 3, 2], {[0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [0, 1, 1, 2, 0]}, {2, 3}] , [[1, 3, 2, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 2, 3], {[0, 1, 1, 0, 0]}, {1, 2, 3, 4}], [[1, 3, 2, 1], %8, {}], [[2, 4, 3, 1], %7, {}], [[2, 1, 3, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 3], {[0, 1, 1, 1, 0], [0, 1, 1, 0, 1], [0, 2, 1, 0, 0]}, {3, 4}] , [[2, 1, 3, 1], %8, {2}], [[2, 1, 4, 3], {[0, 2, 1, 1, 0], [0, 1, 1, 1, 1], [0, 1, 1, 2, 0]}, {1, 2}] , [[3, 1, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 2], {[0, 1, 0, 2, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 1], [0, 2, 0, 1, 0]}, {1}], [[3, 2, 4, 1], %7, {}], [[3, 4, 1, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 4, 1, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 1, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 1, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 1, 3], {[0, 1, 1, 1, 0], [0, 1, 2, 0, 0], [0, 1, 1, 0, 1], [0, 2, 1, 0, 0]}, {4}], [[2, 3, 1, 1], %8, {3, 4}], [[3, 4, 2, 1], %7, {}], [[4, 2, 1, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 1, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 1, 1], %8, {3, 4}], [[4, 3, 1, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 1, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 1, 3], {[0, 1, 1, 1, 0], [0, 1, 2, 0, 0], [0, 1, 1, 0, 1], [0, 2, 1, 0, 0]}, {4}], [[4, 3, 2, 1], %7, {}], [[2, 4, 3, 1, 5], %3, {1, 2, 3, 4, 5}], [[2, 4, 3, 1, 3], %5, {1, 2, 3, 4, 5}], [[3, 5, 4, 2, 1], %4, {1, 2, 3, 4}], [[2, 4, 3, 1, 1], %2, {4, 5}], [[2, 5, 4, 1, 3], %3, {1, 2, 3, 4, 5}], [[2, 4, 3, 1, 4], %6, {1, 2, 3, 4, 5}], [[3, 5, 4, 1, 2], %3, {1, 2, 3, 4, 5}], [[2, 5, 3, 1, 4], %3, {1, 2, 3, 4, 5}], [[2, 4, 3, 1, 2], %1, {1, 2, 3, 4, 5}], [[3, 2, 4, 1, 5], %3, {1, 2, 3, 4, 5}], [[3, 2, 5, 1, 4], %3, {1, 2, 3, 4, 5}], [[4, 3, 5, 1, 2], %3, {1, 2, 3, 4, 5}], [[3, 2, 4, 1, 2], %1, {1, 2, 3, 4, 5}], [[4, 3, 5, 2, 1], %4, {1, 2, 3, 4}], [[3, 2, 4, 1, 1], %2, {4, 5}], [[4, 2, 5, 1, 3], %3, {1, 2, 3, 4, 5}], [[3, 2, 4, 1, 4], %6, {1, 2, 3, 4, 5}], [[3, 2, 4, 1, 3], %5, {1, 2, 3, 4, 5}], [[4, 5, 3, 1, 2], %3, {1, 2, 3, 4, 5}], [[4, 5, 3, 2, 1], %4, {1, 2, 3, 4}], [[3, 4, 2, 1, 1], %2, {4, 5}], [[3, 5, 2, 1, 4], %3, {1, 2, 3, 4, 5}], [[3, 4, 2, 1, 5], %3, {1, 2, 3, 4, 5}], [[4, 5, 2, 1, 3], %3, {1, 2, 3, 4, 5}], [[3, 4, 2, 1, 2], %1, {1, 2, 3, 4, 5}], [[3, 4, 2, 1, 3], %5, {1, 2, 3, 4, 5}], [[3, 4, 2, 1, 4], %6, {1, 2, 3, 4, 5}], [[4, 3, 2, 1, 5], %3, {1, 2, 3, 4, 5}], [[5, 3, 2, 1, 4], %3, {1, 2, 3, 4, 5}], [[4, 3, 2, 1, 4], %6, {1, 2, 3, 4, 5}], [[5, 4, 2, 1, 3], %3, {1, 2, 3, 4, 5}], [[4, 3, 2, 1, 3], %5, {1, 2, 3, 4, 5}], [[5, 4, 3, 2, 1], %4, {1, 2, 3, 4}], [[5, 4, 3, 1, 2], %3, {1, 2, 3, 4, 5}], [[4, 3, 2, 1, 1], %2, {4, 5}], [[4, 3, 2, 1, 2], %1, {1, 2, 3, 4, 5}], [[1, 4, 3, 1, 2], {[0, 0, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 4, 3, 2, 1], {[0, 1, 1, 1, 1, 0], [0, 2, 0, 1, 1, 0], [0, 1, 0, 2, 1, 0], [0, 1, 0, 1, 2, 0], [0, 1, 0, 1, 1, 1]}, {1, 4}], [[1, 3, 2, 1, 1], { [0, 0, 0, 1, 1, 1], [0, 0, 1, 1, 1, 0], [0, 0, 0, 1, 2, 0], [0, 0, 0, 2, 1, 0], [0, 1, 0, 1, 1, 0]}, {4, 5}], [[1, 3, 2, 1, 2], {[0, 0, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 3, 2, 1, 4], {[0, 0, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 4, 2, 1, 3], {[0, 0, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 3, 2, 1, 3], {[0, 0, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}]] %1 := {[0, 1, 0, 1, 1, 0]} %2 := {[0, 0, 1, 1, 2, 0], [0, 1, 1, 1, 1, 0], [0, 0, 2, 1, 1, 0], [0, 0, 1, 2, 1, 0], [0, 0, 1, 1, 1, 1]} %3 := {[0, 1, 1, 1, 1, 0]} %4 := {[0, 1, 2, 1, 1, 0], [0, 2, 1, 1, 1, 0], [0, 1, 1, 2, 1, 0], [0, 1, 1, 1, 1, 1], [0, 1, 1, 1, 2, 0]} %5 := {[0, 1, 1, 0, 1, 0]} %6 := {[0, 1, 1, 1, 0, 0]} %7 := {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [0, 1, 1, 2, 0]} %8 := {[0, 1, 1, 1, 0], [0, 0, 2, 1, 0], [0, 0, 1, 1, 1], [0, 0, 1, 2, 0]} Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 6, 8, 10, 12, 14, 16, 18] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 19, 25, 31, 37, 43, 49, 55, 61] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 93, 105, 117, 129, 141] For the equivalence class of patterns, {{[1, 2, 3], [1, 3, 2], [3, 2, 4, 1]}, {[1, 2, 3], [2, 1, 3], [4, 1, 3, 2]}, {[3, 1, 2], [3, 2, 1], [2, 3, 1, 4]}, {[2, 3, 1], [3, 2, 1], [1, 4, 2, 3]}} the member , {[1, 2, 3], [1, 3, 2], [3, 2, 4, 1]}, has a scheme of depth , 5 here it is: [[[], {}, {}], [[1], {[0, 2]}, {}], [[1, 1], {[0, 2, 0], [0, 1, 1], [0, 0, 2]}, {1, 2}], [[1, 2], {[0, 2, 0], [0, 1, 1]}, {2}], [[2, 1], {[0, 3, 0], [0, 2, 1], [0, 1, 2]}, {}], [[3, 1, 2], {[0, 1, 1, 1], [0, 2, 1, 0], [0, 1, 2, 0]}, {1}], [[2, 1, 2], {[0, 2, 0, 0], [0, 1, 1, 0], [0, 1, 0, 1]}, {1, 3}], [ [2, 1, 1], {[0, 1, 1, 0], [0, 0, 2, 1], [0, 0, 1, 2], [0, 0, 3, 0]}, {2, 3} ], [[2, 1, 3], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 2, 1, 0], [0, 1, 2, 0]}, {1}], [[3, 2, 1], {[0, 2, 1, 1], [0, 1, 2, 1], [0, 1, 1, 2], [0, 1, 3, 0], [0, 3, 1, 0], [0, 2, 2, 0]}, {}], [[3, 2, 1, 3], {[1, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 1, 2, 0, 0], [0, 1, 1, 0, 1], [0, 2, 1, 0, 0]}, {1, 2} ], [[3, 2, 1, 2], {[0, 1, 0, 2, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 1], [0, 2, 0, 1, 0]}, {1, 2}], [[4, 3, 2, 1], {[0, 1, 1, 1, 2], [0, 1, 3, 1, 0], [0, 3, 1, 1, 0], [0, 2, 2, 1, 0], [0, 2, 1, 2, 0], [0, 1, 2, 2, 0], [0, 1, 1, 3, 0], [0, 2, 1, 1, 1], [0, 1, 2, 1, 1], [0, 1, 1, 2, 1]}, {1}], [[3, 2, 1, 1], { [0, 0, 1, 1, 2], [0, 0, 3, 1, 0], [0, 0, 2, 2, 0], [0, 0, 1, 3, 0], [0, 1, 1, 1, 0], [0, 0, 2, 1, 1], [0, 0, 1, 2, 1]}, {3, 4}], [[4, 3, 1, 2], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [0, 1, 1, 2, 0]}, {1, 2}], [[4, 2, 1, 3], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {1, 2}], [[3, 2, 1, 4], { [0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {}], [[3, 2, 1, 4, 3], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[3, 2, 1, 4, 2], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[3, 2, 1, 4, 5], %1, {1, 2, 3, 4, 5}], [[3, 2, 1, 5, 4], %1, {1, 2, 3, 4, 5}], [[4, 3, 2, 5, 1], %1, {1, 2, 3, 4, 5}], [[4, 3, 1, 5, 2], %1, {1, 2, 3, 4, 5}], [[3, 2, 1, 4, 1], {[0, 0, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[3, 2, 1, 4, 4], {[0, 2, 1, 1, 0, 0], [0, 1, 2, 1, 0, 0], [0, 1, 1, 1, 1, 0], [1, 1, 1, 1, 0, 0], [0, 1, 1, 2, 0, 0], [0, 1, 1, 1, 0, 1]}, {4, 5}], [[4, 2, 1, 5, 3], %1, {1, 2, 3, 4, 5}]] %1 := {[0, 1, 1, 1, 1, 0]} Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 7, 12, 20, 33, 54, 88, 143] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 24, 70, 232, 722, 2304, 7266, 23028, 72818] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 148, 813, 5479, 33781, 217538] For the equivalence class of patterns, {{[2, 3, 1], [3, 2, 1], [1, 2, 3, 4]}, {[1, 2, 3], [1, 3, 2], [4, 3, 2, 1]}, {[1, 2, 3], [2, 1, 3], [4, 3, 2, 1]}, {[3, 1, 2], [3, 2, 1], [1, 2, 3, 4]}} the member , {[2, 3, 1], [3, 2, 1], [1, 2, 3, 4]}, has a scheme of depth , 5 here it is: [[[], {}, {}], [[1], {[2, 3], [3, 1], [0, 5], [4, 0]}, {}], [[1, 1], { [0, 1, 4], [0, 0, 5], [2, 3, 0], [0, 5, 0], [2, 2, 1], [0, 4, 1], [3, 0, 1], [3, 1, 0], [4, 0, 0], [2, 1, 2], [0, 3, 2], [2, 0, 3], [0, 2, 3]}, {1, 2}], [[1, 2], {[0, 1, 3], [1, 1, 0], [0, 3, 1], [0, 4, 0]}, {}], [[2, 1], {[1, 1, 0], [0, 3, 1], [0, 4, 0], [0, 2, 3]}, {}], [[2, 3, 1], {[0, 1, 1, 0]}, {1, 2, 3}], [[1, 2, 2], {[1, 1, 0, 0], [0, 3, 0, 1], [0, 1, 2, 1], [0, 1, 1, 2], [0, 1, 0, 3], [0, 1, 3, 0], [0, 3, 1, 0], [0, 4, 0, 0]}, {2, 3}], [[1, 2, 1], {[0, 1, 2, 1], [0, 0, 3, 1], [0, 1, 1, 2], [0, 0, 1, 3], [0, 1, 3, 0], [0, 3, 1, 0], [0, 0, 4, 0], [1, 0, 1, 0]}, {3}], [[1, 2, 3], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 1, 3, 0], [0, 2, 1, 0]}, {}], [[1, 3, 2], {[1, 1, 1, 0], [0, 1, 1, 3], [0, 1, 2, 1], [0, 1, 3, 0], [0, 2, 1, 0]}, {}] , [[3, 2, 1], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 1, 1], {[0, 2, 3, 0], [0, 2, 2, 1], [0, 2, 1, 2], [0, 1, 2, 2], [0, 1, 1, 3], [0, 0, 2, 3], [0, 0, 3, 1], [0, 3, 1, 0], [0, 0, 4, 0], [1, 0, 1, 0]}, {2, 3}], [ [2, 1, 2], {[1, 1, 0, 0], [0, 3, 0, 1], [0, 1, 2, 1], [0, 1, 1, 2], [0, 1, 0, 3], [0, 1, 3, 0], [0, 3, 1, 0], [0, 4, 0, 0]}, {1}], [[2, 1, 3], {[0, 1, 3, 1], [1, 1, 1, 0], [0, 1, 4, 0], [0, 1, 1, 3], [0, 2, 1, 0]}, {}] , [[3, 1, 2], {[1, 1, 1, 0], [0, 1, 1, 3], [0, 1, 2, 1], [0, 1, 3, 0], [0, 2, 1, 0]}, {}] , [[1, 2, 3, 2], {[0, 1, 0, 3, 0], [1, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 1], [0, 2, 0, 1, 0]}, {2, 4}], [[1, 3, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 3], %7, {3, 4}], [[1, 2, 3, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 4, 3], %5, {}], [[2, 4, 3, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 4, 3, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 2, 3], %7, {2, 4}], [[1, 3, 2, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 2, 2], %8, {3, 4}], [[1, 4, 2, 3], %5, {}], [[1, 3, 2, 4], %6, {}], [[2, 1, 3, 4], %6, {1, 2}], [[2, 1, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 2], %8, {1}], [ [2, 1, 4, 3], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [1, 1, 1, 1, 0], [0, 1, 1, 3, 0], [0, 1, 1, 2, 1]}, {1, 2}], [[2, 1, 3, 3], { [0, 1, 1, 1, 2], [0, 1, 1, 0, 3], [1, 1, 1, 0, 0], [0, 