"for patterns of lengths: ", [[2, 0]] There all together, 1, different equivalence classes For the equivalence class of patterns, {{[[1, 0], [2, 0]]}, {[[2, 0], [1, 0]]}} the member , {[[1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] Out of a total of , 1, cases 1, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {} "for patterns of lengths: ", [[2, 1]] There all together, 1, different equivalence classes For the equivalence class of patterns, {{[[1, 1], [2, 0]]}, {[[1, 0], [2, 1]]}, {[[2, 1], [1, 0]]}, {[[2, 0], [1, 1]]}} the member , {[[1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Out of a total of , 1, cases 1, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {} "for patterns of lengths: ", [[2, 0], [2, 0]] There all together, 1, different equivalence classes For the equivalence class of patterns, {{[[1, 0], [2, 0]], [[2, 0], [1, 0]]}} the member , {[[1, 0], [2, 0]], [[2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Out of a total of , 1, cases 1, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {} "for patterns of lengths: ", [[2, 1], [2, 0]] There all together, 2, different equivalence classes For the equivalence class of patterns, {{[[2, 0], [1, 0]], [[1, 1], [2, 0]]}, {[[2, 0], [1, 0]], [[1, 0], [2, 1]]}, {[[1, 0], [2, 0]], [[2, 1], [1, 0]]}, {[[1, 0], [2, 0]], [[2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0]], [[1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0]], [[1, 1], [2, 0]]}, {[[1, 0], [2, 0]], [[1, 0], [2, 1]]}, {[[2, 0], [1, 0]], [[2, 1], [1, 0]]}, {[[2, 0], [1, 0]], [[2, 0], [1, 1]]}} the member , {[[1, 0], [2, 0]], [[1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Out of a total of , 2, cases 2, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {} "for patterns of lengths: ", [[2, 1], [2, 1]] There all together, 2, different equivalence classes For the equivalence class of patterns, {{[[1, 1], [2, 0]], [[2, 1], [1, 0]]}, {[[1, 1], [2, 0]], [[2, 0], [1, 1]]}, {[[1, 0], [2, 1]], [[2, 1], [1, 0]]}, {[[1, 0], [2, 1]], [[2, 0], [1, 1]]}} the member , {[[1, 1], [2, 0]], [[2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [2, 0]], [[1, 0], [2, 1]]}, {[[2, 1], [1, 0]], [[2, 0], [1, 1]]}} the member , {[[1, 1], [2, 0]], [[1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Out of a total of , 2, cases 2, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {} "for patterns of lengths: ", [[3, 0]] There all together, 2, different equivalence classes For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]]}, {[[1, 0], [2, 0], [3, 0]]}} the member , {[[3, 0], [2, 0], [1, 0]]}, has a scheme of depth , 2 here it is: {[[1], {}, {}, {}], [[2, 1], {[1, 0, 0]}, {2}, {}], [[], {}, {}, {}], [[1, 2], {}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 2, 5, 14, 42, 132 Using the scheme, the first, , 31, terms are [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 18367353072152, 69533550916004, 263747951750360, 1002242216651368, 3814986502092304] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]]}, has a scheme of depth , 2 here it is: {[[1], {}, {}, {}], [[], {}, {}, {}], [[1, 2], {}, {1}, {}], [[2, 1], {[0, 1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 2, 5, 14, 42, 132 Using the scheme, the first, , 31, terms are [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 18367353072152, 69533550916004, 263747951750360, 1002242216651368, 3814986502092304] Out of a total of , 2, cases 2, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {} "for patterns of lengths: ", [[3, 1]] There all together, 4, different equivalence classes For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 3 here it is: {[[1], {}, {}, {}], [[], {}, {}, {}], [[2, 1], {}, {}, {2}], [[1, 2], {}, {1}, {}], [[3, 2, 1], {}, {2}, {3}], [[2, 1, 3], {}, {1}, {}], [[3, 1, 2], {}, {2}, {3}]} Naively, we would expect the sequence to begin , 1, 1, 1, 2, 6, 24, 120 Using the scheme, the first, , 31, terms are [1, 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 121645100408832000, 2432902008176640000, 51090942171709440000, 1124000727777607680000, 25852016738884976640000, 620448401733239439360000, 15511210043330985984000000, 403291461126605635584000000, 10888869450418352160768000000, 304888344611713860501504000000, 8841761993739701954543616000000] For the equivalence class of patterns, {{[[3, 0], [2, 1], [1, 0]]}, {[[1, 0], [2, 1], [3, 0]]}} the member , {[[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [2, 0], [3, 0]]}, {[[1, 0], [2, 0], [3, 1]]}} the member , {[[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] Out of a total of , 4, cases 4, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {} "for patterns of lengths: ", [[3, 2]] There all together, 4, different equivalence classes For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 1]]}, {[[1, 1], [2, 1], [3, 0]]}, {[[3, 0], [2, 1], [1, 1]]}, {[[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 1]]}, {[[3, 1], [2, 0], [1, 1]]}} the member , {[[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]]}, {[[2, 1], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]]}, {[[2, 1], [1, 0], [3, 1]]}, {[[2, 0], [3, 1], [1, 1]]}, {[[2, 1], [3, 0], [1, 1]]}, {[[3, 1], [1, 0], [2, 1]]}, {[[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Out of a total of , 4, cases 4, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {} "for patterns of lengths: ", [[3, 0], [3, 0]] There all together, 5, different equivalence classes For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 0], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 0]]}, has a scheme of depth , 2 here it is: {[[1], {}, {}, {}], [[], {}, {}, {}], [[2, 1], {[0, 1, 0]}, {1}, {}], [[1, 2], {[0, 1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 2, 4, 8, 16, 32 Using the scheme, the first, , 31, terms are [1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]]}, has a scheme of depth , 2 here it is: {[[1], {}, {}, {}], [[], {}, {}, {}], [[1, 2], {[0, 1, 0]}, {1}, {}], [[2, 1], {[0, 0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 2, 4, 8, 16, 32 Using the scheme, the first, , 31, terms are [1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 0], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 0], [1, 0]]}, has a scheme of depth , 2 here it is: {[[1], {}, {}, {}], [[], {}, {}, {}], [[2, 1], {[1, 0, 0], [0, 2, 0]}, {1}, {}], [[1, 2], {[0, 0, 1], [0, 2, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 2, 4, 4, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 2, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 0], [1, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 2]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 2, 4, 8, 16, 32 Using the scheme, the first, , 31, terms are [1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 0], [1, 0]]}, {[[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]]}, has a scheme of depth , 2 here it is: {[[1], {}, {}, {}], [[], {}, {}, {}], [[1, 2], {[1, 0, 0], [0, 0, 1]}, {2}, {}], [[2, 1], {[0, 1, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 2, 4, 7, 11, 16 Using the scheme, the first, , 31, terms are [1, 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407, 436] Out of a total of , 5, cases 5, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {} "for patterns of lengths: ", [[3, 0], [3, 1]] There all together, 20, different equivalence classes For the equivalence class of patterns, { {[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 3 here it is: {[[1], {}, {}, {}], [[], {}, {}, {}], [[1, 2, 3], {}, {2}, {3}], [[1, 3, 2], {[0, 0, 1, 0]}, {2}, {3}], [[2, 1], {[0, 1, 0]}, {1}, {}], [[1, 2], {}, {}, {2}], [[2, 3, 1], {[0, 1, 0, 0], [0, 0, 1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 2, 5, 14, 42 Using the scheme, the first, , 31, terms are [1, 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 18367353072152, 69533550916004, 263747951750360, 1002242216651368] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 3 here it is: {[[1], {}, {}, {}], [[], {}, {}, {}], [[1, 2], {}, {1}, {}], [[3, 1, 2], {[0, 0, 0, 0]}, {1}, {}], [[3, 2, 1], {[0, 1, 0, 0], [0, 0, 1, 0]}, {2}, {3}], [[2, 1], {[0, 1, 0]}, {}, {2}], [[2, 1, 3], {[0, 1, 0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 2, 5, 14, 42 Using the scheme, the first, , 31, terms are [1, 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 18367353072152, 69533550916004, 263747951750360, 1002242216651368] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[1, 0], [2, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 3 here it is: {[[], {}, {}, {}], [[1, 2, 3], {[2, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]}, {2}, {3}], [[1, 2], {[0, 1, 0], [2, 0, 0]}, {}, {2}], [[2, 1], {[1, 0, 0], [0, 1, 0], [0, 0, 1]}, {1}, {}], [[1, 3, 2], {[0, 0, 0, 0]}, {1}, {}], [[2, 3, 1], {[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]}, {1}, {}], [[1], {[2, 0]}, {}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{%2, [[2, 1], [3, 0], [1, 0]]}, {%2, [[2, 0], [3, 1], [1, 0]]}, {%2, [[3, 0], [1, 1], [2, 0]]}, {%2, [[3, 0], [1, 0], [2, 1]]}, {%1, [[1, 0], [3, 1], [2, 0]]}, {%1, [[1, 0], [3, 0], [2, 1]]}, {%1, [[2, 1], [1, 0], [3, 0]]}, {%1, [[2, 0], [1, 1], [3, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 2]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 2]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 2]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 3 here it is: {[[1], {}, {}, {}], [[], {}, {}, {}], [[2, 1], {}, {1}, {}], [[1, 3, 2], {[0, 0, 1, 0], [0, 0, 0, 1]}, {2}, {3}], [[1, 2], {[0, 0, 1]}, {}, {2}], [[1, 2, 3], {[0, 0, 0, 0]}, {1}, {}], [[2, 3, 1], {[0, 0, 0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 2, 5, 14, 42 Using the scheme, the first, , 31, terms are [1, 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 18367353072152, 69533550916004, 263747951750360, 1002242216651368] For the equivalence class of patterns, {{%2, [[2, 1], [1, 0], [3, 0]]}, {%2, [[2, 0], [1, 1], [3, 0]]}, {%2, [[1, 0], [3, 1], [2, 0]]}, {%2, [[1, 0], [3, 0], [2, 1]]}, {%1, [[3, 0], [1, 1], [2, 0]]}, {%1, [[3, 0], [1, 0], [2, 1]]}, {%1, [[2, 1], [3, 0], [1, 0]]}, {%1, [[2, 0], [3, 1], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] Out of a total of , 20, cases 20, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {} "for patterns of lengths: ", [[3, 0], [3, 2]] There all together, 20, different equivalence classes For the equivalence class of patterns, { {[[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]]}, {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, [[2, 0], [3, 1], [1, 1]]}, {%2, [[2, 1], [3, 0], [1, 1]]}, {%2, [[3, 1], [1, 0], [2, 1]]}, {%2, [[3, 1], [1, 1], [2, 0]]}, {%1, [[1, 1], [3, 0], [2, 1]]}, {%1, [[1, 1], [3, 1], [2, 0]]}, {%1, [[2, 0], [1, 1], [3, 1]]}, {%1, [[2, 1], [1, 0], [3, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]]}, {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]]}, {[[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, [[1, 1], [3, 0], [2, 1]]}, {%2, [[1, 1], [3, 1], [2, 0]]}, {%2, [[2, 0], [1, 1], [3, 1]]}, {%2, [[2, 1], [1, 0], [3, 1]]}, {%1, [[2, 0], [3, 1], [1, 1]]}, {%1, [[2, 1], [3, 0], [1, 1]]}, {%1, [[3, 1], [1, 0], [2, 1]]}, {%1, [[3, 1], [1, 1], [2, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Out of a total of , 20, cases 20, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {} "for patterns of lengths: ", [[3, 1], [3, 1]] There all together, 28, different equivalence classes For the equivalence class of patterns, { {[[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[2, 0], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[2, 0], [1, 1], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 0]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 1], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 0]], %2}, {[[2, 0], [1, 1], [3, 0]], %2}, {[[2, 1], [1, 0], [3, 0]], %2}, {[[1, 0], [3, 0], [2, 1]], %2}, {%1, [[3, 0], [1, 1], [2, 0]]}, {%1, [[2, 1], [3, 0], [1, 0]]}, {%1, [[3, 0], [1, 0], [2, 1]]}, {%1, [[2, 0], [3, 1], [1, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[1, 1], [2, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, [[3, 0], [1, 1], [2, 0]]}, {%2, [[3, 0], [1, 0], [2, 1]]}, {%2, [[2, 0], [3, 1], [1, 0]]}, {%2, [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], %1}, {[[1, 0], [3, 0], [2, 1]], %1}, {[[2, 0], [1, 1], [3, 0]], %1}, {[[2, 1], [1, 0], [3, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 0], [2, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 1]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[1, 0], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 0], [2, 1], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 1], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, {[[3, 0], [2, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [2, 1], [1, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]]}, {[[1, 0], [2, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[2, 0], [1, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 1], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, {[[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, {[[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Out of a total of , 28, cases 27, were successful and , 1, failed Success Rate: , 0.964 Here are the failures {{{[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]]}}} {{{[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]]}}} "for patterns of lengths: ", [[3, 1], [3, 2]] There all together, 50, different equivalence classes For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 1], [1, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 1], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 1], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 1], [2, 0], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 1], [2, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[1, 1], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 1], [2, 0], [3, 1]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[3, 1], [2, 0], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 1], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}} the member , {[[3, 1], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [2, 1], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, {[[3, 0], [2, 1], [1, 1]], [[1, 