Warning, the protected name Chi has been redefined and unprotected There all together, 6, different equivalence classes For the equivalence class of patterns, {{[1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2]}} the member , {[1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2]}, has a scheme of depth , 4 here it is: [[[], {}, {}], [[1], {[1, 1]}, {}], [[1, 1], {[1, 1, 0], [1, 0, 1]}, {1, 2}], [[1, 2], {[1, 1, 0], [0, 2, 0]}, {}], [[2, 1], {[0, 2, 0], [0, 1, 1]}, {}], [[2, 3, 1], {[0, 1, 1, 0]}, {1, 2, 3}], [[1, 2, 2], {[1, 1, 0, 0], [0, 2, 0, 0]}, {2, 3}], [[1, 2, 1], {[0, 0, 2, 0], [0, 1, 1, 0], [0, 0, 1, 1], [1, 0, 1, 0]}, {1, 2, 3}], [[1, 3, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [[1, 2, 3], {[1, 1, 1, 0], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[3, 1, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 1, 1], {[0, 0, 2, 0], [0, 1, 1, 0], [0, 0, 1, 1]}, {2, 3}], [[2, 1, 3], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 1, 2], {[1, 1, 0, 0], [0, 1, 1, 0], [0, 1, 0, 1], [0, 2, 0, 0]}, {1, 2, 3}], [[3, 2, 1], {[0, 1, 1, 1], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[1, 2, 3, 4], {[0, 1, 1, 2, 0], [0, 1, 2, 1, 0], [1, 1, 1, 1, 0], [0, 2, 1, 1, 0]}, {1, 2, 3}], [[1, 2, 3, 3], {[0, 2, 1, 0, 0], [0, 1, 2, 0, 0], [1, 1, 1, 0, 0]}, {3, 4}] , [[1, 2, 3, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 2, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[1, 3, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 3, 1, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 1, 1], {[0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 1, 2, 0], [0, 0, 2, 1, 0]}, {3, 4}], [[3, 2, 1, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[4, 3, 2, 1], {[0, 1, 1, 2, 0], [0, 1, 2, 1, 0], [0, 2, 1, 1, 0], [0, 1, 1, 1, 1]}, {1, 2, 3}], [[3, 2, 1, 3], {[0, 1, 1, 0, 0]}, {1, 2, 3, 4}], [[3, 2, 1, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 2, 1, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}]] Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 2, 2, 2, 2, 2, 2, 2, 2] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 2, 2, 2, 2, 2, 2, 2, 2] Using the scheme, the first, , 10, terms for , 3, copies of each letter are [1, 20, 2, 2, 2, 2, 2, 2, 2, 2] For the equivalence class of patterns, { {[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1]}, {[1, 2, 3], [1, 3, 2], [2, 1, 3], [3, 1, 2]}, {[1, 3, 2], [2, 3, 1], [3, 1, 2], [3, 2, 1]}, {[2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]}} the member , {[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1]}, has a scheme of depth , 1 here it is: [[[], {}, {}], [[1], {[1, 1], [0, 2]}, {1}]] Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 2, 2, 2, 2, 2, 2, 2, 2] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 6, 6, 6, 6, 6, 6, 6, 6] Using the scheme, the first, , 10, terms for , 3, copies of each letter are [1, 20, 20, 20, 20, 20, 20, 20, 20, 20] For the equivalence class of patterns, { {[1, 2, 3], [1, 3, 2], [2, 1, 3], [3, 2, 1]}, {[1, 2, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]}} the member , {[1, 2, 3], [1, 3, 2], [2, 1, 3], [3, 2, 1]}, has a scheme of depth , 4 here it is: [[[], {}, {}], [[1], {[0, 2], [3, 0]}, {}], [[1, 1], {[0, 2, 0], [0, 1, 1], [0, 0, 2], [3, 0, 0]}, {1, 2}], [[2, 1], {[1, 1, 0], [0, 1, 1], [0, 3, 0]}, {}], [[1, 