1, 3, 1, 0], [0, 2, 1, 0, 0], [0, 1, 4, 0, 0], [0, 1, 1, 3, 0], [0, 1, 1, 2, 1], [0, 1, 3, 0, 1]}, {3, 4}], [[3, 1, 2, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 1, 3, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 2], %8, {3, 4}], [[4, 2, 3, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 3], %7, {1, 4}], [[3, 1, 2, 4], %6, {}], [[4, 1, 2, 3], %5, {}], [[1, 2, 5, 3, 4], %3, {1, 2, 3, 4, 5}], [[1, 2, 4, 3, 4], {[0, 1, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[2, 3, 5, 4, 1], %3, {1, 2, 3, 4, 5}], [[1, 2, 4, 3, 5], %3, {1, 2, 3, 4, 5}], [[1, 2, 5, 4, 3], %3, {1, 2, 3, 4, 5}], [[1, 2, 4, 3, 2], %4, {1, 2, 3, 4, 5}], [[1, 2, 4, 3, 3], %1, {4, 5}], [[1, 3, 5, 4, 2], %3, {1, 2, 3, 4, 5}], [[1, 2, 4, 3, 1], %2, {1, 2, 3, 4, 5}], [[1, 3, 2, 4, 3], %1, {2}], [ [1, 3, 2, 4, 4], {[0, 1, 1, 3, 0, 0], [0, 2, 1, 1, 0, 0], [0, 1, 2, 1, 0, 0], [0, 1, 1, 1, 1, 0], [1, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1]}, {4, 5}], [[1, 3, 2, 5, 4], {[0, 1, 2, 1, 1, 0], [0, 2, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [0, 1, 1, 2, 1, 0], [0, 1, 1, 1, 1, 1], [0, 1, 1, 1, 2, 0]}, {2, 3}], [[1, 4, 3, 5, 2], %3, {1, 2, 3, 4, 5}], [[2, 4, 3, 5, 1], %3, {1, 2, 3, 4, 5}], [[1, 4, 2, 5, 3], %3, {1, 2, 3, 4, 5}], [[1, 3, 2, 4, 1], %2, {1, 2, 3, 4, 5}], [[1, 3, 2, 4, 5], %3, {1, 2, 3, 4, 5}], [[1, 3, 2, 4, 2], %4, {1, 2, 3, 4, 5}], [[1, 4, 2, 3, 4], {[0, 1, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[1, 4, 2, 3, 3], %1, {4, 5}], [[1, 4, 2, 3, 5], %3, {1, 2, 3, 4, 5}], [[1, 5, 2, 3, 4], %3, {1, 2, 3, 4, 5}], [[2, 5, 3, 4, 1], %3, {1, 2, 3, 4, 5}], [[1, 4, 2, 3, 1], %2, {1, 2, 3, 4, 5}], [[1, 4, 2, 3, 2], %4, {1, 2, 3, 4, 5}], [[1, 5, 2, 4, 3], %3, {1, 2, 3, 4, 5}], [[1, 5, 3, 4, 2], %3, {1, 2, 3, 4, 5}], [[3, 1, 2, 4, 1], %2, {1, 2, 3, 4, 5}], [[3, 1, 2, 4, 4], { [0, 1, 1, 3, 0, 0], [0, 2, 1, 1, 0, 0], [0, 1, 2, 1, 0, 0], [0, 1, 1, 1, 1, 0], [1, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1]}, {4, 5}], [[4, 1, 2, 5, 3], %3, {1, 2, 3, 4, 5}], [[3, 1, 2, 5, 4], { [0, 1, 2, 1, 1, 0], [0, 2, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [0, 1, 1, 2, 1, 0], [0, 1, 1, 1, 1, 1], [0, 1, 1, 1, 2, 0]}, {1}], [[3, 1, 2, 4, 5], %3, {1, 2, 3, 4, 5}], [[4, 2, 3, 5, 1], %3, {1, 2, 3, 4, 5}], [[3, 1, 2, 4, 2], %4, {1, 2, 3, 4, 5}], [[3, 1, 2, 4, 3], %1, {1}], [[4, 1, 3, 5, 2], %3, {1, 2, 3, 4, 5}], [[4, 1, 2, 3, 5], %3, {1, 2, 3, 4, 5}], [[4, 1, 2, 3, 2], %4, {1, 2, 3, 4, 5}], [[5, 2, 3, 4, 1], %3, {1, 2, 3, 4, 5}], [[5, 1, 2, 4, 3], %3, {1, 2, 3, 4, 5}], [[5, 1, 3, 4, 2], %3, {1, 2, 3, 4, 5}], [[5, 1, 2, 3, 4], %3, {1, 2, 3, 4, 5}], [[4, 1, 2, 3, 1], %2, {1, 2, 3, 4, 5}], [[4, 1, 2, 3, 3], %1, {4, 5}], [[4, 1, 2, 3, 4], {[0, 1, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}]] %1 := {[0, 1, 2, 0, 1, 0], [0, 2, 1, 0, 1, 0], [0, 1, 1, 0, 2, 0], [0, 1, 1, 1, 1, 0], [1, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1]} %2 := {[0, 0, 1, 1, 1, 0]} %3 := {[0, 1, 1, 1, 1, 0]} %4 := {[0, 1, 0, 1, 1, 0]} %5 := {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]} %6 := {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 3, 0]} %7 := {[0, 1, 3, 0, 0], [1, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 1, 1, 0, 1], [0, 2, 1, 0, 0]} %8 := {[0, 1, 0, 1, 3], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [0, 1, 1, 2, 0], [0, 1, 0, 3, 0], [1, 1, 0, 1, 0], [0, 2, 0, 1, 0], [0, 1, 0, 2, 1]} Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 7, 5, 1, 0, 0, 0, 0] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 24, 40, 15, 1, 0, 0, 0, 0] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 148, 207, 45, 1, 0] For the equivalence class of patterns, {{[2, 3, 1], [3, 2, 1], [1, 3, 2, 4]}, {[1, 2, 3], [1, 3, 2], [4, 2, 3, 1]}, {[3, 1, 2], [3, 2, 1], [1, 3, 2, 4]}, {[1, 2, 3], [2, 1, 3], [4, 2, 3, 1]}} the member , {[2, 3, 1], [3, 2, 1], [1, 3, 2, 4]}, has a scheme of depth , 4 here it is: [[[], {}, {}], [[1], {}, {}], [[1, 1], {}, {1, 2}], [[2, 1], {[1, 1, 0]}, {}], [[1, 2], {[0, 2, 1], [1, 1, 0]}, {}], [[2, 3, 1], {[0, 1, 1, 0]}, {1, 2, 3}], [[1, 2, 2], {[1, 1, 0, 0], [0, 2, 0, 1], [0, 2, 1, 0]}, {2, 3}], [[1, 2, 1], {[0, 0, 2, 1], [0, 2, 1, 0], [1, 0, 1, 0]}, {1, 3}], [[1, 3, 2], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 2, 1, 0]}, {1}], [[1, 2, 3], {[1, 1, 1, 0], [0, 1, 2, 1], [0, 2, 1, 0]}, {}], [[3, 2, 1], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 1, 1], {[1, 0, 1, 0]}, {2, 3}], [[2, 1, 2], {[1, 1, 0, 0], [0, 2, 0, 1], [0, 2, 1, 0]}, {1, 3}], [[3, 1, 2], {[1, 1, 1, 0], [0, 2, 1, 0]}, {}], [[2, 1, 3], {[1, 1, 1, 0], [0, 1, 2, 1], [0, 2, 1, 0]}, {}], [[1, 3, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 3], %2, {3, 4}], [[1, 2, 3, 4], %1, {1, 2}], [[1, 2, 3, 2], {[1, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 1], [0, 2, 0, 1, 0]}, {1, 2, 4}], [[1, 2, 4, 3], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0]}, {1, 2}], [[2, 1, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 3], %2, {3, 4}], [[3, 2, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 2], {[1, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 1], [0, 2, 0, 1, 0]}, {1, 2, 4}], [[2, 1, 4, 3], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0]}, {1, 2}], [[2, 1, 3, 4], %1, {1, 2}], [[3, 1, 2, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 1, 3, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 3], %2, {1}], [[4, 1, 2, 3], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [1, 1, 1, 1, 0]}, {2, 3}] , [[4, 2, 3, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 4], %1, {2, 3}], [[3, 1, 2, 2], {[1, 1, 0, 1, 0], [0, 2, 0, 1, 0]}, {3, 4}]] %1 := {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [1, 1, 1, 1, 0], [0, 1, 1, 2, 1]} %2 := {[0, 1, 2, 0, 1], [0, 1, 2, 1, 0], [1, 1, 1, 0, 0], [0, 2, 1, 0, 0]} Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 7, 11, 16, 22, 29, 37, 46] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 24, 70, 152, 278, 456, 694, 1000, 1382] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 148, 813, 2636, 6319, 12645] For the equivalence class of patterns, { {[2, 3, 1], [3, 1, 2], [2, 1, 4, 3]}, {[1, 3, 2], [2, 1, 3], [3, 4, 1, 2]}} the member , {[2, 3, 1], [3, 1, 2], [2, 1, 4, 3]}, has a scheme of depth , 5 here it is: [[[], {}, {}], [[1], {}, {}], [[1, 1], {}, {1, 2}], [[1, 2], {[1, 1, 0]}, {1}], [[2, 1], {[0, 2, 0]}, {}], [[3, 1, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 1, 1], {[0, 0, 2, 0], [0, 2, 1, 0]}, {2, 3}], [[2, 1, 2], {[1, 1, 0, 0], [0, 2, 0, 0]}, {3}], [[3, 2, 1], {[0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[2, 1, 3], {[1, 1, 1, 0], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[2, 1, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 3], {[1, 1, 1, 0, 0], [0, 1, 2, 0, 0], [0, 2, 1, 0, 0]}, {3, 4}] , [[2, 1, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 2], {[0, 1, 0, 2, 0], [0, 1, 2, 1, 0], [1, 1, 0, 1, 0], [0, 2, 0, 1, 0]}, {4}], [[2, 1, 3, 4], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {}], [[4, 2, 1, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 3, 2, 1], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 2, 0]}, {2, 3}] , [[4, 3, 1, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 1, 1], {[0, 1, 1, 1, 0], [0, 0, 2, 1, 0], [0, 0, 1, 2, 0]}, {3, 4}] , [[3, 2, 1, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 1, 4], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {}], [[3, 2, 1, 3], {[1, 1, 1, 0, 0], [0, 1, 2, 0, 0], [0, 2, 1, 0, 0]}, {}], [[2, 1, 4, 5, 3], %1, {1, 2, 3, 4, 5}], [[2, 1, 3, 4, 5], { [0, 1, 2, 1, 1, 0], [0, 2, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [0, 1, 1, 2, 1, 0], [0, 1, 1, 1, 2, 0]}, {3, 4}], [[3, 1, 4, 5, 2], %1, {1, 2, 3, 4, 5}], [[2, 1, 3, 4, 3], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[3, 2, 4, 5, 1], %1, {1, 2, 3, 4, 5}], [[2, 1, 3, 4, 4], { [0, 2, 1, 1, 0, 0], [0, 1, 2, 1, 0, 0], [1, 1, 1, 1, 0, 0], [0, 1, 1, 2, 0, 0]}, {4, 5}], [[2, 1, 3, 4, 2], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 1, 3, 4, 1], {[0, 0, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 1, 3, 5, 4], %1, {1, 2, 3, 4, 5}], [[3, 2, 1, 4, 3], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[3, 2, 1, 4, 4], {[0, 2, 1, 1, 0, 0], [0, 1, 2, 1, 0, 0], [1, 1, 1, 1, 0, 0], [0, 1, 1, 2, 0, 0]}, {4, 5}], [[3, 2, 1, 4, 2], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[3, 2, 1, 5, 4], %1, {1, 2, 3, 4, 5}], [[4, 3, 2, 5, 1], %1, {1, 2, 3, 4, 5}], [[3, 2, 1, 4, 5], { [0, 1, 2, 1, 1, 0], [0, 2, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [0, 1, 1, 2, 1, 0], [0, 1, 1, 1, 2, 0]}, {1, 2, 3, 4}], [[4, 3, 1, 5, 2], %1, {1, 2, 3, 4, 5}], [[3, 2, 1, 4, 1], {[0, 0, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[4, 2, 1, 5, 3], %1, {1, 2, 3, 4, 5}], [[4, 2, 1, 4, 3], {[0, 1, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[4, 3, 1, 4, 2], {[0, 1, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[3, 2, 1, 3, 3], {[0, 2, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0], [0, 1, 2, 0, 0, 0]}, {4, 5}], [[3, 2, 1, 3, 1], {[0, 0, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[3, 2, 1, 3, 4], {[0, 1, 1, 2, 1, 0], [0, 1, 2, 0, 1, 0], [0, 2, 1, 0, 1, 0], [0, 1, 1, 0, 2, 0], [1, 1, 1, 0, 1, 0]}, {1, 4}], [[3, 