0], [2, 1], [3, 0]]}, {[[3, 1], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[1, 0], [2, 1], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 1], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, [[3, 0], [1, 0], [2, 1]]}, {%2, [[2, 1], [3, 0], [1, 0]]}, {%2, [[2, 0], [3, 1], [1, 0]]}, {%2, [[3, 0], [1, 1], [2, 0]]}, {%1, [[2, 1], [1, 0], [3, 0]]}, {%1, [[2, 0], [1, 1], [3, 0]]}, {%1, [[1, 0], [3, 1], [2, 0]]}, {%1, [[1, 0], [3, 0], [2, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[3, 1], [2, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [2, 1], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 1], [2, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 1], [2, 1], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[3, 0], [2, 1], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [2, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, {[[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[3, 0], [2, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 0], [2, 1], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[3, 1], [2, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [2, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 1], [2, 0], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 1], [2, 0], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[3, 1], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[1, 1], [2, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 1], [2, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [2, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 1], [2, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 0], [2, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 1], [2, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [2, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [2, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 1], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[3, 1], [2, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 1], [2, 1], [1, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[3, 0], [2, 1], [1, 1]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [2, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 1], [2, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [2, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [2, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[3, 0], [2, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [2, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 1], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [2, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [2, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 1], [1, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[3, 1], [1, 1], [2, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 1], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 1], [1, 0], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 1], [1, 1], [2, 0]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 1], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [2, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 1], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[3, 0], [2, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 1], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], %2}, {[[1, 1], [3, 1], [2, 0]], %2}, {[[2, 0], [1, 1], [3, 1]], %2}, {[[2, 1], [1, 0], [3, 1]], %2}, {[[3, 1], [1, 0], [2, 1]], %1}, {[[3, 1], [1, 1], [2, 0]], %1}, {[[2, 0], [3, 1], [1, 1]], %1}, {[[2, 1], [3, 0], [1, 1]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, {[[3, 1], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 0], [1, 1], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[3, 0], [1, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]]}, {[[3, 0], [1, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [2, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 1], [2, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [2, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 1], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[3, 0], [2, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], %2}, {[[2, 0], [3, 1], [1, 1]], %2}, {[[3, 1], [1, 0], [2, 1]], %2}, {[[3, 1], [1, 1], [2, 0]], %2}, {[[1, 1], [3, 1], [2, 0]], %1}, {[[1, 1], [3, 0], [2, 1]], %1}, {[[2, 0], [1, 1], [3, 1]], %1}, {[[2, 1], [1, 0], [3, 1]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 1], [1, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 1], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 0], [1, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 1], [1, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[3, 1], [1, 0], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 1], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[3, 1], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 1], [2, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 1], [2, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[3, 1], [2, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 0], [1, 1], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[3, 0], [1, 1], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, [[2, 1], [3, 0], [1, 0]]}, {%2, [[2, 0], [3, 1], [1, 0]]}, {%2, [[3, 0], [1, 1], [2, 0]]}, {%1, [[2, 1], [1, 0], [3, 0]]}, {%2, [[3, 0], [1, 0], [2, 1]]}, {%1, [[2, 0], [1, 1], [3, 0]]}, {%1, [[1, 0], [3, 1], [2, 0]]}, {%1, [[1, 0], [3, 0], [2, 1]]}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[1, 1], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[3, 0], [1, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 0], [1, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [1, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Out of a total of , 50, cases 50, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {} "for patterns of lengths: ", [[3, 2], [3, 2]] There all together, 28, different equivalence classes For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 1], [2, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 1]]}, {[[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [1, 0], [2, 1]], %2}, {[[2, 0], [3, 1], [1, 1]], %2}, {[[2, 1], [3, 0], [1, 1]], %2}, {[[3, 1], [1, 1], [2, 0]], %2}, {%1, [[1, 1], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], %1}, {%1, [[2, 0], [1, 1], [3, 1]]}, {%1, [[2, 1], [1, 0], [3, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 1], [2, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 0], [2, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 1]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[1, 1], [2, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 1]]}, {[[1, 1], [2, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, {[[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, {[[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 1], [3, 0]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [2, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 1], [1, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%1, [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], %2}, {[[1, 1], [3, 1], [2, 0]], %2}, {[[2, 0], [1, 1], [3, 1]], %2}, {[[2, 1], [1, 0], [3, 1]], %2}, {%1, [[2, 0], [3, 1], [1, 1]]}, {%1, [[2, 1], [3, 0], [1, 1]]}, {%1, [[3, 1], [1, 1], [2, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[1, 1], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]]}} the member , {[[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Out of a total of , 28, cases 28, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {} "for patterns of lengths: ", [[3, 0], [3, 0], [3, 0]] There all together, 5, different equivalence classes For the equivalence class of patterns, {{%2, [[1, 0], [3, 0], [2, 0]], %1}, {%2, [[3, 0], [1, 0], [2, 0]], %1}, {%2, [[2, 0], [1, 0], [3, 0]], %1}, {%2, [[2, 0], [3, 0], [1, 0]], %1}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, has a scheme of depth , 2 here it is: {[[], {}, {}, {}], [[1], {[0, 2]}, {}, {}], [[2, 1], {[0, 1, 1], [0, 0, 2], [1, 0, 0], [0, 2, 0]}, {1}, {}], [[1, 2], {[0, 1, 0], [0, 0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 2, 3, 1, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 2, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]]}, has a scheme of depth , 2 here it is: {[[1], {}, {}, {}], [[], {}, {}, {}], [[1, 2], {[0, 1, 0]}, {1}, {}], [[2, 1], {[1, 0, 0], [0, 0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 2, 3, 4, 5, 6 Using the scheme, the first, , 31, terms are [1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]]}, has a scheme of depth , 2 here it is: {[[1], {}, {}, {}], [[], {}, {}, {}], [[1, 2], {[0, 1, 0]}, {1}, {}], [[2, 1], {[0, 1, 0], [0, 0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 2, 3, 4, 5, 6 Using the scheme, the first, , 31, terms are [1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, has a scheme of depth , 2 here it is: {[[], {}, {}, {}], [[1], {[0, 2]}, {}, {}], [[1, 2], {[0, 1, 0], [0, 0, 1]}, {1}, {}], [[2, 1], {[0, 0, 1], [0, 2, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 2, 3, 5, 8, 13 Using the scheme, the first, , 31, terms are [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269] For the equivalence class of patterns, {{%3, %6, %1}, {%4, %6, %1}, {%5, %3, %6}, {%5, %4, %6}, {%5, %3, %2}, {%5, %4, %2}, {%4, %2, %1}, {%3, %2, %1}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[2, 0], [1, 0], [3, 0]] %3 := [[2, 0], [3, 0], [1, 0]] %4 := [[3, 0], [1, 0], [2, 0]] %5 := [[3, 0], [2, 0], [1, 0]] %6 := [[1, 0], [3, 0], [2, 0]] the member , {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, has a scheme of depth , 2 here it is: {[[], {}, {}, {}], [[1, 2], {[1, 0, 0], [0, 1, 0], [0, 0, 1]}, {1}, {}], [[2, 1], {[0, 1, 1], [0, 0, 2], [0, 2, 0]}, {1}, {}], [[1], {[0, 2]}, {}, {}]} Naively, we would expect the sequence to begin , 1, 1, 2, 3, 4, 5, 6 Using the scheme, the first, , 31, terms are [1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] Out of a total of , 5, cases 5, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {} "for patterns of lengths: ", [[3, 0], [3, 0], [3, 1]] There all together, 45, different equivalence classes For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 2]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 3 here it is: {[[], {}, {}, {}], [[3, 2, 1], {[0, 0, 0, 2], [0, 1, 0, 0], [0, 0, 1, 0]}, {2}, {3}], [[1, 2], {[1, 0, 0], [0, 1, 0], [0, 0, 1]}, {1}, {}], [[2, 1, 3], {[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]}, {1}, {}], [[2, 1], {[0, 0, 2], [0, 1, 0]}, {}, {2}], [[3, 1, 2], {[0, 0, 0, 0]}, {1}, {}], [[1], {[0, 2]}, {}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 1]], %2, %1}, {[[2, 1], [1, 0], [3, 0]], %2, %1}, {[[2, 0], [1, 1], [3, 0]], %2, %1}, {[[2, 1], [3, 0], [1, 0]], %2, %1}, {[[2, 0], [3, 1], [1, 0]], %2, %1}, {[[1, 0], [3, 1], [2, 0]], %2, %1}, {[[3, 0], [1, 1], [2, 0]], %2, %1}, {[[3, 0], [1, 0], [2, 1]], %2, %1}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[2, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], %2, %1}, {[[1, 0], [2, 0], [3, 1]], %2, %1}, {[[3, 1], [2, 0], [1, 0]], %2, %1}, {[[3, 0], [2, 0], [1, 1]], %2, %1}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[2, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]]}, { [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]]}} the member , {[[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[2, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]], %1}, {[[2, 0], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 0]], %1}, {[[3, 0], [1, 1], [2, 0]], %2, [[2, 0], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], %2, [[2, 0], [3, 0], [1, 0]]}, {[[2, 1], [3, 0], [1, 0]], %2, [[3, 0], [1, 0], [2, 0]]}, {[[2, 0], [3, 1], [1, 0]], %2, [[3, 0], [1, 0], [2, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 0], [3, 0]], %1}, {[[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 0], [3, 0]], %1}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[2, 1], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, { [[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[2, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, { [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 0]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, { [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 0]]}, {[[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 0]]}, { [[1, 0], [2, 1], [3, 0]], [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 0]]}} the member , {[[1, 0], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]]}, { [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 0]]}, {[[3, 0], [2, 1], [1, 0]], [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, { [[3, 0], [2, 1], [1, 0]], [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]]}} the member , {[[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[2, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 0]]}} the member , {[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]]}} the member , {[[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[2, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, %1, [[2, 0], [3, 0], [1, 1]]}, {%2, %1, [[3, 1], [1, 0], [2, 0]]}, {%2, %1, [[1, 1], [3, 0], [2, 0]]}, {%2, %1, [[2, 0], [1, 0], [3, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 3 here it is: {[[], {}, {}, {}], [[1], {[2, 0], [0, 2]}, {}, {}], [[1, 2], {[0, 1, 0], [0, 0, 1], [2, 0, 0]}, {}, {2}], [[1, 2, 3], {[0, 0, 0, 0]}, {1}, {}], [[2, 1], {[1, 0, 0], [0, 1, 0], [0, 0, 1]}, {1}, {}], [[1, 3, 2], {[0, 0, 0, 0]}, {1}, {}], [[2, 3, 1], {[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 0]], %1}, {[[2, 1], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], %1}, {[[2, 0], [1, 1], [3, 0]], %2, [[2, 0], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], %2, [[2, 0], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], %2, [[3, 0], [1, 0], [2, 0]]}, {[[2, 1], [1, 0], [3, 0]], %2, [[3, 0], [1, 0], [2, 0]]}, {[[2, 0], [3, 1], [1, 0]], [[2, 0], [1, 0], [3, 0]], %1}, {[[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 0], [3, 0]], %1}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 2]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 0]], %1}, {[[2, 0], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 0]], %1}, {[[1, 0], [3, 1], [2, 0]], %2, [[2, 0], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 