2], {[3, 1, 0], [0, 2, 0], [0, 1, 1]}, {}], [[1, 2, 3], {[0, 1, 1, 0]}, {1, 2, 3}], [[1, 2, 1], {[0, 0, 2, 0], [0, 1, 1, 0], [0, 0, 1, 1], [1, 0, 1, 0]}, {1, 2, 3}], [ [1, 2, 2], {[0, 1, 1, 0], [0, 1, 0, 1], [3, 1, 0, 0], [0, 2, 0, 0]}, {2, 3} ], [[1, 3, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 3, 1], {[0, 1, 1, 1], [0, 3, 1, 0], [1, 1, 1, 0], [0, 1, 2, 0]}, {}], [[3, 2, 1], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 1, 3], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 1, 2], {[1, 1, 0, 0], [0, 1, 1, 0], [0, 1, 0, 1], [0, 2, 0, 0]}, {1, 2, 3}], [ [2, 1, 1], {[0, 1, 1, 0], [0, 0, 1, 1], [1, 0, 1, 0], [0, 0, 3, 0]}, {2, 3} ], [[3, 1, 2], {[0, 1, 1, 1], [1, 1, 1, 0], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[2, 3, 1, 1], {[0, 0, 3, 1, 0], [1, 0, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 1, 2, 0]}, {3, 4}], [[3, 4, 2, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 1, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 1, 3], {[0, 1, 1, 0, 0]}, {1, 2, 3, 4}], [[3, 4, 1, 2], { [0, 1, 1, 2, 0], [0, 1, 2, 1, 0], [1, 1, 1, 1, 0], [0, 2, 1, 1, 0], [0, 1, 1, 1, 1]}, {1, 2}], [[2, 4, 1, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 3, 1, 2], {[0, 1, 0, 1, 1], [1, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 2, 0, 1, 0], [0, 1, 0, 2, 0]}, {1}], [[4, 1, 2, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 3], {[0, 1, 1, 0, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 2, 3, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 2], { [0, 1, 0, 1, 1], [1, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 2, 0, 1, 0], [0, 1, 0, 2, 0]}, {3, 4}], [[4, 1, 3, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}]] Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 2, 1, 0, 0, 0, 0, 0, 0] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 3, 1, 0, 0, 0, 0, 0, 0] Using the scheme, the first, , 10, terms for , 3, copies of each letter are [1, 20, 4, 1, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[1, 2, 3], [1, 3, 2], [2, 3, 1], [3, 1, 2]}, {[1, 2, 3], [2, 1, 3], [2, 3, 1], [3, 1, 2]}, {[1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 2, 1]}, {[1, 3, 2], [2, 1, 3], [3, 1, 2], [3, 2, 1]}} the member , {[1, 2, 3], [1, 3, 2], [2, 3, 1], [3, 1, 2]}, has a scheme of depth , 4 here it is: [[[], {}, {}], [[1], {[0, 2]}, {}], [[1, 2], {[1, 1, 0], [0, 2, 0], [0, 1, 1]}, {1, 2}], [[1, 1], {[0, 2, 0], [0, 1, 1], [0, 0, 2]}, {1, 2}], [[2, 1], {[0, 2, 0], [0, 1, 2]}, {}], [[3, 1, 2], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 1, 1], {[0, 0, 2, 0], [0, 0, 1, 2], [0, 1, 1, 0]}, {2, 3}], [ [2, 1, 2], {[1, 1, 0, 0], [0, 1, 1, 0], [0, 1, 0, 1], [0, 2, 0, 0]}, {1, 2, 3}], [[3, 2, 1], {[0, 1, 1, 2], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[2, 1, 3], {[0, 1, 1, 1], [1, 1, 1, 0], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[2, 1, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 3], { [0, 2, 1, 0, 0], [0, 1, 2, 0, 0], [0, 1, 1, 0, 1], [0, 1, 1, 1, 0], [1, 1, 1, 0, 0]}, {3, 4}], [[3, 1, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 3, 1, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 3, 2, 1], {[0, 1, 1, 1, 2], [0, 1, 1, 2, 0], [0, 1, 2, 1, 0], [0, 2, 1, 1, 0]}, {2, 3}], [[3, 2, 1, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 1, 1], {[0, 0, 1, 1, 2], [0, 1, 1, 1, 