2, 1, 3, 2], {[0, 1, 0, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[4, 3, 2, 4, 1], {[0, 1, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}]] %1 := {[0, 1, 1, 1, 1, 0]} Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 7, 11, 16, 22, 29, 37, 46] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 19, 36, 57, 82, 111, 144, 181, 222] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 93, 175, 266, 366, 475] For the equivalence class of patterns, {{[1, 3, 2], [2, 1, 3], [2, 3, 4, 1]}, {[1, 3, 2], [2, 1, 3], [4, 1, 2, 3]}, {[2, 3, 1], [3, 1, 2], [1, 4, 3, 2]}, {[2, 3, 1], [3, 1, 2], [3, 2, 1, 4]}} the member , {[1, 3, 2], [2, 1, 3], [2, 3, 4, 1]}, has a scheme of depth , 5 here it is: [[[], {}, {}], [[1], {[1, 2]}, {}], [[1, 1], {[1, 2, 0], [1, 0, 2], [1, 1, 1]}, {1, 2}], [[2, 1], {[0, 1, 1], [1, 3, 0]}, {1}], [[1, 2], {[0, 2, 0], [1, 1, 1]}, {}], [[1, 3, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [[1, 2, 2], {[0, 2, 0, 0], [1, 1, 1, 0], [1, 1, 0, 1]}, {2, 3}], [[1, 2, 1], {[0, 1, 1, 0], [0, 0, 2, 0], [0, 0, 1, 1]}, {1, 2, 3}], [[2, 3, 1], {[1, 3, 1, 0], [0, 1, 1, 1], [0, 1, 2, 0]}, {2}], [[1, 2, 3], {[1, 1, 1, 0], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[1, 2, 3, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 3], {[1, 1, 1, 0, 0], [0, 1, 2, 0, 0], [0, 2, 1, 0, 0]}, {3, 4}] , [[1, 3, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 4], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {}], [[1, 2, 3, 1], {[1, 0, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 2, 1, 0], [0, 0, 1, 1, 1], [0, 0, 1, 2, 0]}, {}], [[1, 2, 3, 1, 2], {[0, 0, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 2, 3, 1, 3], {[0, 0, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[1, 2, 3, 1, 4], %2, {1, 2, 3, 4, 5}], [[1, 2, 4, 1, 3], %2, {1, 2, 3, 4, 5}], [[2, 3, 4, 2, 1], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 3, 4, 1, 2], %2, {1, 2, 3, 4, 5}], [[1, 2, 3, 1, 1], { [0, 0, 0, 1, 1, 1], [0, 0, 1, 1, 1, 0], [0, 0, 0, 1, 2, 0], [0, 0, 0, 2, 1, 0], [1, 0, 0, 1, 1, 0], [0, 1, 0, 1, 1, 0]}, {4, 5}], [[1, 3, 4, 5, 2], %1, {1, 2, 3, 4, 5}], [[1, 2, 3, 5, 4], %1, {1, 2, 3, 4, 5}], [[1, 2, 4, 5, 3], %1, {1, 2, 3, 4, 5}], [[1, 2, 3, 4, 4], { [0, 2, 1, 1, 0, 0], [0, 1, 2, 1, 0, 0], [1, 1, 1, 1, 0, 0], [0, 1, 1, 2, 0, 0]}, {4, 5}], [[1, 2, 3, 4, 3], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 2, 3, 4, 1], %2, {1, 2, 3, 4, 5}], [[2, 3, 4, 5, 1], %1, {1, 2, 3, 4, 5}], [[1, 2, 3, 4, 2], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 2, 3, 4, 5], {[0, 1, 2, 1, 1, 0], [0, 2, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [0, 1, 1, 2, 1, 0], [0, 1, 1, 1, 2, 0]}, {1, 2, 3, 4}]] %1 := {[0, 1, 1, 1, 1, 0]} %2 := {[0, 0, 1, 1, 1, 0]} Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 7, 12, 20, 33, 54, 88, 143] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 19, 63, 198, 631, 1993, 6314, 19971, 63207] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 93, 710, 4166, 27511, 171549] For the equivalence class of patterns, {{[1, 3, 2], [2, 3, 1], [3, 1, 2, 4]}, {[1, 3, 2], [2, 3, 1], [4, 2, 1, 3]}, {[2, 1, 3], [3, 1, 2], [1, 3, 4, 2]}, {[2, 1, 3], [3, 1, 2], [2, 4, 3, 1]}} the member , {[1, 3, 2], [2, 3, 1], [4, 2, 1, 3]}, has a scheme of depth , 4 here it is: [[[], {}, {}], [[1], {}, {}], [[1, 1], {}, {1, 2}], [[2, 1], {[1, 2, 0]}, {}], [[1, 2], {[1, 1, 0], [0, 2, 0]}, {}], [[1, 3, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 3, 1], {[0, 1, 1, 0]}, {1, 2, 3}], [[1, 2, 2], {[1, 1, 0, 0], [0, 2, 0, 0]}, {2, 3}], [[1, 2, 1], {[0, 0, 2, 0], [0, 2, 1, 0], [1, 0, 1, 0]}, {1, 3}], [[1, 2, 3], {[1, 1, 1, 0], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[2, 1, 1], {[1, 2, 1, 0], [1, 0, 2, 0]}, {2, 3}], [[2, 1, 2], {[1, 1, 0, 0], [0, 2, 0, 0]}, {1, 3}], [[3, 1, 2], {[1, 1, 1, 0], [0, 2, 1, 0]}, {}], [[2, 1, 3], {[1, 1, 1, 0], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[3, 2, 1], {[1, 2, 1, 0], [0, 1, 2, 0]}, {}], [[1, 2, 3, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 3], %1, {3, 4}], [[1, 3, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 4], %2, {1, 2, 3}], [[2, 1, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 3], %1, {3, 4}], [[2, 1, 3, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 4], %2, {1, 2, 3}], [[3, 1, 2, 4], %2, {1, 2, 3}], [ [3, 1, 2, 1], {[0, 2, 1, 1, 0], [1, 0, 1, 1, 0], [0, 0, 2, 1, 0], [0, 0, 1, 2, 0]}, {1, 2, 4}], [[4, 1, 3, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 2, 3, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 2], {[1, 1, 0, 1, 0], [0, 2, 0, 1, 0]}, {3, 4}], [[4, 1, 2, 3], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [1, 1, 1, 1, 0]}, {1}], [[3, 1, 2, 3], %1, {1}], [[3, 2, 1, 1], {[1, 0, 2, 1, 0], [0, 1, 2, 1, 0], [1, 1, 1, 1, 0], [0, 0, 1, 2, 0]}, {3, 4}], [[4, 2, 1, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 1, 4], %2, {1, 2, 3}], [[3, 2, 1, 2], {[0, 1, 0, 2, 0], [0, 1, 2, 1, 0], [1, 1, 0, 1, 0], [0, 2, 0, 1, 0]}, {1, 2, 4}], [[3, 2, 1, 3], %1, {1}], [[4, 3, 2, 1], {[0, 1, 2, 1, 0], [0, 1, 1, 2, 0], [1, 2, 1, 1, 0]}, {2}], [[4, 3, 1, 2], {[0, 2, 1, 1, 0], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {2}]] %1 := {[1, 1, 1, 0, 0], [0, 1, 2, 0, 0], [0, 2, 1, 0, 0]} %2 := {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]} Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 7, 11, 16, 22, 29, 37, 46] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 18, 34, 54, 78, 106, 138, 174, 214] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 80, 149, 227, 314, 410] For the equivalence class of patterns, { {[1, 3, 2], [2, 1, 3], [1, 2, 3, 4]}, {[2, 3, 1], [3, 1, 2], [4, 3, 2, 1]}} the member , {[1, 3, 2], [2, 1, 3], [1, 2, 3, 4]}, has a scheme of depth , 5 here it is: [[[], {}, {}], [[1], {[0, 3]}, {}], [[2, 1], {[0, 1, 1], [0, 4, 0]}, {1}], [[1, 1], {[0, 3, 0], [0, 2, 1], [0, 1, 2], [0, 0, 3]}, {1, 2}], [[1, 2], {[0, 2, 0], [0, 1, 2]}, {}], [[1, 3, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 3, 1], {[0, 4, 1, 0], [0, 1, 1, 1], [0, 1, 2, 0]}, {2}], [ [1, 2, 2], {[0, 2, 0, 0], [0, 1, 1, 1], [0, 1, 0, 2], [0, 1, 2, 0]}, {2, 3} ], [[1, 2, 1], {[0, 1, 1, 0], [0, 0, 2, 0], [0, 0, 1, 1]}, {1, 2, 3}], [[1, 2, 3], {[0, 1, 1, 1], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[1, 2, 3, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 4, 1], {[0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [0, 1, 1, 2, 0]}, {2, 3}] , [[1, 2, 3, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 3], {[0, 1, 1, 1, 0], [0, 1, 2, 0, 0], [0, 1, 1, 0, 1], [0, 2, 1, 0, 0]}, {3, 4}], [[1, 2, 3, 1], {[0, 1, 1, 1, 0], [0, 0, 2, 1, 0], [0, 0, 1, 1, 1], [0, 0, 1, 2, 0]}, {}], [[1, 2, 3, 1, 2], {[0, 0, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 2, 3, 1, 3], {[0, 0, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[1, 2, 3, 1, 4], {[0, 0, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 2, 4, 1, 3], {[0, 0, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 3, 4, 1, 2], {[0, 0, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 2, 3, 1, 1], {[0, 0, 0, 1, 1, 1], [0, 0, 1, 1, 1, 0], [0, 0, 0, 1, 2, 0], [0, 0, 0, 2, 1, 0], [0, 1, 0, 1, 1, 0]}, {4, 5}], [[2, 3, 4, 2, 1], { [0, 1, 1, 1, 1, 0], [0, 1, 0, 2, 1, 0], [0, 1, 0, 1, 2, 0], [0, 1, 0, 1, 1, 1]}, {1, 2, 3, 4}]] Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 7, 13, 24, 44, 81, 149, 274] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 19, 69, 244, 865, 3069, 10882, 38595, 136873] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 93, 752, 4733, 33133, 221358] For the equivalence class of patterns, {{[1, 2, 3], [1, 3, 2], [3, 2, 1, 4]}, {[1, 2, 3], [2, 1, 3], [1, 4, 3, 2]}, {[2, 3, 1], [3, 2, 1], [4, 1, 2, 3]}, {[3, 1, 2], [3, 2, 1], [2, 3, 4, 1]}} the member , {[1, 2, 3], [1, 3, 2], [3, 2, 1, 4]}, has a scheme of depth , 5 here it is: [[[], {}, {}], [[1], {[0, 2]}, {}], [[1, 1], {[0, 2, 0], [0, 1, 1], [0, 0, 2]}, {1, 2}], [[1, 2], {[0, 2, 0], [0, 1, 1]}, {2}], [[2, 1], {[0, 3, 0], [0, 2, 1], [0, 1, 2]}, {}], [[3, 1, 2], {[0, 1, 1, 1], [0, 2, 1, 0], [0, 1, 2, 0]}, {1}], [[2, 1, 2], {[0, 2, 0, 0], [0, 1, 1, 0], [0, 1, 0, 1]}, {1, 3}], [ [2, 1, 1], {[0, 1, 1, 0], [0, 0, 2, 1], [0, 0, 1, 2], [0, 0, 3, 0]}, {2, 3} ], [[3, 2, 1], {[0, 1, 1, 1], [0, 1, 3, 0], [0, 3, 1, 0], [0, 2, 2, 0]}, {1}], [[2, 1, 3], {[0, 1, 1, 1], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[2, 1, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 3], {[0, 1, 1, 1, 0], [0, 1, 2, 0, 0], [0, 1, 1, 0, 1], [0, 2, 1, 0, 0]}, {3, 4}], [[2, 1, 3, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 1], {[0, 1, 1, 1, 0], [0, 0, 2, 1, 0], [0, 0, 1, 1, 1], [0, 0, 1, 2, 0]}, {4}], [[3, 2, 4, 1], {[0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [0, 1, 1, 2, 0], [0, 3, 1, 1, 0]}, {}], [[4, 3, 5, 1, 2], {[0, 1, 2, 1, 1, 0], [0, 2, 1, 1, 1, 0], [0, 1, 1, 2, 1, 0], [0, 1, 1, 1, 1, 1], [0, 1, 1, 1, 2, 0]}, {1, 2, 3}], [ [3, 2, 4, 1, 2], {[0, 1, 1, 1, 1, 0], [0, 2, 0, 1, 1, 0], [0, 1, 0, 2, 1, 0], [0, 1, 0, 1, 2, 0], [0, 1, 0, 1, 1, 1]}, {1, 2, 3, 5}], [[3, 2, 4, 1, 5], {[0, 1, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[3, 2, 5, 1, 4], {[0, 1, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[4, 2, 5, 1, 3], {[0, 1, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[3, 2, 4, 1, 4], {[0, 1, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[3, 2, 4, 1, 3], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[4, 3, 5, 2, 1], {[0, 1, 1, 2, 1, 0], [0, 1, 1, 1, 1, 1], [0, 1, 1, 1, 2, 0]}, {1, 3}], [ [3, 2, 4, 1, 1], {[0, 0, 3, 1, 1, 0], [0, 0, 1, 1, 2, 0], [0, 1, 1, 1, 1, 0], [0, 0, 1, 2, 1, 0], [0, 0, 1, 1, 1, 1]}, {4, 5}]] Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 7, 13, 24, 44, 81, 149, 274] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 24, 83, 325, 1220, 4592, 17369, 65505, 247234] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 148, 1060, 8491, 64482, 496313] For the equivalence class of patterns, {{[2, 3, 1], [3, 2, 1], [1, 2, 4, 3]}, {[1, 2, 3], [1, 3, 2], [3, 4, 2, 1]}, {[1, 2, 3], [2, 1, 3], [4, 3, 1, 2]}, {[3, 1, 2], [3, 2, 1], [2, 1, 3, 4]}} the member , {[2, 3, 1], [3, 2, 1], [1, 2, 4, 3]}, has a scheme of depth , 5 here it is: [[[], {}, {}], [[1], {}, {}], [[1, 1], {}, {1, 2}], [[2, 1], {[1, 1, 0]}, {}], [[1, 2], {[1, 1, 0]}, {}], [[2, 3, 1], {[0, 1, 1, 0]}, {1, 2, 3}], [[1, 2, 1], {[1, 0, 1, 0]}, {3}], [[1, 2, 2], {[1, 1, 0, 0]}, {2, 3}], [[1, 2, 3], {[1, 1, 1, 0], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[1, 3, 2], {[1, 1, 1, 0], [0, 2, 1, 0]}, {}], [[3, 2, 1], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 1, 1], {[1, 0, 1, 0]}, {2, 3}], [[2, 1, 2], {[1, 1, 0, 0]}, {1}], [[3, 1, 2], {[1, 1, 1, 0], [0, 2, 1, 0]}, {}], [[2, 1, 3], {[1, 1, 1, 0], [0, 2, 1, 0]}, {}], [[1, 2, 3, 3], %8, {3, 4}], [[1, 3, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 2], {[0, 1, 0, 2, 0], [0, 1, 2, 1, 0], [1, 1, 0, 1, 0], [0, 2, 0, 1, 0]}, {2, 4}], [[1, 2, 3, 4], %7, {}], [[2, 4, 3, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 4, 3, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 2, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 2, 2], {[1, 1, 0, 1, 0], [0, 2, 0, 1, 0]}, {3, 4}], [[1, 3, 2, 3], %8, {2, 4}], [[1, 3, 2, 4], %7, {}], [[1, 4, 2, 3], %6, {}], [[2, 1, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 2], {[1, 1, 0, 1, 0], [0, 2, 0, 1, 0]}, {1}], [[2, 1, 3, 4], %7, {1, 2}], [[2, 1, 3, 3], {[1, 1, 1, 0, 0], [0, 2, 1, 0, 0]}, {3, 4}], [[2, 1, 4, 3], %6, {1, 2}], [[3, 1, 2, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 1, 3, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 2, 3, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 2], {[1, 1, 0, 1, 0], [0, 2, 0, 1, 0]}, {3, 4}], [[3, 1, 2, 3], %8, {1, 4}], [[3, 1, 2, 4], %7, {}], [[4, 1, 2, 3], %6, {}], [[1, 3, 4, 5, 2], %4, {1, 2, 3, 4, 5}], [[1, 2, 3, 5, 4], %4, {1, 2, 3, 4, 5}], [[1, 2, 4, 5, 3], %4, {1, 2, 3, 4, 5}], [[1, 2, 3, 4, 4], %2, {4, 5}], [[1, 2, 3, 4, 3], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 2, 3, 4, 1], %3, {1, 2, 3, 4, 5}], [[2, 3, 4, 5, 1], %4, {1, 2, 3, 4, 5}], [[1, 2, 3, 4, 2], %5, {1, 2, 3, 4, 5}], [[1, 2, 3, 4, 5], %1, {1, 2, 3, 4}], [[1, 3, 2, 4, 4], %2, {4, 5}], [[1, 3, 2, 5, 4], %4, {1, 2, 3, 4, 5}], [[1, 3, 2, 4, 3], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 4, 3, 5, 2], %4, {1, 2, 3, 4, 5}], [[2, 4, 3, 5, 1], %4, {1, 2, 3, 4, 5}], [[1, 4, 2, 5, 3], %4, {1, 2, 3, 4, 5}], [[1, 3, 2, 4, 1], %3, {1, 2, 3, 4, 5}], [[1, 3, 2, 4, 2], %5, {1, 2, 3, 4, 5}], [[1, 3, 2, 4, 5], %1, {2, 3, 4}], [[1, 4, 2, 3, 5], %1, {1, 2, 3, 4}], [[1, 4, 2, 3, 4], %2, {2}], [ [1, 4, 2, 3, 3], {[0, 1, 2, 0, 1, 0], [0, 2, 1, 0, 1, 0], [1, 1, 1, 0, 1, 0]}, {4, 5}], [[2, 5, 3, 4, 1], %4, {1, 2, 3, 4, 5}], [[1, 4, 2, 3, 1], %3, {1, 2, 3, 4, 5}], [[1, 4, 2, 3, 2], %5, {1, 2, 3, 4, 5}], [[1, 5, 2, 4, 3], %4, {1, 2, 3, 4, 5}], [[1, 5, 3, 4, 2], %4, {1, 2, 3, 4, 5}], [[1, 5, 2, 3, 4], { [0, 1, 2, 1, 1, 0], [0, 2, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [0, 1, 1, 2, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 4, 5], %1, {1, 4}], [[3, 1, 2, 4, 1], %3, {1, 2, 3, 4, 5}], [[4, 1, 2, 5, 3], %4, {1, 2, 3, 4, 5}], [[4, 2, 3, 5, 1], %4, {1, 2, 3, 4, 5}], [[3, 1, 2, 4, 2], %5, {1, 2, 3, 4, 5}], [[4, 1, 3, 5, 2], %4, {1, 2, 3, 4, 5}], [[3, 1, 2, 5, 4], %4, {1, 2, 3, 4, 5}], [[3, 1, 2, 4, 3], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[3, 1, 2, 4, 4], %2, {4, 5}], [[4, 1, 2, 3, 2], %5, {1, 2, 3, 4, 5}], [[5, 2, 3, 4, 1], %4, {1, 2, 3, 4, 5}], [[5, 1, 2, 4, 3], %4, {1, 2, 3, 4, 5}], [[5, 1, 3, 4, 2], %4, {1, 2, 3, 4, 5}], [[4, 1, 2, 3, 1], %3, {1, 2, 3, 4, 5}], [[4, 1, 2, 3, 4], %2, {1}], [ [5, 1, 2, 3, 4], {[0, 1, 2, 1, 1, 0], [0, 2, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [0, 1, 1, 2, 1, 0]}, {1, 2, 3, 4}], [[4, 1, 2, 3, 3], {[0, 1, 2, 0, 1, 0], [0, 2, 1, 0, 1, 0], [1, 1, 1, 0, 1, 0]}, {4, 5}], [[4, 1, 2, 3, 5], %1, {1, 2, 3, 4}]] %1 := {[0, 1, 2, 1, 1, 0], [0, 2, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [0, 1, 1, 2, 1, 0], [0, 1, 1, 1, 2, 0]} %2 := {[0, 2, 1, 1, 0, 0], [0, 1, 2, 1, 0, 0], [1, 1, 1, 1, 0, 0], [0, 1, 1, 2, 0, 0]} %3 := {[0, 0, 1, 1, 1, 0]} %4 := {[0, 1, 1, 1, 1, 0]} %5 := {[0, 1, 0, 1, 1, 0]} %6 := {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [1, 1, 1, 1, 0]} %7 := {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]} %8 := {[1, 1, 1, 0, 0], [0, 1, 2, 0, 0], [0, 2, 1, 0, 0]} Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 7, 10, 13, 16, 19, 22, 25] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 24, 40, 53, 66, 79, 92, 105, 118] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 148, 207, 250, 293, 336] For the equivalence class of patterns, {{[1, 2, 3], [2, 3, 1], [4, 1, 3, 2]}, {[1, 2, 3], [3, 1, 2], [3, 2, 4, 1]}, {[1, 3, 2], [3, 2, 1], [2, 3, 1, 4]}, {[2, 1, 3], [3, 2, 1], [1, 4, 2, 3]}} the member , {[1, 2, 3], [2, 3, 1], [4, 1, 3, 2]}, has a scheme of depth , 5 here it is: [[[], {}, {}], [[1], {}, {}], [[1, 1], {}, {1, 2}], [[1, 2], {[1, 1, 0], [0, 1, 1]}, {}], [[2, 1], {[0, 3, 0], [0, 2, 1]}, {}], [[1, 2, 3], {[0, 1, 1, 0]}, {1, 2, 3}], [[1, 2, 1], {[0, 1, 1, 0], [0, 0, 1, 1], [0, 0, 3, 0], [1, 0, 1, 0]}, {1, 2, 3}], [[2, 3, 1], {[0, 1, 1, 0]}, {1, 2, 3}], [[1, 2, 2], {[1, 1, 0, 0], [0, 1, 1, 0], [0, 1, 0, 1]}, {2, 3}], [[1, 3, 2], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 1, 2, 0]}, {}], [ [2, 1, 2], {[1, 1, 0, 0], [0, 1, 1, 0], [0, 1, 0, 1], [0, 3, 0, 0]}, {1, 3} ], [[2, 1, 1], {[0, 0, 2, 1], [0, 0, 3, 0], [0, 2, 1, 0]}, {2, 3}], [[3, 1, 2], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 2, 1, 0], [0, 1, 2, 0]}, {1}], [[3, 2, 1], {[0, 2, 1, 1], [0, 1, 2, 1], [0, 1, 3, 0], [0, 3, 1, 0], [0, 2, 2, 0]}, {}] , [[2, 1, 3], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 2, 1, 0]}, {}], [[2, 4, 3, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 4, 2, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 2, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 2, 3], {[0, 1, 1, 0, 0]}, {1, 2, 3, 4}], [[1, 4, 3, 2], {[0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {2, 3}], [[1, 3, 2, 2], {[0, 1, 0, 2, 0], [1, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 1]}, {3, 4}], [[1, 3, 2, 1], {[0, 0, 3, 1, 0], [1, 0, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 1, 2, 0]}, {}], [[2, 1, 3, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 4, 3], {[0, 2, 1, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {3}], [[3, 2, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 3], {[1, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 1, 1, 0, 1], [0, 2, 1, 0, 0]}, {3, 4}], [[2, 1, 3, 2], {[0, 1, 0, 2, 0], [1, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 1], [0, 2, 0, 1, 0]}, {}], [[3, 2, 1, 1], {[0, 0, 3, 1, 0], [0, 0, 2, 2, 0], [0, 0, 1, 3, 0], [0, 1, 1, 1, 0], [0, 0, 2, 1, 1], [0, 0, 1, 2, 1]}, {3, 4}], [[3, 2, 1, 2], {[0, 1, 0, 2, 0], [1, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 1], [0, 2, 0, 1, 0]}, {1, 2}], [[3, 2, 1, 4], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0]}, {2, 3}], [[4, 3, 1, 2], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {1, 2}], [[3, 2, 1, 3], { [0, 1, 3, 0, 0], [1, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 1, 1, 0, 1], [0, 2, 1, 0, 0]}, {}], [[4, 2, 1, 3], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {}], [[4, 3, 2, 1], { [0, 1, 3, 1, 0], [0, 3, 1, 1, 0], [0, 2, 2, 1, 0], [0, 2, 1, 2, 0], [0, 1, 2, 2, 0], [0, 1, 1, 3, 0], [0, 2, 1, 1, 1], [0, 1, 2, 1, 1], [0, 1, 1, 2, 1]}, {}], [[4, 2, 1, 3, 4], {[0, 1, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[5, 3, 1, 4, 2], %3, {1, 2, 3, 4, 5}], [[5, 2, 1, 4, 3], %3, {1, 2, 3, 4, 5}], [[4, 2, 1, 3, 1], {[0, 0, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[5, 2, 1, 3, 4], %3, {1, 2, 3, 4, 5}], [[5, 3, 2, 4, 1], %3, {1, 2, 3, 4, 5}], [[4, 2, 1, 3, 2], %1, {1, 2, 3, 4, 5}], [[4, 2, 1, 3, 5], %3, {1, 2, 3, 4, 5}], [[4, 2, 1, 3, 3], { [0, 1, 2, 0, 1, 0], [0, 2, 1, 0, 1, 0], [0, 1, 1, 0, 2, 0], [0, 1, 1, 1, 1, 0], [1, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1]}, {4, 5}], [ [4, 3, 2, 1, 3], {[0, 1, 2, 0, 1, 0], [0, 2, 1, 0, 1, 0], [0, 1, 1, 0, 2, 0], [0, 1, 1, 1, 1, 0], [1, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1]}, {2}], [[5, 4, 3, 1, 2], %2, {1, 2, 3}], [[5, 4, 3, 2, 1], {}, {3}], [[4, 3, 2, 1, 2], {[0, 1, 1, 1, 1, 0], [1, 1, 0, 1, 1, 0], [0, 2, 0, 1, 1, 0], [0, 1, 0, 2, 1, 0], [0, 1, 0, 1, 2, 0], [0, 1, 0, 1, 1, 1]}, {1, 2, 3}], [[5, 3, 