0]], %2, [[2, 0], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], %2, [[3, 0], [1, 0], [2, 0]]}, {[[2, 0], [1, 1], [3, 0]], %2, [[3, 0], [1, 0], [2, 0]]}, {[[2, 1], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 0]], %1}, {[[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 0], [3, 0]], %1}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 2]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]]}, { [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 0]]}, {[[1, 0], [2, 1], [3, 0]], [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, { [[1, 0], [2, 1], [3, 0]], [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]]}} the member , {[[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[3, 0], [2, 0], [1, 1]], %2, [[1, 0], [3, 0], [2, 0]]}, {[[3, 1], [2, 0], [1, 0]], %2, [[1, 0], [3, 0], [2, 0]]}, {[[3, 0], [2, 0], [1, 1]], %2, [[2, 0], [1, 0], [3, 0]]}, {[[3, 1], [2, 0], [1, 0]], %2, [[2, 0], [1, 0], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 0]], %1}, {[[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 0], [2, 0]], %1}, {[[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 0], [1, 0]], %1}, {[[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 0], [1, 0]], %1}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[2, 0], [1, 1], [3, 0]], %2, [[1, 0], [3, 0], [2, 0]]}, {[[2, 1], [1, 0], [3, 0]], %2, [[1, 0], [3, 0], [2, 0]]}, {[[1, 0], [3, 1], [2, 0]], %2, [[2, 0], [1, 0], [3, 0]]}, {[[1, 0], [3, 0], [2, 1]], %2, [[2, 0], [1, 0], [3, 0]]}, {[[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 0], [2, 0]], %1}, {[[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 0]], %1}, {[[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 0], [1, 0]], %1}, {[[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 0], [1, 0]], %1}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[2, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], %1}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 0]], %1}, {[[1, 0], [2, 0], [3, 1]], %2, [[2, 0], [3, 0], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], %2, [[2, 0], [3, 0], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], %2, [[3, 0], [1, 0], [2, 0]]}, {[[1, 0], [2, 0], [3, 1]], %2, [[3, 0], [1, 0], [2, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 0], [3, 0]], %1}, {[[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 0]], %1}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 2]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 0], [1, 0]], %2, [[1, 0], [3, 0], [2, 0]]}, {[[3, 0], [1, 1], [2, 0]], %2, [[1, 0], [3, 0], [2, 0]]}, {[[2, 0], [3, 1], [1, 0]], %2, [[2, 0], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 1]], %2, [[2, 0], [1, 0], [3, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 0]], %1}, {[[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 0], [2, 0]], %1}, {[[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 0], [1, 0]], %1}, {[[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 0], [1, 0]], %1}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 0]], %2, [[1, 0], [3, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 1]], %2, [[1, 0], [3, 0], [2, 0]]}, {[[2, 1], [3, 0], [1, 0]], %2, [[2, 0], [1, 0], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], %2, [[2, 0], [1, 0], [3, 0]]}, {[[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 0]], %1}, {[[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 0]], %1}, {[[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 0], [1, 0]], %1}, {[[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 0]], %1}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[1, 0], [3, 1], [2, 0]], %2, [[1, 0], [3, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 1]], %2, [[1, 0], [3, 0], [2, 0]]}, {[[2, 0], [1, 1], [3, 0]], %2, [[2, 0], [1, 0], [3, 0]]}, {[[2, 1], [1, 0], [3, 0]], %2, [[2, 0], [1, 0], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 0]], %1}, {[[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 0], [2, 0]], %1}, {[[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 0]], %1}, {[[2, 0], [3, 1], [1, 0]], [[2, 0], [3, 0], [1, 0]], %1}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[2, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 1], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, { [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 0]]}, {[[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 0]]}, { [[3, 0], [2, 1], [1, 0]], [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 0]]}} the member , {[[3, 0], [2, 1], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 2]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, {%2, [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, {%2, [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[1, 1], [3, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 0], [1, 0], [3, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 3 here it is: {[[], {}, {}, {}], [[1, 2, 3], {[2, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]}, {2}, {3}], [[1, 2], {[0, 1, 0], [2, 0, 0]}, {}, {2}], [[2, 1], {[1, 0, 0], [0, 1, 0], [0, 0, 1]}, {1}, {}], [[1, 3, 2], {[0, 0, 0, 0]}, {1}, {}], [[2, 3, 1], {[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]}, {1}, {}], [[1], {[2, 0]}, {}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 3 here it is: {[[1], {}, {}, {}], [[], {}, {}, {}], [[3, 1, 2], {[1, 0, 0, 0], [0, 1, 0, 0]}, {2}, {3}], [[1, 2], {[0, 1, 0]}, {1}, {}], [[2, 1, 3], {[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]}, {1}, {}], [[3, 2, 1], {[0, 0, 0, 0]}, {1}, {}], [[2, 1], {[1, 0, 0]}, {}, {2}]} Naively, we would expect the sequence to begin , 1, 1, 1, 2, 4, 7, 11 Using the scheme, the first, , 31, terms are [1, 1, 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 0]], %4, %1}, {[[2, 0], [1, 1], [3, 0]], %4, %1}, {[[1, 0], [3, 0], [2, 1]], %4, %3}, {[[2, 1], [3, 0], [1, 0]], %4, %3}, {[[1, 0], [3, 1], [2, 0]], %2, %3}, {[[3, 0], [1, 1], [2, 0]], %2, %3}, {[[2, 1], [1, 0], [3, 0]], %2, %1}, {[[3, 0], [1, 0], [2, 1]], %2, %1}} %1 := [[1, 0], [3, 0], [2, 0]] %2 := [[2, 0], [3, 0], [1, 0]] %3 := [[2, 0], [1, 0], [3, 0]] %4 := [[3, 0], [1, 0], [2, 0]] the member , {[[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 0]], %4, %1}, {[[3, 0], [1, 1], [2, 0]], %4, %1}, {[[2, 1], [1, 0], [3, 0]], %4, %3}, {[[3, 0], [1, 0], [2, 1]], %4, %3}, {[[2, 0], [1, 1], [3, 0]], %2, %3}, {[[2, 0], [3, 1], [1, 0]], %2, %3}, {[[2, 1], [3, 0], [1, 0]], %2, %1}, {[[1, 0], [3, 0], [2, 1]], %2, %1}} %1 := [[1, 0], [3, 0], [2, 0]] %2 := [[2, 0], [3, 0], [1, 0]] %3 := [[2, 0], [1, 0], [3, 0]] %4 := [[3, 0], [1, 0], [2, 0]] the member , {[[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 1]], %4, %1}, {[[3, 0], [1, 0], [2, 1]], %4, %1}, {[[3, 0], [1, 1], [2, 0]], %4, %3}, {[[2, 0], [1, 1], [3, 0]], %4, %3}, {[[2, 1], [3, 0], [1, 0]], %2, %3}, {[[2, 1], [1, 0], [3, 0]], %2, %3}, {[[2, 0], [3, 1], [1, 0]], %2, %1}, {[[1, 0], [3, 1], [2, 0]], %2, %1}} %1 := [[1, 0], [3, 0], [2, 0]] %2 := [[2, 0], [3, 0], [1, 0]] %3 := [[2, 0], [1, 0], [3, 0]] %4 := [[3, 0], [1, 0], [2, 0]] the member , {[[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 0]], %4, %1}, {[[2, 1], [3, 0], [1, 0]], %4, %1}, {[[2, 0], [3, 1], [1, 0]], %4, %3}, {[[1, 0], [3, 1], [2, 0]], %4, %3}, {[[1, 0], [3, 0], [2, 1]], %2, %3}, {[[3, 0], [1, 0], [2, 1]], %2, %3}, {[[3, 0], [1, 1], [2, 0]], %2, %1}, {[[2, 0], [1, 1], [3, 0]], %2, %1}} %1 := [[1, 0], [3, 0], [2, 0]] %2 := [[2, 0], [3, 0], [1, 0]] %3 := [[2, 0], [1, 0], [3, 0]] %4 := [[3, 0], [1, 0], [2, 0]] the member , {[[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], %4, %1}, {[[3, 1], [2, 0], [1, 0]], %4, %1}, {[[1, 0], [2, 0], [3, 1]], %4, %3}, {[[3, 1], [2, 0], [1, 0]], %4, %3}, {[[1, 0], [2, 0], [3, 1]], %2, %3}, {[[3, 0], [2, 0], [1, 1]], %2, %3}, {[[1, 1], [2, 0], [3, 0]], %2, %1}, {[[3, 0], [2, 0], [1, 1]], %2, %1}} %1 := [[1, 0], [3, 0], [2, 0]] %2 := [[2, 0], [3, 0], [1, 0]] %3 := [[2, 0], [1, 0], [3, 0]] %4 := [[3, 0], [1, 0], [2, 0]] the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{%4, %6, %1}, {%3, %6, %1}, {%4, %6, %5}, {%3, %6, %5}, {%4, %2, %5}, {%3, %2, %5}, {%4, %2, %1}, {%3, %2, %1}} %1 := [[1, 0], [3, 0], [2, 0]] %2 := [[2, 0], [3, 0], [1, 0]] %3 := [[3, 0], [2, 1], [1, 0]] %4 := [[1, 0], [2, 1], [3, 0]] %5 := [[2, 0], [1, 0], [3, 0]] %6 := [[3, 0], [1, 0], [2, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 1]], %4, %1}, {[[3, 0], [2, 0], [1, 1]], %4, %1}, {[[1, 1], [2, 0], [3, 0]], %4, %3}, {[[3, 0], [2, 0], [1, 1]], %4, %3}, {[[1, 1], [2, 0], [3, 0]], %2, %3}, {[[3, 1], [2, 0], [1, 0]], %2, %3}, {[[1, 0], [2, 0], [3, 1]], %2, %1}, {[[3, 1], [2, 0], [1, 0]], %2, %1}} %1 := [[1, 0], [3, 0], [2, 0]] %2 := [[2, 0], [3, 0], [1, 0]] %3 := [[2, 0], [1, 0], [3, 0]] %4 := [[3, 0], [1, 0], [2, 0]] the member , {[[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{%4, %1, [[3, 1], [1, 0], [2, 0]]}, {%4, %1, [[1, 1], [3, 0], [2, 0]]}, {%4, %3, [[3, 1], [1, 0], [2, 0]]}, {%4, %3, [[2, 0], [1, 0], [3, 1]]}, {%2, %3, [[2, 0], [1, 0], [3, 1]]}, {%2, %3, [[2, 0], [3, 0], [1, 1]]}, {%2, %1, [[2, 0], [3, 0], [1, 1]]}, {%2, %1, [[1, 1], [3, 0], [2, 0]]}} %1 := [[1, 0], [3, 0], [2, 0]] %2 := [[2, 0], [3, 0], [1, 0]] %3 := [[2, 0], [1, 0], [3, 0]] %4 := [[3, 0], [1, 0], [2, 0]] the member , {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{%4, %1, [[2, 0], [1, 0], [3, 1]]}, {%4, %1, [[2, 0], [3, 0], [1, 1]]}, {%4, %3, [[2, 0], [3, 0], [1, 1]]}, {%4, %3, [[1, 1], [3, 0], [2, 0]]}, {%2, %3, [[3, 1], [1, 0], [2, 0]]}, {%2, %3, [[1, 1], [3, 0], [2, 0]]}, {%2, %1, [[3, 1], [1, 0], [2, 0]]}, {%2, %1, [[2, 0], [1, 0], [3, 1]]}} %1 := [[1, 0], [3, 0], [2, 0]] %2 := [[2, 0], [3, 0], [1, 0]] %3 := [[2, 0], [1, 0], [3, 0]] %4 := [[3, 0], [1, 0], [2, 0]] the member , {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 3 here it is: {[[1], {}, {}, {}], [[], {}, {}, {}], [[2, 1, 3], {[0, 1, 0, 0], [0, 0, 1, 0]}, {1}, {}], [[1, 2], {[0, 1, 0]}, {1}, {}], [[3, 1, 2], {[0, 0, 0, 0]}, {1}, {}], [[3, 2, 1], {[0, 1, 0, 0], [0, 0, 1, 0]}, {2}, {3}], [[2, 1], {[0, 1, 0]}, {}, {2}]} Naively, we would expect the sequence to begin , 1, 1, 1, 2, 4, 8, 16 Using the scheme, the first, , 31, terms are [1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 0]], %4, %3}, {[[1, 0], [3, 1], [2, 0]], %4, %3}, {[[1, 0], [3, 0], [2, 1]], %4, %3}, {[[2, 1], [1, 0], [3, 0]], %4, %3}, {[[2, 1], [3, 0], [1, 0]], %2, %1}, {[[2, 0], [3, 1], [1, 0]], %2, %1}, {[[3, 0], [1, 1], [2, 0]], %2, %1}, {[[3, 0], [1, 0], [2, 1]], %2, %1}} %1 := [[1, 0], [3, 0], [2, 0]] %2 := [[2, 0], [1, 0], [3, 0]] %3 := [[2, 0], [3, 0], [1, 0]] %4 := [[3, 0], [1, 0], [2, 0]] the member , {[[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 0]], %4, %3}, {[[2, 0], [3, 1], [1, 0]], %4, %3}, {[[3, 0], [1, 1], [2, 0]], %4, %3}, {[[3, 0], [1, 0], [2, 1]], %4, %3}, {[[2, 0], [1, 1], [3, 0]], %2, %1}, {[[1, 0], [3, 1], [2, 0]], %2, %1}, {[[1, 0], [3, 0], [2, 1]], %2, %1}, {[[2, 1], [1, 0], [3, 0]], %2, %1}} %1 := [[1, 0], [3, 0], [2, 0]] %2 := [[2, 0], [1, 0], [3, 0]] %3 := [[2, 0], [3, 0], [1, 0]] %4 := [[3, 0], [1, 0], [2, 0]] the member , {[[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 0]], %1}, {[[1, 0], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 0]], %1}, {[[2, 1], [3, 0], [1, 0]], %2, [[2, 0], [3, 0], [1, 0]]}, {[[2, 0], [3, 1], [1, 0]], %2, [[2, 0], [3, 0], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], %2, [[3, 0], [1, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 1]], %2, [[3, 0], [1, 0], [2, 0]]}, {[[2, 0], [1, 1], [3, 0]], [[2, 0], [1, 0], [3, 0]], %1}, {[[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 0]], %1}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 0]], [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]]}, { [[3, 0], [2, 1], [1, 0]], [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]]}} the member , {[[1, 0], [2, 1], [3, 0]], [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 3 here it is: {[[1], {}, {}, {}], [[], {}, {}, {}], [[3, 1, 2], {[0, 0, 0, 0]}, {1}, {}], [[2, 1, 3], {[1, 0, 0, 0], [0, 1, 0, 0]}, {1}, {}], [[1, 2], {[1, 0, 0]}, {1}, {}], [[3, 2, 1], {[0, 1, 0, 0], [0, 0, 1, 0]}, {2}, {3}], [[2, 1], {[0, 1, 0]}, {}, {2}]} Naively, we would expect the sequence to begin , 1, 1, 1, 2, 4, 8, 16 Using the scheme, the first, , 31, terms are [1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]]}, { [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]]}} the member , {[[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[3, 0], [2, 1], [1, 0]], [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]]}, { [[1, 0], [2, 1], [3, 0]], [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]]}} the member , {[[3, 0], [2, 1], [1, 0]], [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], %1, [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], %1, [[3, 1], [1, 0], [2, 0]]}, {%2, [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {%2, [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, {%2, [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, {%2, [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [1, 0], [3, 0]], %1, [[2, 0], [3, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], %1, [[3, 1], [1, 0], [2, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 3 here it is: {[[], {}, {}, {}], [[2, 1], {[0, 1, 1], [0, 0, 2], [0, 2, 0]}, {1}, {}], [[1, 2, 3], {[0, 0, 0, 0]}, {1}, {}], [[1, 3, 2], {[0, 0, 0, 0]}, {1}, {}], [[1], {[0, 2]}, {}, {}], [[2, 3, 1], {[0, 2, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]}, {1}, {}], [[1, 2], {[0, 1, 0], [0, 0, 1]}, {}, {2}]} Naively, we would expect the sequence to begin , 1, 1, 1, 2, 4, 8, 16 Using the scheme, the first, , 31, terms are [1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456] Out of a total of , 45, cases 45, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {} "for patterns of lengths: ", [[3, 0], [3, 0], [3, 2]] There all together, 45, different equivalence classes For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], %1, [[1, 1], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], %1, [[1, 1], [3, 0], [2, 1]]}, {%2, [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]]}, {%2, [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]]}, {%2, [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {%2, [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], %1, [[2, 