0], [0, 0, 1, 2, 0], [0, 0, 2, 1, 0]}, {3, 4}], [[3, 2, 1, 4], {[0, 1, 1, 2, 0], [0, 1, 2, 1, 0], [1, 1, 1, 1, 0], [0, 2, 1, 1, 0], [0, 1, 1, 1, 1]}, {1, 2, 3}], [[4, 2, 1, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 1, 3], { [0, 2, 1, 0, 0], [0, 1, 2, 0, 0], [0, 1, 1, 0, 1], [0, 1, 1, 1, 0], [1, 1, 1, 0, 0]}, {1}]] Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 2, 2, 2, 2, 2, 2, 2, 2] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 3, 3, 3, 3, 3, 3, 3, 3] Using the scheme, the first, , 10, terms for , 3, copies of each letter are [1, 20, 4, 4, 4, 4, 4, 4, 4, 4] For the equivalence class of patterns, { {[1, 2, 3], [1, 3, 2], [2, 3, 1], [3, 2, 1]}, {[1, 2, 3], [2, 1, 3], [3, 1, 2], [3, 2, 1]}} the member , {[1, 2, 3], [1, 3, 2], [2, 3, 1], [3, 2, 1]}, has a scheme of depth , 4 here it is: [[[], {}, {}], [[1], {[2, 1], [0, 2], [3, 0]}, {}], [[1, 2], {[1, 1, 0], [0, 2, 0], [0, 1, 1]}, {1, 2}], [[1, 1], {[2, 1, 0], [0, 2, 0], [0, 1, 1], [0, 0, 2], [3, 0, 0], [2, 0, 1]}, {1, 2}] , [[2, 1], {[1, 1, 0], [0, 3, 0], [0, 2, 1], [0, 1, 2]}, {}], [[3, 2, 1], {[0, 1, 1, 0]}, {1, 2, 3}], [[2, 1, 2], {[1, 1, 0, 0], [0, 1, 1, 0], [0, 1, 0, 1], [0, 2, 0, 0]}, {1, 2, 3}], [ [2, 1, 1], {[0, 0, 2, 1], [0, 0, 1, 2], [0, 1, 1, 0], [1, 0, 1, 0], [0, 0, 3, 0]}, {2, 3}], [[2, 1, 3], {[0, 1, 1, 1], [1, 1, 1, 0], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[3, 1, 2], {[0, 1, 1, 1], [1, 1, 1, 0], [0, 2, 1, 0], [0, 1, 2, 0]}, {}], [[2, 1, 4, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 3], { [0, 2, 1, 0, 0], [0, 1, 2, 0, 0], [0, 1, 1, 0, 1], [0, 1, 1, 1, 0], [1, 1, 1, 0, 0]}, {3, 4}], [[3, 1, 4, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 2], {[0, 1, 0, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[2, 1, 3, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 2, 4, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 1, 2, 3], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 3], {[0, 1, 1, 0, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 1], {[0, 0, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 4], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[4, 2, 3, 1], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}], [[3, 1, 2, 2], { [0, 1, 0, 1, 1], [1, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 2, 0, 1, 0], [0, 1, 0, 2, 0]}, {3, 4}], [[4, 1, 3, 2], {[0, 1, 1, 1, 0]}, {1, 2, 3, 4}]] Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 2, 0, 0, 0, 0, 0, 0, 0] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 2, 0, 0, 0, 0, 0, 0, 0] Using the scheme, the first, , 10, terms for , 3, copies of each letter are [1, 20, 2, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[1, 2, 3], [1, 3, 2], [3, 1, 2], [3, 2, 1]}, {[1, 2, 3], [2, 1, 3], [2, 3, 1], [3, 2, 1]}} the member , {[1, 2, 3], [1, 3, 2], [3, 1, 2], [3, 2, 1]}, has a scheme of depth , 1 here it is: [[[], {}, {}], [[1], {[2, 0], [0, 2]}, {1}]] Using the scheme, the first, , 10, terms for , 1, copies of each letter are [1, 2, 2, 0, 0, 0, 0, 0, 0, 0] Using the scheme, the first, , 10, terms for , 2, copies of each letter are [1, 6, 6, 0, 0, 0, 0, 0, 0, 0] Using the scheme, the first, , 10, terms for , 3, copies of each letter are [1, 20, 20, 0, 0, 0, 0, 0, 0, 0] Out of a total of , 6, cases 6, were successful and , 0, failed Success Rate: , 1. Here are the failures {}