2, 1, 4], %2, {2, 3, 4}], [[4, 3, 2, 1, 4], {[0, 1, 1, 3, 0, 0], [0, 2, 1, 1, 0, 0], [0, 1, 2, 1, 0, 0], [0, 1, 1, 1, 1, 0], [1, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1]}, {3, 4}], [[5, 4, 2, 1, 3], %2, {1, 2}], [[4, 3, 2, 1, 1], {[0, 0, 3, 1, 1, 0], [0, 0, 2, 2, 1, 0], [0, 0, 1, 3, 1, 0], [0, 0, 1, 1, 2, 1], [0, 0, 2, 1, 1, 1], [0, 0, 1, 2, 1, 1], [0, 1, 1, 1, 1, 0], [0, 0, 2, 1, 2, 0], [0, 0, 1, 2, 2, 0], [0, 0, 1, 1, 3, 0]}, {4, 5}], [ [4, 3, 2, 1, 5], {[0, 1, 2, 1, 1, 0], [0, 2, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [0, 1, 1, 2, 1, 0], [0, 1, 1, 1, 1, 1]}, {2, 3, 4}], [[4, 3, 1, 4, 2], {[0, 1, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[3, 2, 1, 3, 1], {[0, 0, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[4, 3, 2, 4, 1], {[0, 1, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[4, 2, 1, 4, 3], {[0, 2, 1, 1, 0, 0], [0, 1, 2, 1, 0, 0], [0, 1, 1, 1, 1, 0], [1, 1, 1, 1, 0, 0], [0, 1, 1, 2, 0, 0], [0, 1, 1, 1, 0, 1]}, {4}], [ [3, 2, 1, 3, 2], {[0, 2, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1], [0, 1, 0, 2, 0, 0], [1, 1, 0, 1, 0, 0], [0, 1, 1, 1, 0, 0], [0, 1, 0, 1, 1, 0]}, {1}], [[3, 2, 1, 3, 4], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[3, 2, 1, 3, 3], {[0, 1, 1, 0, 0, 1], [0, 2, 1, 0, 0, 0], [0, 1, 3, 0, 0, 0], [1, 1, 1, 0, 0, 0], [0, 1, 1, 1, 0, 0], [0, 1, 1, 0, 1, 0]}, {4, 5}], [ [1, 3, 2, 1, 2], {[0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 1, 0], [0, 0, 1, 0, 2, 0], [0, 0, 2, 0, 1, 0], [0, 1, 1, 0, 1, 0], [1, 0, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 3, 2, 1, 4], {[0, 0, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 4, 2, 1, 3], {[0, 0, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 3, 2, 1, 3], {[0, 0, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[2, 4, 3, 2, 1], %1, {1, 2, 3, 4, 5}], [[1, 3, 2, 1, 1], { [0, 0, 0, 1, 1, 1], [0, 0, 1, 1, 1, 0], [0, 0, 0, 1, 2, 0], [1, 0, 0, 1, 1, 0], [0, 1, 0, 1, 1, 0], [0, 0, 0, 3, 1, 0]}, {2, 4, 5}], [ [1, 4, 3, 1, 2], {[0, 0, 1, 1, 2, 0], [0, 1, 1, 1, 1, 0], [1, 0, 1, 1, 1, 0], [0, 0, 2, 1, 1, 0], [0, 0, 1, 2, 1, 0], [0, 0, 1, 1, 1, 1]}, {1, 2, 3, 4}], [[2, 1, 3, 2, 4], %1, {1, 2, 3, 4, 5}], [[2, 1, 3, 2, 3], {[0, 1, 0, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[3, 2, 4, 3, 1], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 1, 4, 2, 3], %1, {1, 2, 3, 4, 5}], [[2, 1, 3, 2, 1], {[0, 0, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[3, 1, 4, 3, 2], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 1, 3, 2, 2], {[0, 1, 0, 0, 1, 1], [0, 2, 0, 0, 1, 0], [1, 1, 0, 0, 1, 0], [0, 1, 1, 0, 1, 0], [0, 1, 0, 1, 1, 0], [0, 1, 0, 0, 2, 0]}, {4, 5}]] %1 := {[0, 1, 0, 1, 1, 0]} %2 := {[0, 1, 2, 1, 1, 0], [0, 2, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [0, 1, 1, 2, 1, 0], [0, 1, 1, 1, 1, 1], [0, 1, 1, 1, 2, 0]} %3 := {[0, 1, 1, 1, 1, 0]} Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 6, 8, 10, 12, 14, 16, 18] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 19, 19, 23, 27, 31, 35, 39, 43] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 93, 52, 58, 64, 70] For the equivalence class of patterns, {{[1, 3, 2], [3, 1, 2], [2, 1, 3, 4]}, {[1, 3, 2], [3, 1, 2], [3, 4, 2, 1]}, {[2, 1, 3], [2, 3, 1], [1, 2, 4, 3]}, {[2, 1, 3], [2, 3, 1], [4, 3, 1, 2]}} the member , {[1, 3, 2], [3, 1, 2], [2, 1, 3, 4]}, has a scheme of depth , 4 here it is: [[[], {}, {}], [[1], {}, {}], [[1, 1], {}, {1, 2}], [[2, 1], {[0, 2, 0], [0, 1, 2]}, {}], [[1, 2], {[0, 2, 0]}, {}], [[1, 3, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [[1, 2, 2], {[0, 2, 0, 0]}, {2, 3}], [ [1, 2, 1], {[0, 0, 2, 0], [0, 1, 1, 1], [0, 0, 1, 2], [0, 2, 1, 0]}, {1, 3} ], [[1, 2, 3], {[0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[2, 3, 1], {[0, 1, 1, 2], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[3, 1, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 1, 3], {[0, 1, 1, 1], [0, 2, 1, 0], [0, 1, 2, 0]}, {1}], [ [2, 1, 2], {[0, 2, 0, 0], [0, 1, 1, 1], [0, 1, 0, 2], [0, 1, 2, 0]}, {1, 3} ], [ [2, 1, 1], {[0, 0, 2, 0], [0, 1, 1, 1], [0, 0, 1, 2], [0, 2, 1, 0]}, {2, 3} ], [[3, 2, 1], {[0, 1, 1, 2], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[1, 2, 3, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 3], {[0, 1, 2, 0, 0], [0, 2, 1, 0, 0]}, {3, 4}], [[1, 2, 3, 4], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 2, 0]}, {2, 3}] , [[1, 2, 3, 1], %1, {1}], [[2, 3, 4, 1], %2, {1, 2}], [[2, 3, 1, 4], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [0, 1, 1, 2, 0]}, {1, 2}], [[3, 4, 1, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 4, 1, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 1, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 1, 3], {[0, 1, 1, 1, 0], [0, 1, 2, 0, 0], [0, 1, 1, 0, 1], [0, 2, 1, 0, 0]}, {1, 2, 4}], [[2, 3, 1, 1], %1, {3, 4}], [[3, 4, 2, 1], %2, {1, 3}], [[4, 2, 1, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 3, 1, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 1, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 1, 4], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [0, 1, 1, 2, 0]}, {1, 2}], [[3, 2, 1, 3], {[0, 1, 1, 1, 0], [0, 1, 2, 0, 0], [0, 1, 1, 0, 1], [0, 2, 1, 0, 0]}, {1, 2, 4}], [[4, 3, 2, 1], %2, {2, 3}], [[3, 2, 1, 1], %1, {3, 4}]] %1 := {[0, 0, 1, 1, 2], [0, 1, 1, 1, 0], [0, 0, 2, 1, 0], [0, 0, 1, 2, 0]} %2 := {[0, 1, 1, 1, 2], [0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 2, 0]} Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 7, 11, 16, 22, 29, 37, 46] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 24, 70, 152, 278, 456, 694, 1000, 1382] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 148, 813, 2636, 6319, 12645] For the equivalence class of patterns, {{[2, 1, 3], [3, 2, 1], [2, 3, 4, 1]}, {[1, 2, 3], [2, 3, 1], [3, 2, 1, 4]}, {[1, 2, 3], [3, 1, 2], [1, 4, 3, 2]}, {[1, 3, 2], [3, 2, 1], [4, 1, 2, 3]}} the member , {[2, 1, 3], [3, 2, 1], [2, 3, 4, 1]}, has a scheme of depth , 5 here it is: [[[], {}, {}], [[1], {[1, 2]}, {}], [[1, 1], {[1, 2, 0], [1, 0, 2], [1, 1, 1]}, {1, 2}], [[2, 1], {[1, 1, 0], [0, 1, 1]}, {2}], [[1, 2], {[1, 2, 0], [0, 2, 2], [1, 1, 1]}, {}], [[1, 2, 3], {[1, 1, 1, 0], [0, 1, 2, 2], [0, 2, 1, 1], [0, 2, 2, 0]}, {1}], [[1, 2, 2], {[1, 1, 1, 0], [1, 1, 0, 1], [0, 2, 1, 1], [0, 2, 0, 2], [0, 2, 2, 0], [1, 2, 0, 0]}, {2, 3}], [[1, 3, 2], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 2, 1, 0]}, {1}], [[1, 2, 1], {[0, 1, 1, 0], [0, 0, 1, 1], [1, 0, 1, 0]}, {1, 3}], [[2, 3, 1], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 1, 2, 0]}, {}], [[2, 3, 1, 3], {[0, 1, 1, 0, 0]}, {1, 2, 3, 4}], [[2, 4, 1, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 1, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 4, 1, 2], {[0, 2, 1, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {3}], [[3, 4, 2, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 1, 1], {[1, 0, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 1, 2, 0]}, {3, 4}], [[2, 3, 1, 2], {[0, 1, 0, 2, 0], [1, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 1], [0, 2, 0, 1, 0]}, {}], [[2, 4, 1, 2, 3], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[3, 4, 1, 3, 2], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 3, 1, 2, 4], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 3, 1, 2, 3], {[0, 1, 0, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[3, 4, 2, 3, 1], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 3, 1, 2, 1], {[0, 0, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 3, 1, 2, 2], {[0, 1, 0, 0, 1, 1], [0, 2, 0, 0, 1, 0], [1, 1, 0, 0, 1, 0], [0, 1, 1, 0, 1, 0], [0, 1, 0, 1, 1, 0], [0, 1, 0, 0, 2, 0]}, {4, 5}]] Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 6, 8, 10, 12, 14, 16, 18] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 19, 36, 57, 82, 111, 144, 181, 222] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 93, 238, 482, 852, 1375] For the equivalence class of patterns, { {[1, 2, 3], [3, 2, 1], [2, 4, 1, 3]}, {[1, 2, 3], [3, 2, 1], [3, 1, 4, 2]}} the member , {[1, 2, 3], [3, 2, 1], [2, 4, 1, 3]}, has a scheme of depth , 4 here it is: [[[], {}, {}], [[1], {[3, 0], [0, 3], [2, 2]}, {}], [[1, 1], {[2, 1, 1], [3, 0, 0], [0, 3, 0], [0, 2, 1], [0, 1, 2], [0, 0, 3], [2, 0, 2], [2, 2, 0] }, {1, 2}], [[2, 1], {[0, 3, 0], [0, 1, 3], [1, 1, 0], [0, 2, 2]}, {}], [[1, 2], {[1, 2, 0], [0, 3, 0], [0, 1, 1], [3, 1, 0]}, {}], [[1, 2, 3], {[0, 1, 1, 0]}, {1, 2, 3}], [ [1, 2, 1], {[0, 1, 1, 0], [0, 0, 1, 1], [0, 0, 3, 0], [1, 0, 1, 0]}, {1, 3} ], [[2, 3, 1], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 3, 1, 0], [0, 1, 2, 0]}, {1}], [[1, 2, 2], {[0, 1, 1, 0], [0, 1, 0, 1], [3, 1, 0, 0], [1, 2, 0, 0], [0, 3, 0, 0]}, {2, 3}], [[1, 3, 2], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[3, 2, 1], {[0, 1, 1, 0]}, {1, 2, 3}], [ [2, 1, 2], {[1, 1, 0, 0], [0, 1, 1, 0], [0, 1, 0, 1], [0, 3, 0, 0]}, {1, 3} ], [[2, 1, 1], {[0, 1, 1, 1], [0, 0, 3, 0], [0, 0, 2, 2], [0, 0, 1, 3], [0, 2, 1, 0], [0, 1, 2, 0], [1, 0, 1, 0]}, {2, 3}], [[3, 1, 2], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[2, 1, 3], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 1, 3, 0], [0, 3, 1, 0], [0, 2, 2, 0]}, {}] , [[2, 4, 3, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 