0], [1, 1], [3, 1]]}, {[[2, 0], [1, 0], [3, 0]], %1, [[2, 1], [1, 0], [3, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], %1, [[2, 0], [1, 1], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], %1, [[2, 1], [1, 0], [3, 1]]}, {%2, [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {%2, [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {%2, [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, {%2, [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], %1, [[1, 1], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], %1, [[1, 1], [3, 1], [2, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], %1, [[2, 0], [3, 1], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], %1, [[3, 1], [1, 0], [2, 1]]}, {%2, [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]]}, {%2, [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]]}, {%2, [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]]}, {%2, [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], %1, [[2, 1], [3, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], %1, [[3, 1], [1, 1], [2, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], %1, [[2, 1], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], %1, [[3, 1], [1, 1], [2, 0]]}, {%2, [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]]}, {%2, [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]]}, {%2, [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]]}, {%2, [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], %1, [[2, 0], [3, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], %1, [[3, 1], [1, 0], [2, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], %1, [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], %1, [[2, 1], [3, 1], [1, 0]]}, {%2, [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]]}, {%2, [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]]}, {%2, [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]]}, {%2, [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], %1, [[2, 1], [3, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], %1, [[3, 0], [1, 1], [2, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], %1, [[3, 0], [2, 1], [1, 1]]}, {%2, [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, {%2, [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, {%2, [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, {%2, [[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], %1, [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], %1, [[3, 1], [2, 1], [1, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, %1, [[1, 1], [2, 1], [3, 0]]}, {%2, %1, [[1, 0], [2, 1], [3, 1]]}, {%2, %1, [[3, 1], [2, 1], [1, 0]]}, {%2, %1, [[3, 0], [2, 1], [1, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, %1, [[2, 0], [1, 1], [3, 1]]}, {%2, %1, [[2, 1], [1, 0], [3, 1]]}, {%2, %1, [[1, 1], [3, 0], [2, 1]]}, {%2, %1, [[1, 1], [3, 1], [2, 0]]}, {%2, %1, [[2, 0], [3, 1], [1, 1]]}, {%2, %1, [[2, 1], [3, 0], [1, 1]]}, {%2, %1, [[3, 1], [1, 0], [2, 1]]}, {%2, %1, [[3, 1], [1, 1], [2, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, %1, [[1, 0], [3, 1], [2, 1]]}, {%2, %1, [[2, 1], [1, 1], [3, 0]]}, {%2, %1, [[2, 1], [3, 1], [1, 0]]}, {%2, %1, [[3, 0], [1, 1], [2, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]]}, {%2, [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]]}, {%2, [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]]}, {%2, [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[2, 0], [3, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[2, 1], [3, 0], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[3, 1], [1, 1], [2, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]]}, {%2, [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]]}, {%2, [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]]}, {%2, [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[3, 1], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 1], [3, 0], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 0], [3, 1], [1, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, {%2, [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {%2, [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]]}, {%2, [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[2, 0], [1, 1], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[1, 1], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 1], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[1, 1], [3, 1], [2, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, {%2, [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {%2, [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {%2, [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[2, 1], [1, 0], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[1, 1], [3, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 0], [1, 1], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[1, 1], [3, 0], [2, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {%2, [[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {%2, [[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {%2, [[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[1, 1], [2, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[1, 1], [2, 1], [3, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, {%2, [[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {%2, [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]]}, {%2, [[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[1, 0], [3, 1], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[1, 0], [3, 1], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 1], [1, 1], [3, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%6, %4, %5}, {%6, %4, %1}, {%6, %2, %5}, {%6, %2, %1}, {%3, %4, %5}, {%3, %2, %5}, {%3, %4, %1}, {%3, %2, %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[2, 0], [1, 0], [3, 0]] %3 := [[2, 0], [3, 0], [1, 0]] %4 := [[1, 0], [3, 0], [2, 0]] %5 := [[1, 1], [2, 0], [3, 1]] %6 := [[3, 0], [1, 0], [2, 0]] the member , {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[1, 1], [2, 1], [3, 0]]}, {%4, %3, [[3, 1], [2, 1], [1, 0]]}, {%4, %1, [[1, 0], [2, 1], [3, 1]]}, {%4, %1, [[3, 1], [2, 1], [1, 0]]}, {%2, %3, [[1, 1], [2, 1], [3, 0]]}, {%2, %1, [[1, 0], [2, 1], [3, 1]]}, {%2, %3, [[3, 0], [2, 1], [1, 1]]}, {%2, %1, [[3, 0], [2, 1], [1, 1]]}} %1 := [[2, 0], [1, 0], [3, 0]] %2 := [[2, 0], [3, 0], [1, 0]] %3 := [[1, 0], [3, 0], [2, 0]] %4 := [[3, 0], [1, 0], [2, 0]] the member , {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[1, 0], [2, 1], [3, 1]]}, {%4, %1, [[1, 1], [2, 1], [3, 0]]}, {%4, %3, [[3, 0], [2, 1], [1, 1]]}, {%4, %1, [[3, 0], [2, 1], [1, 1]]}, {%2, %3, [[1, 0], [2, 1], [3, 1]]}, {%2, %3, [[3, 1], [2, 1], [1, 0]]}, {%2, %1, [[1, 1], [2, 1], [3, 0]]}, {%2, %1, [[3, 1], [2, 1], [1, 0]]}} %1 := [[2, 0], [1, 0], [3, 0]] %2 := [[2, 0], [3, 0], [1, 0]] %3 := [[1, 0], [3, 0], [2, 0]] %4 := [[3, 0], [1, 0], [2, 0]] the member , {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[2, 1], [3, 0], [1, 1]]}, {%4, %3, [[2, 1], [1, 0], [3, 1]]}, {%4, %1, [[2, 0], [3, 1], [1, 1]]}, {%4, %1, [[1, 1], [3, 1], [2, 0]]}, {%2, %3, [[2, 0], [1, 1], [3, 1]]}, {%2, %3, [[3, 1], [1, 1], [2, 0]]}, {%2, %1, [[1, 1], [3, 0], [2, 1]]}, {%2, %1, [[3, 1], [1, 0], [2, 1]]}} %1 := [[2, 0], [1, 0], [3, 0]] %2 := [[2, 0], [3, 0], [1, 0]] %3 := [[1, 0], [3, 0], [2, 0]] %4 := [[3, 0], [1, 0], [2, 0]] the member , {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[1, 0], [3, 1], [2, 1]]}, {%4, %3, [[3, 0], [1, 1], [2, 1]]}, {%4, %1, [[2, 1], [1, 1], [3, 0]]}, {%4, %1, [[3, 0], [1, 1], [2, 1]]}, {%2, %3, [[1, 0], [3, 1], [2, 1]]}, {%2, %3, [[2, 1], [3, 1], [1, 0]]}, {%2, %1, [[2, 1], [1, 1], [3, 0]]}, {%2, %1, [[2, 1], [3, 1], [1, 0]]}} %1 := [[2, 0], [1, 0], [3, 0]] %2 := [[2, 0], [3, 0], [1, 0]] %3 := [[1, 0], [3, 0], [2, 0]] %4 := [[3, 0], [1, 0], [2, 0]] the member , {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[1, 1], [3, 0], [2, 1]]}, {%4, %3, [[3, 1], [1, 0], [2, 1]]}, {%4, %1, [[2, 0], [1, 1], [3, 1]]}, {%4, %1, [[3, 1], [1, 1], [2, 0]]}, {%2, %3, [[1, 1], [3, 1], [2, 0]]}, {%2, %3, [[2, 0], [3, 1], [1, 1]]}, {%2, %1, [[2, 1], [1, 0], [3, 1]]}, {%2, %1, [[2, 1], [3, 0], [1, 1]]}} %1 := [[2, 0], [1, 0], [3, 0]] %2 := [[2, 0], [3, 0], [1, 0]] %3 := [[1, 0], [3, 0], [2, 0]] %4 := [[3, 0], [1, 0], [2, 0]] the member , {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[1, 1], [3, 1], [2, 0]]}, {%4, %3, [[3, 1], [1, 1], [2, 0]]}, {%4, %1, [[2, 1], [1, 0], [3, 1]]}, {%4, %1, [[3, 1], [1, 0], [2, 1]]}, {%2, %3, [[1, 1], [3, 0], [2, 1]]}, {%2, %3, [[2, 1], [3, 0], [1, 1]]}, {%2, %1, [[2, 0], [1, 1], [3, 1]]}, {%2, %1, [[2, 0], [3, 1], [1, 1]]}} %1 := [[2, 0], [1, 0], [3, 0]] %2 := [[2, 0], [3, 0], [1, 0]] %3 := [[1, 0], [3, 0], [2, 0]] %4 := [[3, 0], [1, 0], [2, 0]] the member , {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[2, 0], [1, 1], [3, 1]]}, {%4, %3, [[2, 0], [3, 1], [1, 1]]}, {%4, %1, [[2, 1], [3, 0], [1, 1]]}, {%4, %1, [[1, 1], [3, 0], [2, 1]]}, {%2, %3, [[2, 1], [1, 0], [3, 1]]}, {%2, %3, [[3, 1], [1, 0], [2, 1]]}, {%2, %1, [[1, 1], [3, 1], [2, 0]]}, {%2, %1, [[3, 1], [1, 1], [2, 0]]}} %1 := [[2, 0], [1, 0], [3, 0]] %2 := [[2, 0], [3, 0], [1, 0]] %3 := [[1, 0], [3, 0], [2, 0]] %4 := [[3, 0], [1, 0], [2, 0]] the member , {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[2, 1], [1, 1], [3, 0]]}, {%4, %3, [[2, 1], [3, 1], [1, 0]]}, {%4, %1, [[1, 0], [3, 1], [2, 1]]}, {%4, %1, [[2, 1], [3, 1], [1, 0]]}, {%2, %3, [[3, 0], [1, 1], [2, 1]]}, {%2, %3, [[2, 1], [1, 1], [3, 0]]}, {%2, %1, [[1, 0], [3, 1], [2, 1]]}, {%2, %1, [[3, 0], [1, 1], [2, 1]]}} %1 := [[2, 0], [1, 0], [3, 0]] %2 := [[2, 0], [3, 0], [1, 0]] %3 := [[1, 0], [3, 0], [2, 0]] %4 := [[3, 0], [1, 0], [2, 0]] the member , {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[2, 0], [1, 1], [3, 1]]}, {%4, %3, [[2, 1], [1, 0], [3, 1]]}, {%4, %3, [[1, 1], [3, 0], [2, 1]]}, {%4, %3, [[1, 1], [3, 1], [2, 0]]}, {%2, %1, [[2, 0], [3, 1], [1, 1]]}, {%2, %1, [[2, 1], [3, 0], [1, 1]]}, {%2, %1, [[3, 1], [1, 0], [2, 1]]}, {%2, %1, [[3, 1], [1, 1], [2, 0]]}} %1 := [[1, 0], [3, 0], [2, 0]] %2 := [[2, 0], [1, 0], [3, 0]] %3 := [[2, 0], [3, 0], [1, 0]] %4 := [[3, 0], [1, 0], [2, 0]] the member , {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[2, 0], [3, 1], [1, 1]]}, {%4, %3, [[2, 1], [3, 0], [1, 1]]}, {%4, %3, [[3, 1], [1, 0], [2, 1]]}, {%4, %3, [[3, 1], [1, 1], [2, 0]]}, {%2, %1, [[1, 1], [3, 0], [2, 1]]}, {%2, %1, [[1, 1], [3, 1], [2, 0]]}, {%2, %1, [[2, 0], [1, 1], [3, 1]]}, {%2, %1, [[2, 1], [1, 0], [3, 1]]}} %1 := [[1, 0], [3, 0], [2, 0]] %2 := [[2, 0], [1, 0], [3, 0]] %3 := [[2, 0], [3, 0], [1, 0]] %4 := [[3, 0], [1, 0], [2, 0]] the member , {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Out of a total of , 45, cases 45, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {} "for patterns of lengths: ", [[3, 0], [3, 1], [3, 1]] There all together, 138, different equivalence classes For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {%1, [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[2, 1], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {%2, [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[2, 0], [3, 1], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, {%2, [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {%1, [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[2, 1], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[2, 0], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[1, 0], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, {%2, [[1, 0], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {%1, [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, {%1, [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 2]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 2]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[2, 0], [1, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {%2, [[2, 1], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[2, 1], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[2, 0], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {%2, [[2, 0], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[2, 0], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {%2, [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {%1, [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, %1, [[3, 0], [1, 1], [2, 0]]}, {%2, %1, [[3, 0], [1, 0], [2, 1]]}, {%4, [[1, 0], [3, 1], [2, 0]], %3}, {%4, [[1, 0], [3, 0], [2, 1]], %3}, {%4, [[2, 1], [1, 0], [3, 0]], %3}, {%4, [[2, 0], [1, 1], [3, 0]], %3}, {%2, [[2, 1], [3, 0], [1, 0]], %1}, {%2, [[2, 0], [3, 1], [1, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] %3 := [[1, 0], [2, 1], [3, 0]] %4 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 2]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {%1, [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {%2, [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {%1, [[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{%6, %4, %5}, {%6, %2, %5}, {%6, %4, %1}, {%6, %2, %1}, {%3, %4, %5}, {%3, %2, %5}, {%3, %4, %1}, {%3, %2, %1}} %1 := [[3, 1], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 1]] %3 := [[3, 0], [2, 0], [1, 0]] %4 := [[1, 1], [2, 0], [3, 0]] %5 := [[3, 0], [2, 0], [1, 1]] %6 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {%2, [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[2, 1], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[2, 0], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {%1, [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {%2, [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], %2}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], %2}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], %1}, {[[1, 0], [3, 0], [2, 0]], %1, [[3, 0], [1, 0], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], %1}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], %2}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], %2}, {[[2, 0], [1, 0], [3, 0]], %1, [[3, 0], [1, 1], [2, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {%2, [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, {%2, [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {%2, [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[1, 0], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, {%1, [[1, 0], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {%1, [[2, 1], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {%1, [[2, 0], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 2]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, [[1, 0], [3, 1], [2, 0]], %3}, {%4, [[1, 0], [3, 0], [2, 1]], %3}, {%4, [[2, 1], [1, 0], [3, 0]], %3}, {%4, [[2, 0], [1, 1], [3, 0]], %3}, {%2, [[2, 1], [3, 0], [1, 0]], %1}, {%2, [[2, 0], [3, 1], [1, 0]], %1}, {%2, %1, [[3, 0], [1, 1], [2, 0]]}, {%2, %1, [[3, 0], [1, 0], [2, 1]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[3, 0], [2, 0], [1, 0]] %3 := [[1, 0], [2, 1], [3, 0]] %4 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {%2, [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {%2, [[2, 0], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[2, 1], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {%1, [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {%2, [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {%1, [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, [[2, 1], [3, 0], [1, 0]], %3}, {%4, [[2, 0], [3, 1], [1, 0]], %3}, {%4, %3, [[3, 0], [1, 1], [2, 0]]}, {%4, %3, [[3, 0], [1, 0], [2, 1]]}, {%2, [[1, 0], [3, 1], [2, 0]], %1}, {%2, [[2, 1], [1, 0], [3, 0]], %1}, {%2, [[1, 0], [3, 0], [2, 1]], %1}, {%2, [[2, 0], [1, 1], [3, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[3, 0], [2, 0], [1, 0]] %3 := [[1, 0], [2, 1], [3, 0]] %4 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], %1}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], %1}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], %2}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], %2}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], %2}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], %2}, {[[3, 0], [1, 0], [2, 0]], %1, [[3, 0], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[3, 0], [1, 0], [2, 1]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {%1, [[2, 0], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {%2, [[2, 1], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[2, 0], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[2, 1], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]]}, {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 2]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], %1}, {[[2, 0], [3, 0], [1, 0]], %2, [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], %2, [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], %1}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], %1}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], %2}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], %2}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{%4, [[2, 1], [3, 0], [1, 0]], %3}, {%4, [[2, 0], [3, 1], [1, 0]], %3}, {%4, %3, [[3, 0], [1, 1], [2, 0]]}, {%4, %3, [[3, 0], [1, 0], [2, 1]]}, {%2, [[1, 0], [3, 1], [2, 0]], %1}, {%2, [[1, 0], [3, 0], [2, 1]], %1}, {%2, [[2, 1], [1, 0], [3, 0]], %1}, {%2, [[2, 0], [1, 1], [3, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] %3 := [[1, 0], [2, 1], [3, 0]] %4 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, {%2, [[1, 0], [3, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, {%2, [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {%1, [[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {%1, [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 0], [2, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[2, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {%2, [[1, 0], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, {%2, [[1, 0], [3, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, {%2, [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {%1, [[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {%1, [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 2]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, {%2, [[2, 0], [1, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, {%2, [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], %1}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], %1}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], %1}, {[[2, 0], [3, 0], [1, 0]], %2, [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], %2, [[3, 0], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], %2}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], %2}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, {%2, [[2, 0], [1, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, {%2, [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]], %2}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 0]], %2}, {[[1, 0], [3, 0], [2, 0]], %1, [[3, 1], [2, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], %1, [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], %2}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], %2}, {[[2, 0], [1, 0], [3, 0]], %1, [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], %1, [[3, 0], [2, 0], [1, 1]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], %2}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], %2}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], %1}, {[[1, 0], [3, 0], [2, 0]], %1, [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], %1}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], %2}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], %2}, {[[2, 0], [1, 0], [3, 0]], %1, [[3, 0], [1, 0], [2, 1]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[2, 1], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {%1, [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {%2, [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[2, 0], [3, 1], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, {%1, [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 2]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], %2}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], %2}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], %2}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], %1}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], %1}, {[[3, 0], [1, 0], [2, 0]], %1, [[3, 0], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[3, 0], [1, 0], [2, 1]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[2, 0], [3, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {%1, [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {%2, [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[2, 1], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, {%1, [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 2]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], %2, %1}, {[[1, 0], [3, 0], [2, 0]], %2, %1}, {[[3, 0], [1, 0], [2, 0]], %2, %1}, {[[2, 0], [1, 0], [3, 0]], %2, %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%3, %4, %6}, {%3, %6, %1}, {%5, %4, %6}, {%5, %6, %1}, {%5, %4, %2}, {%5, %2, %1}, {%3, %4, %2}, {%3, %2, %1}} %1 := [[3, 1], [1, 0], [2, 0]] %2 := [[2, 0], [1, 0], [3, 1]] %3 := [[1, 0], [2, 0], [3, 0]] %4 := [[2, 0], [3, 0], [1, 1]] %5 := [[3, 0], [2, 0], [1, 0]] %6 := [[1, 1], [3, 0], [2, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[2, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[2, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {%2, [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {%1, [[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {%2, [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 2]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[1, 0], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[2, 1], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {%2, [[2, 0], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {%1, [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], %2, %4}, {[[1, 0], [3, 0], [2, 0]], %1, %3}, {[[1, 0], [3, 0], [2, 0]], %2, %1}, {[[2, 0], [3, 0], [1, 0]], %1, %3}, {[[2, 0], [1, 0], [3, 0]], %4, %3}, {[[3, 0], [1, 0], [2, 0]], %2, %4}, {[[2, 0], [3, 0], [1, 0]], %4, %3}, {[[3, 0], [1, 0], [2, 0]], %2, %1}} %1 := [[2, 0], [1, 0], [3, 1]] %2 := [[2, 0], [3, 0], [1, 1]] %3 := [[3, 1], [1, 0], [2, 0]] %4 := [[1, 1], [3, 0], [2, 0]] the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], %4, %2}, {[[2, 0], [1, 0], [3, 0]], %2, %1}, {[[2, 0], [3, 0], [1, 0]], %4, %2}, {[[1, 0], [3, 0], [2, 0]], %3, %1}, {[[1, 0], [3, 0], [2, 0]], %4, %3}, {[[2, 0], [3, 0], [1, 0]], %4, %3}, {[[3, 0], [1, 0], [2, 0]], %3, %1}, {[[3, 0], [1, 0], [2, 0]], %2, %1}} %1 := [[3, 1], [1, 0], [2, 0]] %2 := [[2, 0], [1, 0], [3, 1]] %3 := [[1, 1], [3, 0], [2, 0]] %4 := [[2, 0], [3, 0], [1, 1]] the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], %2, %1}, {[[2, 0], [3, 0], [1, 0]], %4, %1}, {[[1, 0], [3, 0], [2, 0]], %4, %3}, {[[1, 0], [3, 0], [2, 0]], %4, %1}, {[[3, 0], [1, 0], [2, 0]], %4, %3}, {[[3, 0], [1, 0], [2, 0]], %2, %3}, {[[2, 0], [1, 0], [3, 0]], %2, %3}, {[[2, 0], [1, 0], [3, 0]], %2, %1}} %1 := [[3, 0], [2, 0], [1, 1]] %2 := [[1, 0], [2, 0], [3, 1]] %3 := [[3, 1], [2, 0], [1, 0]] %4 := [[1, 1], [2, 0], [3, 0]] the member , {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {%2, [[2, 1], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[2, 0], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {%1, [[2, 0], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {%2, [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[2, 1], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], %1}, {[[1, 0], [3, 0], [2, 0]], %1, [[3, 0], [1, 0], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], %1}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], %2}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], %2}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], %2}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], %2}, {[[2, 0], [1, 0], [3, 0]], %1, [[3, 0], [1, 1], [2, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], %2, [[3, 1], [1, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], %2}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]], %1}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]], %1}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], %1}, {[[2, 0], [1, 0], [3, 0]], %2, [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]], %2}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]], %2}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], %1}, {[[1, 0], [3, 0], [2, 0]], %1, [[3, 1], [1, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], %1}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]], %2}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], %2}, {[[2, 0], [1, 0], [3, 0]], %1, [[3, 1], [1, 0], [2, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 2]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {%1, [[2, 0], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[2, 1], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {%1, [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {%2, [[2, 0], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[2, 1], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {%2, [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 0]], %2, [[1, 1], [2, 0], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], %1, [[3, 1], [2, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], %1}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]], %2}, {[[3, 0], [1, 0], [2, 0]], %2, [[1, 1], [2, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], %2}, {[[2, 0], [1, 0], [3, 0]], %1, [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {%2, [[2, 1], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[2, 0], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, {%1, [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {%2, [[1, 0], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, {%2, [[1, 0], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {%1, [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, {%1, [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {%1, [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {%2, [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {%2, [[2, 0], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[2, 1], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {%2, [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {%1, [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[2, 0], [3, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {%2, [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[2, 1], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], %1}, {[[1, 0], [3, 0], [2, 0]], %1, [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], %1}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], %2}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], %2}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], %2}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], %2}, {[[2, 0], [1, 0], [3, 0]], %1, [[3, 0], [1, 0], [2, 1]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], %4, %3}, {[[2, 0], [3, 0], [1, 0]], %2, %3}, {[[1, 0], [3, 0], [2, 0]], %4, %1}, {[[2, 0], [3, 0], [1, 0]], %4, %3}, {[[3, 0], [1, 0], [2, 0]], %2, %1}, {[[3, 0], [1, 0], [2, 0]], %4, %1}, {[[2, 0], [1, 0], [3, 0]], %2, %3}, {[[2, 0], [1, 0], [3, 0]], %2, %1}} %1 := [[3, 0], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 0]] %3 := [[3, 1], [2, 0], [1, 0]] %4 := [[1, 0], [2, 0], [3, 1]] the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Out of a total of , 138, cases 135, were successful and , 3, failed Success Rate: , 0.978 Here are the failures {{{[[3, 0], [2, 0], [1, 0]], %2, %1}, {[[1, 0], [2, 0], [3, 0]], %4, %3}}, { {[[2, 0], [1, 0], [3, 0]], %2, %1}, {[[1, 0], [3, 0], [2, 0]], %2, %1}, {[[2, 0], [3, 0], [1, 0]], %4, %3}, {[[3, 0], [1, 0], [2, 0]], %4, %3}}, { {[[1, 0], [3, 0], [2, 0]], %4, %3}, {[[2, 0], [1, 0], [3, 0]], %4, %3}, {[[2, 0], [3, 0], [1, 0]], %2, %1}, {[[3, 0], [1, 0], [2, 0]], %2, %1}}} %1 := [[1, 1], [3, 0], [2, 0]] %2 := [[2, 0], [1, 0], [3, 1]] %3 := [[3, 1], [1, 0], [2, 0]] %4 := [[2, 0], [3, 0], [1, 1]] {{{[[3, 0], [2, 0], [1, 0]], %2, %1}, {[[1, 0], [2, 0], [3, 0]], %4, %3}}, { {[[2, 0], [1, 0], [3, 0]], %2, %1}, {[[1, 0], [3, 0], [2, 0]], %2, %1}, {[[2, 0], [3, 0], [1, 0]], %4, %3}, {[[3, 0], [1, 0], [2, 0]], %4, %3}}, { {[[1, 0], [3, 0], [2, 0]], %4, %3}, {[[2, 0], [1, 0], [3, 