4, 3, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 4, 2, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 2, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 2, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 2, 2], %1, {3, 4}], [[1, 3, 2, 3], {[0, 1, 1, 0, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 1], { [0, 0, 3, 1, 0], [1, 0, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 1, 2, 0]}, {1, 2, 4}], [[2, 1, 4, 3], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {1, 2} ], [[2, 1, 3, 2], %1, {1}], [[2, 1, 3, 3], {[0, 1, 3, 0, 0], [0, 3, 1, 0, 0], [1, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 1, 1, 0, 1], [0, 2, 2, 0, 0]}, {3, 4}], [[3, 1, 4, 2], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {1, 3}], [[3, 1, 2, 3], {[0, 1, 1, 0, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 1, 3, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 2], %1, {3, 4}], [[4, 1, 2, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 2, 3, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}]] %1 := {[0, 1, 0, 2, 0], [1, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 1], [0, 2, 0, 1, 0]} Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 3, 0, 0, 0, 0, 0, 0] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 18, 7, 0, 0, 0, 0, 0, 0] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 80, 21, 0, 0, 0] For the equivalence class of patterns, {{[2, 1, 3], [3, 2, 1], [3, 4, 1, 2]}, {[1, 2, 3], [2, 3, 1], [2, 1, 4, 3]}, {[1, 2, 3], [3, 1, 2], [2, 1, 4, 3]}, {[1, 3, 2], [3, 2, 1], [3, 4, 1, 2]}} the member , {[2, 1, 3], [3, 2, 1], [3, 4, 1, 2]}, has a scheme of depth , 5 here it is: [[[], {}, {}], [[1], {[2, 1]}, {}], [[1, 1], {[2, 0, 1], [2, 1, 0]}, {1, 2}], [[2, 1], {[1, 1, 0], [0, 1, 1]}, {2}], [[1, 2], {[1, 2, 0], [2, 1, 0], [0, 3, 1]}, {}], [[1, 3, 2], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 2, 1, 0]}, {1}], [ [1, 2, 2], {[2, 1, 0, 0], [0, 3, 0, 1], [0, 3, 1, 0], [1, 2, 0, 0]}, {2, 3} ], [[1, 2, 1], {[0, 1, 1, 0], [0, 0, 1, 1], [1, 0, 1, 0]}, {1, 3}], [[2, 3, 1], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[1, 2, 3], {[0, 1, 3, 1], [1, 2, 1, 0], [2, 1, 1, 0], [0, 3, 1, 0], [1, 1, 2, 0], [0, 2, 2, 0]}, {}], [[1, 2, 3, 4], {[1, 2, 1, 1, 0], [2, 1, 1, 1, 0], [0, 1, 3, 1, 0], [0, 3, 1, 1, 0], [1, 1, 2, 1, 0], [0, 2, 2, 1, 0], [0, 2, 1, 2, 0], [0, 1, 2, 2, 0], [1, 1, 1, 2, 0]}, {1}], [[1, 2, 4, 3], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0]}, {1, 2}], [[1, 3, 4, 2], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {1}], [[1, 2, 3, 3], {[1, 2, 1, 0, 0], [2, 1, 1, 0, 0], [0, 3, 1, 0, 0], [1, 1, 2, 0, 0], [0, 1, 3, 1, 0], [0, 2, 2, 0, 0], [0, 1, 3, 0, 1]}, {3, 4}], [[1, 2, 3, 2], {[1, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 1], [0, 2, 0, 1, 0]}, {1, 2}], [[1, 2, 3, 1], {[1, 0, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 2, 1, 0], [0, 0, 1, 1, 1], [0, 0, 1, 2, 0]}, {1}], [[2, 3, 4, 1], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {}], [[3, 4, 1, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 1, 3], {[0, 1, 1, 0, 0]}, {1, 2, 3, 4}], [[2, 4, 1, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 1, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 4, 2, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 1, 1], { [1, 0, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 2, 1, 0], [0, 0, 1, 1, 1], [0, 0, 1, 2, 0]}, {3, 4}], [[2, 3, 1, 2], {[0, 1, 0, 2, 0], [1, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 1], [0, 2, 0, 1, 0]}, {}], [[2, 3, 4, 1, 5], %1, {1, 2, 3, 4, 5}], [[2, 3, 4, 1, 2], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 4, 5, 1, 3], %1, {1, 2, 3, 4, 5}], [[3, 4, 5, 2, 1], %1, {1, 2, 3, 4, 5}], [[2, 3, 4, 1, 4], {[0, 1, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[2, 3, 4, 1, 1], {[0, 0, 1, 1, 2, 0], [0, 1, 1, 1, 1, 0], [1, 0, 1, 1, 1, 0], [0, 0, 2, 1, 1, 0], [0, 0, 1, 2, 1, 0], [0, 0, 1, 1, 1, 1]}, {4, 5}], [[3, 4, 5, 1, 2], %1, {1, 2, 3, 4, 5}], [[2, 3, 5, 1, 4], %1, {1, 2, 3, 4, 5}], [[2, 3, 4, 1, 3], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 4, 1, 2, 3], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[3, 4, 1, 3, 2], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 3, 1, 2, 4], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 3, 1, 2, 3], {[0, 1, 0, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[3, 4, 2, 3, 1], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 3, 1, 2, 1], {[0, 0, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 3, 1, 2, 2], {[0, 1, 0, 0, 1, 1], [0, 2, 0, 0, 1, 0], [1, 1, 0, 0, 1, 0], [0, 1, 1, 0, 1, 0], [0, 1, 0, 1, 1, 0], [0, 1, 0, 0, 2, 0]}, {4, 5}]] %1 := {[0, 1, 1, 1, 1, 0]} Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 6, 8, 10, 12, 14, 16, 18] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 19, 34, 53, 76, 103, 134, 169, 208] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 93, 232, 470, 834, 1351] For the equivalence class of patterns, {{[1, 3, 2], [2, 3, 1], [1, 2, 3, 4]}, {[1, 3, 2], [2, 3, 1], [4, 3, 2, 1]}, {[2, 1, 3], [3, 1, 2], [1, 2, 3, 4]}, {[2, 1, 3], [3, 1, 2], [4, 3, 2, 1]}} the member , {[1, 3, 2], [2, 3, 1], [1, 2, 3, 4]}, has a scheme of depth , 4 here it is: [[[], {}, {}], [[1], {[0, 3]}, {}], [[1, 1], {[0, 3, 0], [0, 2, 1], [0, 1, 2], [0, 0, 3]}, {1, 2}], [[2, 1], {[0, 1, 3], [0, 3, 1], [0, 2, 2], [0, 4, 0]}, {}], [[1, 2], {[1, 1, 0], [0, 2, 0], [0, 1, 2]}, {}], [[1, 3, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 3, 1], {[0, 1, 1, 0]}, {1, 2, 3}], [[1, 2, 1], {[0, 0, 2, 0], [0, 1, 1, 1], [0, 0, 1, 2], [0, 2, 1, 0], [1, 0, 1, 0]}, {1, 3}], [[1, 2, 2], {[1, 1, 0, 0], [0, 2, 0, 0], [0, 1, 1, 1], [0, 1, 0, 2], [0, 1, 2, 0]}, {2, 3}], [[1, 2, 3], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[2, 1, 2], {[1, 1, 0, 0], [0, 2, 0, 0], [0, 1, 1, 1], [0, 1, 0, 2], [0, 1, 2, 0]}, {1, 3}], [[3, 1, 2], {[1, 1, 1, 0], [0, 1, 2, 1], [0, 1, 1, 2], [0, 1, 3, 0], [0, 2, 1, 0]}, {1} ], [[2, 1, 1], {[0, 1, 1, 1], [0, 0, 3, 1], [0, 0, 2, 2], [0, 0, 1, 3], [0, 0, 4, 0], [0, 2, 1, 0], [0, 1, 2, 0]}, {2, 3}], [[3, 2, 1], { [0, 4, 1, 0], [0, 3, 2, 0], [0, 2, 3, 0], [0, 1, 3, 1], [0, 3, 1, 1], [0, 2, 2, 1], [0, 1, 4, 0], [0, 2, 1, 2], [0, 1, 2, 2], [0, 1, 1, 3]}, {1}] , [[2, 1, 3], {[1, 1, 1, 0], [0, 1, 1, 2], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[1, 2, 3, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 3], { [1, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 1, 2, 0, 0], [0, 1, 1, 0, 1], [0, 2, 1, 0, 0]}, {3, 4}], [[2, 1, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 4], { [0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {1, 2, 3}], [[2, 1, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 3], { [0, 1, 1, 0, 2], [0, 1, 1, 1, 1], [0, 1, 1, 2, 0], [1, 1, 1, 0, 0], [0, 1, 2, 0, 0], [0, 2, 1, 0, 0]}, {3, 4}]] Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 7, 11, 16, 22, 29, 37, 46] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 18, 34, 54, 78, 106, 138, 174, 214] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 80, 149, 227, 314, 410] For the equivalence class of patterns, {{[1, 3, 2], [3, 1, 2], [1, 2, 3, 4]}, {[1, 3, 2], [3, 1, 2], [4, 3, 2, 1]}, {[2, 1, 3], [2, 3, 1], [1, 2, 3, 4]}, {[2, 1, 3], [2, 3, 1], [4, 3, 2, 1]}} the member , {[1, 3, 2], [3, 1, 2], [1, 2, 3, 4]}, has a scheme of depth , 3 here it is: [[[], {}, {}], [[1], {[0, 3]}, {}], [[1, 1], {[0, 3, 0], [0, 2, 1], [0, 1, 2], [0, 0, 3]}, {1, 2}], [[1, 2], {[0, 2, 0], [0, 1, 2]}, {}], [[2, 1], {[0, 1, 3], [0, 2, 0]}, {}], [[1, 3, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [[1, 2, 3], {[0, 1, 1, 1], [0, 2, 1, 0], [0, 1, 2, 0]}, {2}], [ [1, 2, 2], {[0, 2, 0, 0], [0, 1, 1, 1], [0, 1, 0, 2], [0, 1, 2, 0]}, {2, 3} ], [ [1, 2, 1], {[0, 0, 2, 0], [0, 1, 1, 1], [0, 0, 1, 2], [0, 2, 1, 0]}, {1, 3} ], [[2, 3, 1], {[0, 1, 1, 2], [0, 2, 1, 0], [0, 1, 2, 0]}, {1}], [[3, 1, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [ [2, 1, 2], {[0, 2, 0, 0], [0, 1, 1, 1], [0, 1, 0, 2], [0, 1, 2, 0]}, {1, 3} ], [[2, 1, 3], {[0, 1, 1, 2], [0, 2, 1, 0], [0, 1, 2, 0]}, {1}], [ [2, 1, 1], {[0, 0, 2, 0], [0, 1, 1, 1], [0, 0, 1, 3], [0, 2, 1, 0]}, {2, 3} ], [[3, 2, 1], {[0, 1, 1, 3], [0, 2, 1, 0], [0, 1, 2, 0]}, {2}]] Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 7, 11, 16, 22, 29, 37, 46] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 24, 83, 227, 516, 1026, 1849, 3093, 4882] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 148, 1060, 5240, 18925, 54778] For the equivalence class of patterns, {{[1, 3, 2], [3, 1, 2], [2, 3, 1, 4]}, {[1, 3, 2], [3, 1, 2], [3, 2, 4, 1]}, {[2, 1, 3], [2, 3, 1], [1, 4, 2, 3]}, {[2, 1, 3], [2, 3, 1], [4, 1, 3, 2]}} the member , {[1, 3, 2], [3, 1, 2], [2, 3, 1, 4]}, has a scheme of depth , 5 here it is: [[[], {}, {}], [[1], {}, {}], [[1, 1], {}, {1, 2}], [[1, 2], {[0, 2, 0]}, {}], [[2, 1], {[0, 2, 0]}, {}], [[1, 2, 1], {[0, 0, 2, 0], [0, 2, 1, 0]}, {3}], [[1, 3, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [[1, 2, 2], {[0, 2, 0, 0]}, {2, 3}], [[2, 3, 1], {[0, 1, 1, 1], [0, 2, 1, 0], [0, 1, 2, 0]}, {1}], [[1, 2, 3], {[0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[3, 1, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 1, 2], {[0, 2, 0, 0]}, {1}], [[2, 1, 1], {[0, 0, 2, 0], [0, 2, 1, 0]}, {2, 3}], [[2, 1, 3], {[0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[3, 2, 1], {[0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[1, 2, 3, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 3], {[0, 1, 2, 0, 0], [0, 2, 1, 0, 0]}, {3, 4}], [[1, 2, 3, 1], {[0, 1, 1, 1, 0], [0, 0, 2, 1, 0], [0, 0, 1, 1, 1], [0, 0, 1, 2, 0]}, {4}], [[1, 2, 3, 4], %4, {}], [[2, 3, 4, 1], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [0, 1, 1, 2, 0]}, {}], [[2, 1, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 3], {[0, 1, 2, 0, 0], [0, 2, 1, 0, 0]}, {3, 4}], [[3, 1, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 4, 1], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [0, 1, 1, 2, 0]}, {1, 2}], [[2, 1, 3, 1], {[0, 1, 1, 1, 0], [0, 0, 2, 1, 0], [0, 0, 1, 1, 1], [0, 0, 1, 2, 0]}, {1, 2, 4}], [[2, 1, 3, 4], %4, {}], [[3, 2, 1, 4], %4, {1, 2}], [[4, 2, 1, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 1, 3], {[0, 1, 2, 0, 0], [0, 2, 1, 0, 0]}, {1}], [[4, 3, 2, 1], %4, {2, 3}], [[4, 3, 1, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 1, 1], {[0, 1, 1, 1, 0], [0, 0, 2, 1, 0], [0, 0, 1, 2, 0]}, {3, 4}] , [[3, 2, 1, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 4, 5, 2], %2, {1, 2, 3, 4, 5}], [[1, 2, 3, 5, 4], %2, {1, 2, 3, 4, 5}], [[1, 2, 4, 5, 3], %2, {1, 2, 3, 4, 5}], [[1, 2, 3, 4, 3], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 2, 3, 4, 2], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 2, 3, 4, 1], %3, {1}], [[1, 2, 3, 4, 5], {[0, 1, 2, 1, 1, 0], [0, 2, 1, 1, 1, 0], [0, 1, 1, 2, 1, 0], [0, 1, 1, 1, 2, 0]}, {2, 3, 4}], [ [1, 2, 3, 4, 4], {[0, 2, 1, 1, 0, 0], [0, 1, 2, 1, 0, 0], [0, 1, 1, 2, 0, 0]}, {4, 5}], [[2, 3, 4, 5, 1], %1, {1, 2, 3, 4}], [[2, 1, 4, 5, 3], %2, {1, 2, 3, 4, 5}], [[3, 1, 4, 5, 2], %2, {1, 2, 3, 4, 5}], [[2, 1, 3, 4, 3], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 1, 3, 4, 2], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 1, 3, 5, 4], %2, {1, 2, 3, 4, 5}], [[2, 1, 3, 4, 1], %3, {2}], [ [2, 1, 3, 4, 4], {[0, 2, 1, 1, 0, 0], [0, 1, 2, 1, 0, 0], [0, 1, 1, 2, 0, 0]}, {4, 5}], [ [2, 1, 3, 4, 5], {[0, 1, 2, 1, 1, 0], [0, 2, 1, 1, 1, 0], [0, 1, 1, 2, 1, 0], [0, 1, 1, 1, 2, 0]}, {1, 3, 4}], [[3, 2, 4, 5, 1], %1, {1, 2}], [[2, 3, 4, 1, 5], %2, {1, 2, 3, 4, 5}], [[2, 3, 4, 1, 2], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 4, 5, 1, 3], %2, {1, 2, 3, 4, 5}], [[2, 3, 4, 1, 4], {[0, 1, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[3, 4, 5, 1, 2], %2, {1, 2, 3, 4, 5}], [[2, 3, 4, 1, 1], %3, {4, 5}], [[2, 3, 5, 1, 4], %2, {1, 2, 3, 4, 5}], [[2, 3, 4, 1, 3], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[3, 4, 5, 2, 1], %1, {4}]] %1 := {[0, 1, 2, 1, 1, 0], [0, 2, 1, 1, 1, 0], [0, 1, 1, 2, 1, 0], [0, 1, 1, 1, 1, 1], [0, 1, 1, 1, 2, 0]} %2 := {[0, 1, 1, 1, 1, 0]} %3 := {[0, 0, 1, 1, 2, 0], [0, 1, 1, 1, 1, 0], [0, 0, 2, 1, 1, 0], [0, 0, 1, 2, 1, 0], [0, 0, 1, 1, 1, 1]} %4 := {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 2, 0]} Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 7, 11, 16, 22, 29, 37, 46] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 24, 48, 80, 120, 168, 224, 288, 360] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 148, 324, 608, 1027, 1608] For the equivalence class of patterns, {{[1, 3, 2], [2, 3, 1], [3, 2, 1, 4]}, {[1, 3, 2], [2, 3, 1], [4, 1, 2, 3]}, {[2, 1, 3], [3, 1, 2], [1, 4, 3, 2]}, {[2, 1, 3], [3, 1, 2], [2, 3, 4, 1]}} the member , {[1, 3, 2], [2, 3, 1], [3, 2, 1, 4]}, has a scheme of depth , 4 here it is: [[[], {}, {}], [[1], {}, {}], [[1, 1], {}, {1, 2}], [[1, 2], {[1, 1, 0], [0, 2, 0]}, {}], [[2, 1], {[1, 1, 1]}, {}], [[1, 3, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 3, 1], {[0, 1, 1, 0]}, {1, 2, 3}], [[1, 2, 2], {[1, 1, 0, 0], [0, 2, 0, 0]}, {2, 3}], [[1, 2, 1], {[0, 0, 2, 0], [0, 2, 1, 0], [1, 0, 1, 0]}, {1, 3}], [[1, 2, 3], {[1, 1, 1, 0], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[2, 1, 2], {[1, 1, 0, 0], [0, 2, 0, 0]}, {1, 3}], [[2, 1, 1], {[1, 1, 1, 0], [1, 0, 1, 1]}, {2, 3}], [[3, 2, 1], {[0, 1, 1, 1], [1, 1, 2, 0]}, {1}], [[3, 1, 2], {[1, 1, 1, 0], [0, 2, 1, 0]}, {}], [[2, 1, 3], {[1, 1, 1, 0], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[1, 2, 3, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 3], %1, {3, 4}], [[1, 3, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 4], %2, {1, 2, 3}], [[2, 1, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 3], %1, {3, 4}], [[2, 1, 3, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 4], %2, {1, 2, 3}], [[3, 1, 2, 4], %2, {1, 2, 3}], [[4, 1, 3, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 2, 3, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 2], {[1, 1, 0, 1, 0], [0, 2, 0, 1, 0]}, {3, 4}], [[4, 1, 2, 3], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [1, 1, 1, 1, 0]}, {1}], [ [3, 1, 2, 1], {[1, 0, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 2, 1, 0], [0, 0, 1, 1, 1]}, {1, 2, 4}], [[3, 1, 2, 3], %1, {1}]] %1 := {[1, 1, 1, 0, 0], [0, 1, 2, 0, 0], [0, 2, 1, 0, 0]} %2 := {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]} Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 7, 11, 16, 22, 29, 37, 46] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 18, 34, 54, 78, 106, 138, 174, 214] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 80, 149, 227, 314, 410] For the equivalence class of patterns, {{[1, 2, 3], [2, 3, 1], [4, 3, 2, 1]}, {[1, 2, 3], [3, 1, 2], [4, 3, 2, 1]}, {[1, 3, 2], [3, 2, 1], [1, 2, 3, 4]}, {[2, 1, 3], [3, 2, 1], [1, 2, 3, 4]}} the member , {[1, 2, 3], [2, 3, 1], [4, 3, 2, 1]}, has a scheme of depth , 5 here it is: [[[], {}, {}], [[1], {[3, 1], [5, 0], [0, 4]}, {}], [[1, 1], {[5, 0, 0], [0, 1, 3], [3, 0, 1], [0, 3, 1], [0, 2, 2], [0, 0, 4], [3, 1, 0], [0, 4, 0] }, {1, 2}], [[2, 1], {[0, 1, 4], [2, 1, 1], [0, 2, 1], [3, 1, 0], [2, 2, 0], [0, 4, 0]}, {}], [[1, 2], {[1, 1, 0], [0, 1, 1], [0, 4, 0]}, {}], [[1, 2, 3], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 3, 1], {[0, 1, 1, 0]}, {1, 2, 3}], [ [1, 2, 1], {[0, 1, 1, 0], [0, 0, 1, 1], [0, 0, 4, 0], [1, 0, 1, 0]}, {1, 3} ], [ [1, 2, 2], {[1, 1, 0, 0], [0, 1, 1, 0], [0, 1, 0, 1], [0, 4, 0, 0]}, {2, 3} ], [[1, 3, 2], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 3, 1, 0], [0, 1, 2, 0]}, {}], [[2, 1, 1], {[0, 0, 1, 4], [0, 0, 2, 1], [2, 0, 1, 1], [0, 1, 1, 2], [2, 1, 1, 0], [0, 1, 3, 0], [3, 0, 1, 0], [2, 0, 2, 0], [0, 0, 4, 0], [0, 2, 1, 0]}, {2, 3}], [ [2, 1, 2], {[1, 1, 0, 0], [0, 1, 1, 0], [0, 1, 0, 1], [0, 4, 0, 0]}, {1, 3} ], [[3, 2, 1], {[1, 1, 1, 0], [0, 1, 4, 0], [0, 2, 1, 1], [0, 1, 2, 1], [0, 3, 1, 0], [0, 2, 2, 0]}, {}], [[3, 1, 2], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 3, 1, 0], [0, 1, 2, 0]}, {}], [[2, 1, 3], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 1, 4, 0], [0, 2, 1, 0]}, {}], [[2, 4, 3, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 4, 2, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 2, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 2, 3], {[0, 1, 1, 0, 0]}, {1, 2, 3, 4}], [[1, 3, 2, 1], { [0, 0, 3, 1, 0], [1, 0, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 1, 2, 0]}, {4}], [[1, 3, 2, 2], %7, {3, 4}], [[1, 4, 3, 2], %6, {}], [[2, 1, 3, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 3], { [1, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 1, 1, 0, 1], [0, 2, 1, 0, 0], [0, 1, 4, 0, 0]}, {3, 4}], [[2, 1, 3, 2], {[0, 1, 0, 2, 0], [1, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 1], [0, 2, 0, 1, 0]}, {}], [[2, 1, 4, 3], { [0, 2, 1, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0], [0, 1, 3, 1, 0]}, {}], [[3, 1, 2, 3], {[0, 1, 1, 0, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 1], { [0, 0, 3, 1, 0], [1, 0, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 1, 2, 0]}, {4}], [[4, 1, 2, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 2, 3, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 2], %7, {3, 4}], [[4, 1, 3, 2], %6, {}], [[3, 2, 1, 2], %7, {2}], [[4, 3, 2, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 1, 4], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0]}, {2, 3}], [[3, 2, 1, 1], {[0, 0, 3, 1, 0], [0, 0, 2, 2, 0], [1, 0, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 1, 4, 0], [0, 0, 2, 1, 1], [0, 0, 1, 2, 1]}, {3, 4} ], [[3, 2, 1, 3], {[1, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 1, 1, 0, 1], [0, 2, 1, 0, 0], [0, 1, 4, 0, 0]}, {1}], [[4, 3, 1, 2], %6, {}], [ [4, 2, 1, 3], {[0, 2, 1, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0], [0, 1, 3, 1, 0]}, {}], [[1, 4, 3, 2, 2], %3, {4, 5}], [[1, 4, 3, 2, 1], %5, {1, 2, 3, 4, 5}], [[1, 5, 4, 3, 2], %2, {1, 2, 3, 4, 5}], [[1, 4, 3, 2, 5], %2, {1, 2, 3, 4, 5}], [[2, 5, 4, 3, 1], %2, {1, 2, 3, 4, 5}], [[1, 5, 4, 2, 3], %2, {1, 2, 3, 4, 5}], [[1, 4, 3, 2, 3], %1, {1, 2, 3, 4, 5}], [[1, 5, 3, 2, 4], %2, {1, 2, 3, 4, 5}], [[1, 4, 3, 2, 4], %4, {1, 2, 3, 4, 5}], [[2, 1, 4, 3, 1], %5, {1, 2, 3, 4, 5}], [[2, 1, 4, 3, 5], %2, {1, 2, 3, 4, 5}], [[2, 1, 4, 3, 4], %4, {1, 2, 3, 4, 5}], [[2, 1, 5, 3, 4], %2, {1, 2, 3, 4, 5}], [[3, 1, 5, 4, 2], %2, {1, 2, 3, 4, 5}], [[2, 1, 4, 3, 2], %3, {1, 3, 4}], [ [2, 1, 5, 4, 3], {[0, 1, 2, 1, 1, 0], [0, 2, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [0, 1, 1, 2, 1, 0], [0, 1, 1, 1, 1, 1], [0, 1, 1, 1, 2, 0]}, {1, 2}], [[3, 2, 5, 4, 1], %2, {1, 2, 3, 4, 5}], [ [2, 1, 4, 3, 3], {[0, 1, 3, 0, 1, 0], [0, 2, 1, 0, 1, 0], [0, 1, 1, 0, 2, 0], [0, 1, 1, 1, 1, 0], [1, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1]}, {4, 5}], [[4, 1, 3, 2, 5], %2, {1, 2, 3, 4, 5}], [[5, 1, 3, 2, 4], %2, {1, 2, 3, 4, 5}], [[4, 1, 3, 2, 4], %4, {1, 2, 3, 4, 5}], [[4, 1, 3, 2, 1], %5, {1, 2, 3, 4, 5}], [[5, 1, 4, 3, 2], %2, {1, 2, 3, 4, 5}], [[5, 2, 4, 3, 1], %2, {1, 2, 3, 4, 5}], [[4, 1, 3, 2, 2], %3, {4, 5}], [[4, 1, 3, 2, 3], %1, {1, 2, 3, 4, 5}], [[5, 1, 4, 2, 3], %2, {1, 2, 3, 4, 5}], [[4, 2, 1, 3, 4], %4, {1, 2, 3, 4, 5}], [[5, 3, 1, 4, 2], %2, {1, 2, 3, 4, 5}], [[4, 2, 1, 3, 3], { [0, 1, 3, 0, 1, 0], [0, 2, 1, 0, 1, 0], [0, 1, 1, 0, 2, 0], [0, 1, 1, 1, 1, 0], [1, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1]}, {4, 5}], [[4, 2, 1, 3, 2], %3, {1, 2}], [[4, 2, 1, 3, 1], %5, {1, 2, 3, 4, 5}], [[5, 2, 1, 3, 4], %2, {1, 2, 3, 4, 5}], [[5, 3, 2, 4, 1], %2, {1, 2, 3, 4, 5}], [[4, 2, 1, 3, 5], %2, {1, 2, 3, 4, 5}], [[5, 2, 1, 4, 3], { [0, 1, 2, 1, 1, 0], [0, 2, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [0, 1, 1, 2, 1, 0], [0, 1, 1, 1, 1, 1], [0, 1, 1, 1, 2, 0]}, {2, 3}], [[5, 4, 2, 3, 1], %2, {1, 2, 3, 4, 5}], [[4, 3, 1, 2, 1], %5, {1, 2, 3, 4, 5}], [[5, 3, 1, 2, 4], %2, {1, 2, 3, 4, 5}], [[4, 3, 1, 2, 3], %1, {1, 2, 3, 4, 5}], [[4, 3, 1, 2, 5], %2, {1, 2, 3, 4, 5}], [[5, 4, 1, 3, 2], %2, {1, 2, 3, 4, 5}], [[4, 3, 1, 2, 4], %4, {1, 2, 3, 4, 5}], [[4, 3, 1, 2, 2], %3, {4, 5}], [[5, 4, 1, 2, 3], %2, {1, 2, 3, 4, 5}], [[2, 1, 3, 2, 4], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 1, 3, 2, 3], {[0, 1, 0, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[3, 2, 4, 3, 1], %1, {1, 2, 3, 4, 5}], [[2, 1, 4, 2, 3], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 1, 3, 2, 1], {[0, 0, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[3, 1, 4, 3, 2], %1, {1, 2, 3, 4, 5}], [[2, 1, 3, 2, 2], { [0, 1, 0, 0, 1, 1], [0, 2, 0, 0, 1, 0], [1, 1, 0, 0, 1, 0], [0, 1, 1, 0, 1, 0], [0, 1, 0, 1, 1, 0], [0, 1, 0, 0, 2, 0]}, {4, 5}]] %1 := {[0, 1, 1, 0, 1, 0]} %2 := {[0, 1, 1, 1, 1, 0]} %3 := {[0, 1, 1, 1, 1, 0], [1, 1, 0, 1, 1, 0], [0, 2, 0, 1, 1, 0], [0, 1, 0, 2, 1, 0], [0, 1, 0, 1, 2, 0], [0, 1, 0, 1, 1, 1]} %4 := {[0, 1, 1, 1, 0, 0]} %5 := {[0, 0, 1, 1, 1, 0]} %6 := {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]} %7 := {[0, 1, 0, 2, 0], [0, 3, 0, 1, 0], [1, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 1]} Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 6, 3, 1, 0, 0, 0, 0] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 19, 23, 5, 1, 0, 0, 0, 0] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 93, 99, 7, 1, 0] For the equivalence class of patterns, {{[1, 2, 3], [2, 3, 1], [4, 3, 1, 2]}, {[1, 2, 3], [3, 1, 2], [3, 4, 2, 1]}, {[1, 3, 2], [3, 2, 1], [2, 1, 3, 4]}, {[2, 1, 3], [3, 2, 1], [1, 2, 4, 3]}} the member , {[1, 2, 3], [3, 1, 2], [3, 4, 2, 1]}, has a scheme of depth , 5 here it is: [[[], {}, {}], [[1], {}, {}], [[1, 1], {}, {1, 2}], [[2, 1], {[0, 2, 0]}, {}], [[1, 2], {[0, 1, 1], [2, 1, 0]}, {}], [[1, 2, 3], {[0, 1, 1, 0]}, {1, 2, 3}], [ [1, 2, 1], {[0, 1, 1, 0], [0, 0, 2, 0], [0, 0, 1, 1], [2, 0, 1, 0]}, {1, 3} ], [[2, 3, 1], {[1, 1, 1, 0], [0, 1, 1, 1], [0, 2, 1, 0], [0, 1, 2, 0]}, {1}], [[1, 2, 2], {[0, 1, 1, 0], [0, 1, 0, 1], [2, 1, 0, 0]}, {2, 3}], [[1, 3, 2], {[0, 1, 1, 1], [2, 1, 1, 0], [0, 1, 2, 0]}, {}], [[3, 1, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 1, 2], {[0, 2, 0, 0], [0, 1, 1, 0], [0, 1, 0, 1], [2, 1, 0, 0]}, {1, 2, 3}], [[2, 1, 1], {[0, 0, 2, 0], [0, 2, 1, 0]}, {2, 3}], [[3, 2, 1], {[0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[2, 1, 3], {[0, 1, 1, 1], [2, 1, 1, 0], [0, 2, 1, 0]}, {}], [[1, 4, 2, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 2, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 4, 3, 2], {[0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [0, 1, 1, 2, 0], [2, 1, 1, 1, 0]}, {2, 3}], [[1, 3, 2, 3], {[0, 1, 1, 0, 0]}, {1, 2, 3, 4}], [[1, 3, 2, 2], {[0, 1, 0, 2, 0], [2, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 1]}, {3, 4}], [[1, 3, 2, 1], {[2, 0, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 2, 1, 0], [0, 0, 1, 1, 1], [0, 0, 1, 2, 0]}, {}], [[2, 4, 3, 1], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {}], [[2, 1, 3, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 3], {[2, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 1, 1, 0, 1], [0, 2, 1, 0, 0]}, {3, 4}], [[3, 2, 4, 1], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [1, 1, 1, 1, 0], [0, 1, 1, 2, 0]}, {1, 2}], [[2, 1, 4, 3], {[0, 2, 1, 1, 0], [0, 1, 1, 1, 1], [0, 1, 1, 2, 0], [2, 1, 1, 1, 0]}, {2}], [[2, 1, 3, 1], {[1, 0, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 2, 1, 0], [0, 0, 1, 1, 1], [0, 0, 1, 2, 0]}, {1, 2}], [[2, 1, 3, 2], { [0, 1, 0, 2, 0], [2, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 1], [0, 2, 0, 1, 0]}, {}], [[4, 2, 1, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 3, 2, 1], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 2, 0]}, {2, 3}] , [[4, 3, 1, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 1, 1], {[0, 1, 1, 1, 0], [0, 0, 2, 1, 0], [0, 0, 1, 2, 0]}, {3, 4}] , [[3, 2, 1, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 1, 4], {[0, 2, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 1], [2, 1, 1, 1, 0]}, {2}], [[3, 2, 1, 3], {[2, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 1, 2, 0, 0], [0, 1, 1, 0, 1], [0, 2, 1, 0, 0]}, {}], [[2, 4, 3, 1, 5], %1, {1, 2, 3, 4, 5}], [[2, 4, 3, 1, 3], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 5, 4, 1, 3], %1, {1, 2, 3, 4, 5}], [[2, 4, 3, 1, 4], {[0, 1, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[3, 5, 4, 1, 2], %1, {1, 2, 3, 4, 5}], [[2, 5, 3, 1, 4], %1, {1, 2, 3, 4, 5}], [[2, 4, 3, 1, 1], { [0, 0, 1, 1, 2, 0], [0, 1, 1, 1, 1, 0], [1, 0, 1, 1, 1, 0], [0, 0, 2, 1, 1, 0], [0, 0, 1, 2, 1, 0], [0, 0, 1, 1, 1, 1]}, {4, 5}], [[3, 5, 4, 2, 1], %1, {1, 2, 3, 4, 5}], [[2, 4, 3, 1, 2], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[3, 2, 1, 3, 1], {[0, 0, 1, 2, 0, 0], [0, 0, 1, 1, 1, 0], [0, 0, 1, 1, 0, 1], [1, 0, 1, 1, 0, 0], [0, 1, 1, 1, 0, 0], [0, 0, 2, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[4, 3, 2, 4, 1], {[0, 2, 1, 1, 0, 0], [0, 1, 2, 1, 0, 0], [0, 1, 1, 1, 1, 0], [1, 1, 1, 1, 0, 0], [0, 1, 1, 2, 0, 0], [0, 1, 1, 1, 0, 1]}, {1, 2, 3, 4}], [[4, 2, 1, 4, 3], {[0, 1, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[4, 3, 1, 4, 2], {[0, 1, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[3, 2, 1, 3, 2], {[0, 1, 0, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[3, 2, 1, 3, 4], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[3, 2, 1, 3, 3], {[0, 1, 1, 0, 0, 1], [0, 2, 1, 0, 0, 0], [0, 1, 1, 1, 0, 0], [0, 1, 2, 0, 0, 0], [0, 1, 1, 0, 1, 0], [2, 1, 1, 0, 0, 0]}, {4, 5}], [[1, 4, 3, 1, 2], {[0, 0, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 4, 3, 2, 1], {[0, 1, 1, 1, 1, 0], [1, 1, 0, 1, 1, 0], [0, 2, 0, 1, 1, 0], [0, 1, 0, 2, 1, 0], [0, 1, 0, 1, 2, 0], [0, 1, 0, 1, 1, 1]}, {4}], [[1, 3, 2, 1, 2], {[0, 0, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 3, 2, 1, 4], {[0, 0, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 4, 2, 1, 3], {[0, 0, 1, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[1, 3, 2, 1, 3], {[0, 0, 1, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[1, 3, 2, 1, 1], {[0, 0, 0, 1, 1, 1], [0, 0, 1, 1, 1, 0], [0, 0, 0, 1, 2, 0], [0, 0, 0, 2, 1, 0], [0, 1, 0, 1, 1, 0], [2, 0, 0, 1, 1, 0]}, {4, 5}], [[2, 1, 3, 2, 4], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 1, 3, 2, 3], {[0, 1, 0, 1, 0, 0]}, {1, 2, 3, 4, 5}], [[2, 1, 4, 2, 3], {[0, 1, 0, 1, 1, 0]}, {1, 2, 3, 4, 5}], [[3, 1, 4, 3, 2], {[0, 1, 1, 0, 1, 0]}, {1, 2, 3, 4, 5}], [[2, 1, 3, 2, 1], {[0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 1, 0], [0, 0, 1, 0, 2, 0], [0, 0, 2, 0, 1, 0], [0, 1, 1, 0, 1, 0], [1, 0, 1, 0, 1, 0]}, {1}], [ [2, 1, 3, 2, 2], {[0, 1, 0, 0, 1, 1], [0, 2, 0, 0, 1, 0], [0, 1, 1, 0, 1, 0], [0, 1, 0, 1, 1, 0], [0, 1, 0, 0, 2, 0], [2, 1, 0, 0, 1, 0]}, {4, 5}], [[3, 2, 4, 3, 1], {[0, 1, 2, 0, 1, 0], [0, 2, 1, 0, 1, 0], [0, 1, 1, 0, 2, 0], [0, 1, 1, 1, 1, 0], [1, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1]}, {1}]] %1 := {[0, 1, 1, 1, 1, 0]} Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 4, 6, 8, 10, 12, 14, 16, 18] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 19, 21, 27, 33, 39, 45, 51, 57] Using the scheme, the first, , 7, terms for , 3, copies of each letter are [1, 20, 93, 58, 70, 82, 94] Out of a total of , 31, cases 27, were successful and , 4, failed Success Rate: , 0.871 Here are the failures {{{[2, 3, 1], [3, 1, 2], [1, 2, 3, 4]}, {[1, 3, 2], [2, 1, 3], [4, 3, 2, 1]}}, {{[1, 2, 3], [2, 3, 1], [4, 2, 1, 3]}, {[1, 2, 3], [3, 1, 2], [2, 4, 3, 1]}, {[1, 3, 2], [3, 2, 1], [3, 1, 2, 4]}, {[2, 1, 3], [3, 2, 1], [1, 3, 4, 2]}} , {{[2, 3, 1], [3, 1, 2], [2, 1, 3, 4]}, {[2, 3, 1], [3, 1, 2], [1, 2, 4, 3]}, {[1, 3, 2], [2, 1, 3], [3, 4, 2, 1]}, {[1, 3, 2], [2, 1, 3], [4, 3, 1, 2]}}, { {[2, 3, 1], [3, 1, 2], [1, 3, 2, 4]}, {[1, 3, 2], [2, 1, 3], [4, 2, 3, 1]}} }