0]], %4, %3}, {[[2, 0], [3, 0], [1, 0]], %2, %1}, {[[3, 0], [1, 0], [2, 0]], %2, %1}}} %1 := [[1, 1], [3, 0], [2, 0]] %2 := [[2, 0], [1, 0], [3, 1]] %3 := [[3, 1], [1, 0], [2, 0]] %4 := [[2, 0], [3, 0], [1, 1]] "for patterns of lengths: ", [[3, 0], [3, 1], [3, 2]] There all together, 280, different equivalence classes For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {%2, [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {%2, [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {%2, [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[3, 0], [1, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[3, 0], [1, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, {%2, [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, {%2, [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[2, 1], [3, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {%1, [[3, 0], [1, 1], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, {%1, [[3, 0], [1, 1], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, {%1, [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 0], [3, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], %2, [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[1, 0], [3, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[1, 0], [3, 0], [2, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {%2, [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {%2, [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {%2, [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[3, 0], [1, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {%1, [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {%1, [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {%1, [[3, 0], [1, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, {%2, [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, {%2, [[3, 1], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 0], [3, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[3, 0], [2, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[3, 1], [2, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[3, 1], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[3, 0], [2, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], %2, [[3, 1], [1, 0], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], %2, [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[3, 1], [1, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[2, 0], [1, 0], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 0], [1, 0], [3, 1]]}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], %2}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], %2}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], %1}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], %1}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], %1}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 0], [2, 0]], %1, [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 1], [3, 0], [1, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, {%2, [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, {%2, [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {%2, [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, [[3, 1], [1, 0], [2, 1]], %3}, {%4, [[3, 1], [1, 1], [2, 0]], %3}, {%4, [[2, 0], [3, 1], [1, 1]], %3}, {%4, [[2, 1], [3, 0], [1, 1]], %3}, {%2, [[2, 1], [1, 0], [3, 1]], %1}, {%2, [[2, 0], [1, 1], [3, 1]], %1}, {%2, [[1, 1], [3, 1], [2, 0]], %1}, {%2, [[1, 1], [3, 0], [2, 1]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] %3 := [[3, 0], [2, 1], [1, 0]] %4 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[2, 1], [3, 0], [1, 0]]}, {%4, %3, [[2, 0], [3, 1], [1, 0]]}, {%4, %3, [[3, 0], [1, 1], [2, 0]]}, {%4, %3, [[3, 0], [1, 0], [2, 1]]}, {%2, %1, [[1, 0], [3, 1], [2, 0]]}, {%2, %1, [[1, 0], [3, 0], [2, 1]]}, {%2, %1, [[2, 0], [1, 1], [3, 0]]}, {%2, %1, [[2, 1], [1, 0], [3, 0]]}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[3, 0], [2, 0], [1, 0]] %3 := [[1, 1], [2, 0], [3, 1]] %4 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 0], [1, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 0], [3, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [1, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], %2, [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], %2, [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[3, 1], [2, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[1, 0], [2, 0], [3, 1]]}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, {%2, [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, {%1, [[2, 1], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, {%1, [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[2, 0], [1, 0], [3, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[3, 1], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[3, 1], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, {%2, [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, {%1, [[2, 0], [3, 1], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, {%1, [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[2, 0], [1, 0], [3, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, {%1, [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[3, 0], [1, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[3, 0], [1, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {%1, [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[3, 0], [1, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[3, 0], [1, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 0], [2, 0]], %1, [[3, 0], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 0], [3, 1], [1, 0]]}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[3, 1], [1, 1], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, {%2, [[3, 1], [1, 0], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, {%2, [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 0], [3, 1]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 0], [3, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[3, 1], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[3, 1], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], %2, [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[3, 0], [1, 0], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[1, 0], [3, 1], [2, 0]]}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 0], [1, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, {%1, [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[3, 1], [2, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[3, 0], [2, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[3, 1], [2, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {%1, [[3, 0], [2, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 0], [3, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[3, 1], [1, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {%2, [[3, 1], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[3, 0], [1, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {%1, [[3, 0], [1, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[3, 1], [2, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {%1, [[3, 0], [2, 1], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, {%1, [[3, 1], [2, 1], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, {%1, [[3, 0], [2, 1], [1, 1]], [[2, 0], [1, 0], [3, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 0], [1, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 0], [1, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[3, 1], [1, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {%2, [[3, 1], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 0], [1, 0], [3, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 0], [1, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[3, 0], [2, 1], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, {%1, [[3, 1], [2, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {%1, [[3, 0], [2, 1], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, {%1, [[3, 1], [2, 1], [1, 0]], [[2, 0], [1, 0], [3, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[3, 0], [1, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[3, 0], [1, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {%2, [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {%1, [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {%1, [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 0], [3, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, {%1, [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 0], [3, 1]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[2, 0], [3, 0], [1, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[3, 1], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[3, 0], [2, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, {%2, [[3, 1], [2, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {%2, [[3, 0], [2, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 1], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, {%1, [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, {%1, [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 0], [1, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, [[2, 1], [1, 0], [3, 1]], %3}, {%4, [[1, 1], [3, 0], [2, 1]], %3}, {%4, [[1, 1], [3, 1], [2, 0]], %3}, {%4, [[2, 0], [1, 1], [3, 1]], %3}, {%2, [[2, 1], [3, 0], [1, 1]], %1}, {%2, [[2, 0], [3, 1], [1, 1]], %1}, {%2, [[3, 1], [1, 0], [2, 1]], %1}, {%2, [[3, 1], [1, 1], [2, 0]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] %3 := [[3, 0], [2, 1], [1, 0]] %4 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 0], [3, 0], [1, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 0], [3, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[3, 0], [2, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[3, 0], [2, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[3, 1], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[3, 1], [2, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[2, 1], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, {%2, [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, {%1, [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[2, 0], [1, 0], [3, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], %2}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], %2}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], %2}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], %1}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], %1}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], %1}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[2, 0], [3, 1], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, {%2, [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, {%1, [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[2, 0], [1, 0], [3, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], %2, [[3, 1], [1, 0], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], %2, [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[3, 1], [1, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[1, 1], [3, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[1, 1], [3, 0], [2, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[2, 1], [3, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {%1, [[3, 0], [1, 1], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, {%2, [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, {%2, [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, {%2, [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, {%1, [[3, 0], [1, 1], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, {%1, [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 0], [3, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[3, 0], [2, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {%1, [[3, 0], [2, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {%1, [[3, 1], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[3, 1], [2, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], %2}, {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], %2}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], %2}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], %1}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], %1}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], %1}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 0], [3, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[1, 0], [3, 1], [2, 0]]}, {%4, %3, [[1, 0], [3, 0], [2, 1]]}, {%4, %3, [[2, 1], [1, 0], [3, 0]]}, {%2, %1, [[2, 1], [3, 0], [1, 0]]}, {%4, %3, [[2, 0], [1, 1], [3, 0]]}, {%2, %1, [[2, 0], [3, 1], [1, 0]]}, {%2, %1, [[3, 0], [1, 1], [2, 0]]}, {%2, %1, [[3, 0], [1, 0], [2, 1]]}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[3, 0], [2, 0], [1, 0]] %3 := [[1, 1], [2, 0], [3, 1]] %4 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], %2}, {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], %2}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], %2}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], %1}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], %1}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], %1}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {%1, [[3, 1], [2, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[3, 1], [2, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {%1, [[3, 0], [2, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[3, 0], [2, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], %2}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], %2}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], %2}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], %2}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], %1}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], %1}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], %1}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {%1, [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[2, 0], [3, 1], [1, 0]]}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, [[2, 0], [1, 1], [3, 1]], %3}, {%4, [[2, 1], [1, 0], [3, 1]], %3}, {%4, [[1, 1], [3, 1], [2, 0]], %3}, {%4, [[1, 1], [3, 0], [2, 1]], %3}, {%2, [[2, 1], [3, 0], [1, 1]], %1}, {%2, [[2, 0], [3, 1], [1, 1]], %1}, {%2, [[3, 1], [1, 1], [2, 0]], %1}, {%2, [[3, 1], [1, 0], [2, 1]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[3, 0], [2, 0], [1, 0]] %3 := [[1, 0], [2, 1], [3, 0]] %4 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {%1, [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[2, 0], [3, 1], [1, 0]]}, {%4, %3, [[2, 1], [3, 0], [1, 0]]}, {%4, %3, [[3, 0], [1, 1], [2, 0]]}, {%4, %3, [[3, 0], [1, 0], [2, 1]]}, {%2, %1, [[1, 0], [3, 1], [2, 0]]}, {%2, %1, [[2, 0], [1, 1], [3, 0]]}, {%2, %1, [[1, 0], [3, 0], [2, 1]]}, {%2, %1, [[2, 1], [1, 0], [3, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 0], [2, 0], [1, 0]] %3 := [[3, 1], [2, 0], [1, 1]] %4 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], %2}, {[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], %2}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], %1}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], %1}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], %1}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {%1, [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {%1, [[3, 0], [1, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[3, 0], [1, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[3, 1], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[3, 1], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[3, 1], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[3, 1], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {%1, [[3, 0], [1, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[3, 0], [1, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {%1, [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[3, 1], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[3, 1], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, [[2, 1], [3, 0], [1, 1]], %3}, {%4, [[2, 0], [3, 1], [1, 1]], %3}, {%4, [[3, 1], [1, 1], [2, 0]], %3}, {%4, [[3, 1], [1, 0], [2, 1]], %3}, {%2, [[2, 1], [1, 0], [3, 1]], %1}, {%2, [[2, 0], [1, 1], [3, 1]], %1}, {%2, [[1, 1], [3, 1], [2, 0]], %1}, {%2, [[1, 1], [3, 0], [2, 1]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[3, 0], [2, 0], [1, 0]] %3 := [[1, 0], [2, 1], [3, 0]] %4 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[3, 1], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[3, 1], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[3, 1], [2, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[3, 1], [2, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[3, 0], [2, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {%2, [[3, 0], [2, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[3, 0], [1, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[3, 0], [1, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {%1, [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[3, 0], [1, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[3, 0], [1, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {%1, [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[3, 1], [2, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[3, 0], [2, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[3, 1], [2, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[3, 0], [2, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[3, 0], [2, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[3, 1], [2, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[3, 0], [2, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[3, 1], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[1, 0], [3, 1], [2, 0]]}, {%4, %3, [[1, 0], [3, 0], [2, 1]]}, {%4, %3, [[2, 1], [1, 0], [3, 0]]}, {%2, %1, [[2, 0], [3, 1], [1, 0]]}, {%4, %3, [[2, 0], [1, 1], [3, 0]]}, {%2, %1, [[3, 0], [1, 1], [2, 0]]}, {%2, %1, [[3, 0], [1, 0], [2, 1]]}, {%2, %1, [[2, 1], [3, 0], [1, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 0], [2, 0], [1, 0]] %3 := [[3, 1], [2, 0], [1, 1]] %4 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], %2}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], %2}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], %1}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], %1}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], %1}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], %2, [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[1, 0], [3, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[1, 0], [3, 0], [2, 1]]}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[3, 1], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {%1, [[3, 0], [2, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, {%1, [[3, 1], [2, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {%1, [[3, 0], [2, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], %2}, {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], %2}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], %2}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], %1}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], %1}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], %1}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {%2, [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {%2, [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {%1, [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, {%2, [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {%1, [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], %2}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], %2}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], %2}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], %1}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], %1}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], %1}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 0], [2, 1], [3, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], %2, [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], %2, [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[3, 1], [2, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[3, 0], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[1, 0], [2, 0], [3, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], %2}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], %2}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], %2}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], %1}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], %1}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], %1}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 0], [3, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[2, 0], [3, 1], [1, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], %2, [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[3, 0], [1, 0], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[1, 0], [3, 1], [2, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 0], [3, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], %2}, {[[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], %2}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], %1}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], %1}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], %1}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], %2}, {[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], %2}, {[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], %2}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], %1}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], %1}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], %1}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 0], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [3, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Out of a total of , 280, cases 280, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {} "for patterns of lengths: ", [[3, 0], [3, 2], [3, 2]] There all together, 138, different equivalence classes For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 1], [2, 0]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 0], [2, 1]]}, {%1, [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 1]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 1]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 0], [2, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 1], [3, 0]]}, {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], %2, %1}, {[[2, 0], [3, 0], [1, 0]], %4, %1}, {[[3, 0], [1, 0], [2, 0]], %4, %3}, {[[2, 0], [1, 0], [3, 0]], %4, %1}, {[[3, 0], [1, 0], [2, 0]], %2, %3}, {[[2, 0], [1, 0], [3, 0]], %4, %3}, {[[1, 0], [3, 0], [2, 0]], %2, %3}, {[[1, 0], [3, 0], [2, 0]], %2, %1}} %1 := [[3, 0], [2, 1], [1, 1]] %2 := [[1, 1], [2, 1], [3, 0]] %3 := [[3, 1], [2, 1], [1, 0]] %4 := [[1, 0], [2, 1], [3, 1]] the member , {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], %2}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], %2}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], %2}, {[[2, 0], [1, 0], [3, 0]], %1, [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], %2}, {[[2, 0], [1, 0], [3, 0]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], %1, [[3, 0], [2, 1], [1, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 0], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], %2}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 1], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[1, 1], [3, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], %2}, {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], %2}, {[[3, 0], [1, 0], [2, 0]], %1, [[2, 0], [1, 1], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[1, 1], [3, 0], [2, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 0], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 0]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], %1}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], %1}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], %1}, {[[3, 0], [1, 0], [2, 0]], %2, [[2, 1], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], %2, [[2, 0], [3, 1], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], %1}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], %1}, {[[2, 0], [1, 0], [3, 0]], %2, [[2, 1], [1, 0], [3, 1]]}, {[[2, 0], [1, 0], [3, 0]], %2, [[2, 0], [1, 1], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], %1}, {[[1, 0], [3, 0], [2, 0]], %2, [[1, 1], [3, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[1, 1], [3, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], %2, %1}, {[[2, 0], [1, 0], [3, 0]], %2, %1}, {[[3, 0], [1, 0], [2, 0]], %2, %1}, {[[1, 0], [3, 0], [2, 0]], %2, %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], %2}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], %2}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 0], [3, 1], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 1], [3, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], %2}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], %2}, {[[3, 0], [1, 0], [2, 0]], %1, [[3, 1], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[3, 1], [1, 0], [2, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 1], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 1], [3, 1], [1, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], %2, %3}, {[[1, 0], [3, 0], [2, 0]], %2, %1}, {[[2, 0], [1, 0], [3, 0]], %4, %1}, {[[2, 0], [3, 0], [1, 0]], %4, %3}, {[[2, 0], [3, 0], [1, 0]], %2, %3}, {[[3, 0], [1, 0], [2, 0]], %4, %1}, {[[2, 0], [1, 0], [3, 0]], %4, %3}, {[[3, 0], [1, 0], [2, 0]], %2, %1}} %1 := [[2, 1], [3, 1], [1, 0]] %2 := [[2, 1], [1, 1], [3, 0]] %3 := [[3, 0], [1, 1], [2, 1]] %4 := [[1, 0], [3, 1], [2, 1]] the member , {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {%2, [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {%2, [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {%2, [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 1], [1, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], %3, %4}, {[[1, 0], [3, 0], [2, 0]], %3, %1}, {[[2, 0], [1, 0], [3, 0]], %2, %4}, {[[2, 0], [3, 0], [1, 0]], %3, %4}, {[[2, 0], [3, 0], [1, 0]], %2, %4}, {[[3, 0], [1, 0], [2, 0]], %2, %1}, {[[3, 0], [1, 0], [2, 0]], %3, %1}, {[[2, 0], [1, 0], [3, 0]], %2, %1}} %1 := [[3, 0], [1, 1], [2, 1]] %2 := [[2, 1], [1, 1], [3, 0]] %3 := [[1, 0], [3, 1], [2, 1]] %4 := [[2, 1], [3, 1], [1, 0]] the member , {[[1, 0], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], %1}, {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], %1}, {[[2, 0], [1, 0], [3, 0]], %2, [[1, 1], [3, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], %2, [[1, 1], [3, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], %1}, {[[1, 0], [3, 0], [2, 0]], %2, [[2, 0], [1, 1], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], %2, [[2, 1], [1, 0], [3, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {%2, [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, {%2, [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 1], [3, 0]]}, {%2, [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 1]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 0], [2, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 0], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 1], [3, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 1], [1, 0]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {%1, [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], %2}, {[[2, 0], [3, 0], [1, 0]], %1, [[1, 0], [3, 1], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], %2}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], %2}, {[[3, 0], [1, 0], [2, 0]], %1, [[1, 0], [3, 1], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[2, 1], [1, 1], [3, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[1, 0], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {%2, [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {%2, [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, {%2, [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, {%2, [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {%2, [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 0], [2, 1]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 1], [2, 0]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 1], [2, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], %2}, {[[2, 0], [3, 0], [1, 0]], %1, [[2, 0], [1, 1], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], %1, [[1, 1], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], %2}, {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], %2}, {[[3, 0], [1, 0], [2, 0]], %1, [[1, 1], [3, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], %1, [[2, 1], [1, 0], [3, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 1], [2, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 1], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 1], [1, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 1]]}, {%1, [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 1]]}, {%1, [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 1], [2, 0]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[1, 1], [3, 0], [2, 1]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[2, 1], [1, 0], [3, 1]]}, {%4, %3, [[1, 1], [3, 1], [2, 0]]}, {%4, %3, [[2, 0], [1, 1], [3, 1]]}, {%2, [[2, 1], [3, 0], [1, 1]], %1}, {%4, %3, [[1, 1], [3, 0], [2, 1]]}, {%2, [[3, 1], [1, 0], [2, 1]], %1}, {%2, [[2, 0], [3, 1], [1, 1]], %1}, {%2, [[3, 1], [1, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[3, 0], [2, 0], [1, 0]] %3 := [[1, 1], [2, 0], [3, 1]] %4 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {%2, [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {%2, [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, {%2, [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {%2, [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 1], [3, 0]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], %2}, {[[1, 0], [3, 0], [2, 0]], %2, [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], %1}, {[[2, 0], [3, 0], [1, 0]], %1, [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], %2}, {[[2, 0], [1, 0], [3, 0]], %2, [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], %1}, {[[3, 0], [1, 0], [2, 0]], %1, [[1, 0], [2, 1], [3, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[1, 0], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]]}, {%1, [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, {%1, [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 1]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]]}, {%2, [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], %2}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 1], [3, 0]], %2}, {[[2, 0], [1, 0], [3, 0]], %1, [[2, 1], [3, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], %1, [[3, 0], [1, 1], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], %2}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], %2}, {[[1, 0], [3, 0], [2, 0]], %1, [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], %1, [[2, 1], [3, 1], [1, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, {%2, [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, {%2, [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], %2}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], %2}, {[[2, 0], [1, 0], [3, 0]], %1, [[2, 1], [3, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], %1, [[3, 1], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], %2}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], %2}, {[[1, 0], [3, 0], [2, 0]], %1, [[2, 0], [3, 1], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], %1, [[3, 1], [1, 0], [2, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, {%2, [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, {%2, [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%3, %5, %1}, {%6, %5, %1}, {%6, %5, %4}, {%6, %2, %1}, {%6, %2, %4}, {%3, %5, %4}, {%3, %2, %4}, {%3, %2, %1}} %1 := [[3, 1], [2, 1], [1, 0]] %2 := [[1, 1], [2, 1], [3, 0]] %3 := [[1, 0], [2, 0], [3, 0]] %4 := [[3, 0], [2, 1], [1, 1]] %5 := [[1, 0], [2, 1], [3, 1]] %6 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 1]]}, {%2, [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {%2, [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 1]]}, {%2, [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, {%2, [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, {%2, [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]]}, {%2, [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, [[2, 1], [1, 0], [3, 1]], %1}, {%2, [[1, 1], [3, 0], [2, 1]], %1}, {%4, %3, [[2, 1], [3, 0], [1, 1]]}, {%4, %3, [[2, 0], [3, 1], [1, 1]]}, {%4, %3, [[3, 1], [1, 1], [2, 0]]}, {%4, %3, [[3, 1], [1, 0], [2, 1]]}, {%2, [[1, 1], [3, 1], [2, 0]], %1}, {%2, [[2, 0], [1, 1], [3, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[3, 0], [2, 0], [1, 0]] %3 := [[1, 1], [2, 0], [3, 1]] %4 := [[1, 0], [2, 0], [3, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, [[2, 0], [1, 1], [3, 1]], %3}, {%4, [[2, 1], [1, 0], [3, 1]], %3}, {%4, [[1, 1], [3, 1], [2, 0]], %3}, {%4, [[1, 1], [3, 0], [2, 1]], %3}, {%2, %1, [[2, 1], [3, 0], [1, 1]]}, {%2, %1, [[2, 0], [3, 1], [1, 1]]}, {%2, %1, [[3, 1], [1, 1], [2, 0]]}, {%2, %1, [[3, 1], [1, 0], [2, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 0], [2, 0], [1, 0]] %3 := [[3, 1], [2, 0], [1, 1]] %4 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, [[2, 0], [3, 1], [1, 1]], %1}, {%2, [[2, 1], [3, 0], [1, 1]], %1}, {%4, %3, [[2, 1], [1, 0], [3, 1]]}, {%4, %3, [[2, 0], [1, 1], [3, 1]]}, {%4, %3, [[1, 1], [3, 1], [2, 0]]}, {%4, %3, [[1, 1], [3, 0], [2, 1]]}, {%2, [[3, 1], [1, 1], [2, 0]], %1}, {%2, [[3, 1], [1, 0], [2, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 0], [2, 0], [3, 0]] %3 := [[1, 1], [2, 0], [3, 1]] %4 := [[3, 0], [2, 0], [1, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], %2}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], %2}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], %2}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], %2}, {[[2, 0], [1, 0], [3, 0]], %1, [[2, 0], [3, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], %1, [[3, 1], [1, 0], [2, 1]]}, {[[1, 0], [3, 0], [2, 0]], %1, [[2, 1], [3, 0], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], %1, [[3, 1], [1, 1], [2, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[3, 1], [1, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]]}, {%2, [[3, 1], [1, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, {%2, [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]]}, {%2, [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 0]], %2, %1}, {[[2, 0], [3, 0], [1, 0]], %4, %1}, {[[3, 0], [1, 0], [2, 0]], %4, %3}, {[[2, 0], [1, 0], [3, 0]], %2, %3}, {[[1, 0], [3, 0], [2, 0]], %4, %1}, {[[1, 0], [3, 0], [2, 0]], %4, %3}, {[[3, 0], [1, 0], [2, 0]], %2, %3}, {[[2, 0], [1, 0], [3, 0]], %2, %1}} %1 := [[3, 1], [2, 1], [1, 0]] %2 := [[1, 1], [2, 1], [3, 0]] %3 := [[3, 0], [2, 1], [1, 1]] %4 := [[1, 0], [2, 1], [3, 1]] the member , {[[2, 0], [3, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, {%2, [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {%2, [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 1]]}, {%2, [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 1]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, {%2, [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {%1, [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {%2, [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, {%1, [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, {%2, [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, {%2, [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {%1, [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, {%1, [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 1], [2, 0]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 0], [2, 1]]}, {%2, [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {%2, [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 1]]}, {%2, [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]]}} %1 := [[1, 0], [2, 0], [3, 0]] %2 := [[3, 0], [2, 0], [1, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 1]]}, {%2, [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {%2, [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 1], [2, 0]]}, {%2, [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {%2, [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[1, 1], [3, 0], [2, 1]]}} %1 := [[3, 0], [2, 0], [1, 0]] %2 := [[1, 0], [2, 0], [3, 0]] the member , {[[3, 0], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]]}, {[[1, 0], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 0], [2, 1]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]]}, {[[2, 0], [3, 0], [1, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]]}, { [[3, 0], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [3, 0], [2, 1]]}} the member , {[[1, 0], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 1], [3, 1], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 0], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [3, 1], [2, 0]]}} the member , {[[3, 0], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%6, %5, %1}, {%6, %5, %4}, {%6, %2, %1}, {%6, %2, %4}, {%3, %2, %4}, {%3, %5, %1}, {%3, %5, %4}, {%3, %2, %1}} %1 := [[3, 0], [1, 1], [2, 1]] %2 := [[2, 1], [1, 1], [3, 0]] %3 := [[3, 0], [2, 0], [1, 0]] %4 := [[2, 1], [3, 1], [1, 0]] %5 := [[1, 0], [3, 1], [2, 1]] %6 := [[1, 0], [2, 0], [3, 0]] the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 0], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[1, 0], [2, 0], [3, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]]}} the member , {[[1, 0], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Out of a total of , 138, cases 138, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {} "for patterns of lengths: ", [[3, 1], [3, 1], [3, 1]] There all together, 118, different equivalence classes For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}} the member , {[[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[3, 0], [2, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [2, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [2, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[3, 0], [2, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [2, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [2, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 0], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}} the member , {[[1, 0], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [2, 0], [3, 0]], %2, [[1, 0], [3, 1], [2, 0]]}, {%1, [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {%1, [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {%1, [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, %1, [[2, 0], [3, 1], [1, 0]]}, {%2, [[3, 0], [1, 0], [2, 1]], %1}, {%2, %1, [[2, 0], [1, 1], [3, 0]]}, {%2, %1, [[2, 1], [1, 0], [3, 0]]}, {%2, %1, [[1, 0], [3, 0], [2, 1]]}, {%2, %1, [[1, 0], [3, 1], [2, 0]]}, {%2, %1, [[2, 1], [3, 0], [1, 0]]}, {%2, [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 0]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], %1, [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], %1, [[3, 0], [1, 1], [2, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {%1, [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], %1, [[1, 0], [3, 0], [2, 1]]}, {%2, [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {%1, [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], %1, [[2, 0], [1, 1], [3, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], %1, [[3, 0], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], %1, [[3, 0], [1, 1], [2, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{%1, %3, [[1, 0], [3, 0], [2, 1]]}, {%2, %1, [[1, 0], [3, 1], [2, 0]]}, {%2, %4, [[2, 1], [1, 0], [3, 0]]}, {%2, %4, [[3, 0], [1, 0], [2, 1]]}, {%4, %3, [[2, 0], [1, 1], [3, 0]]}, {%1, %3, [[2, 1], [3, 0], [1, 0]]}, {%4, %3, [[2, 0], [3, 1], [1, 0]]}, {%2, %1, [[3, 0], [1, 1], [2, 0]]}} %1 := [[2, 0], [1, 0], [3, 1]] %2 := [[2, 0], [3, 0], [1, 1]] %3 := [[3, 1], [1, 0], [2, 0]] %4 := [[1, 1], [3, 0], [2, 0]] the member , {[[2, 0], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[1, 0], [3, 0], [2, 1]]}, {%2, %1, [[3, 0], [1, 0], [2, 1]]}, {%2, %1, [[3, 0], [1, 1], [2, 0]]}, {%4, %3, [[1, 0], [3, 1], [2, 0]]}, {%4, %3, [[2, 0], [1, 1], [3, 0]]}, {%4, %3, [[2, 1], [1, 0], [3, 0]]}, {%2, %1, [[2, 1], [3, 0], [1, 0]]}, {%2, %1, [[2, 0], [3, 1], [1, 0]]}} %1 := [[3, 1], [1, 0], [2, 0]] %2 := [[2, 0], [3, 0], [1, 1]] %3 := [[1, 1], [3, 0], [2, 0]] %4 := [[2, 0], [1, 0], [3, 1]] the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], %1, [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], %1, [[3, 0], [1, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], %1, [[2, 0], [3, 1], [1, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], %1, [[2, 1], [1, 0], [3, 0]]}, {%2, [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {%1, [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {%1, [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 0], [1, 1], [2, 0]], %1, [[1, 0], [3, 1], [2, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[1, 0], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{%2, %4, [[1, 0], [3, 0], [2, 1]]}, {%2, %1, [[2, 0], [1, 1], [3, 0]]}, {%4, %3, [[1, 0], [3, 1], [2, 0]]}, {%1, %3, [[2, 1], [1, 0], [3, 0]]}, {%2, %4, [[3, 0], [1, 0], [2, 1]]}, {%1, %3, [[2, 1], [3, 0], [1, 0]]}, {%4, %3, [[2, 0], [3, 1], [1, 0]]}, {%2, %1, [[3, 0], [1, 1], [2, 0]]}} %1 := [[1, 1], [3, 0], [2, 0]] %2 := [[2, 0], [3, 0], [1, 1]] %3 := [[3, 1], [1, 0], [2, 0]] %4 := [[2, 0], [1, 0], [3, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %2, [[2, 1], [3, 0], [1, 0]]}, {%4, %2, [[2, 1], [1, 0], [3, 0]]}, {%4, %3, [[2, 0], [3, 1], [1, 0]]}, {%4, %3, [[1, 0], [3, 1], [2, 0]]}, {%3, %1, [[1, 0], [3, 0], [2, 1]]}, {%3, %1, [[3, 0], [1, 0], [2, 1]]}, {%2, %1, [[2, 0], [1, 1], [3, 0]]}, {%2, %1, [[3, 0], [1, 1], [2, 0]]}} %1 := [[3, 1], [1, 0], [2, 0]] %2 := [[2, 0], [1, 0], [3, 1]] %3 := [[1, 1], [3, 0], [2, 0]] %4 := [[2, 0], [3, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[2, 0], [1, 1], [3, 0]]}, {%4, %3, [[2, 0], [3, 1], [1, 0]]}, {%4, %2, [[2, 1], [3, 0], [1, 0]]}, {%4, %2, [[1, 0], [3, 0], [2, 1]]}, {%3, %1, [[2, 1], [1, 0], [3, 0]]}, {%2, %1, [[1, 0], [3, 1], [2, 0]]}, {%3, %1, [[3, 0], [1, 0], [2, 1]]}, {%2, %1, [[3, 0], [1, 1], [2, 0]]}} %1 := [[3, 1], [1, 0], [2, 0]] %2 := [[1, 1], [3, 0], [2, 0]] %3 := [[2, 0], [1, 0], [3, 1]] %4 := [[2, 0], [3, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[1, 0], [2, 0], [3, 1]]}, {%4, %3, [[3, 0], [2, 0], [1, 1]]}, {%4, %2, [[3, 0], [2, 0], [1, 1]]}, {%4, %2, [[1, 1], [2, 0], [3, 0]]}, {%3, %1, [[1, 0], [2, 0], [3, 1]]}, {%3, %1, [[3, 1], [2, 0], [1, 0]]}, {%2, %1, [[3, 1], [2, 0], [1, 0]]}, {%2, %1, [[1, 1], [2, 0], [3, 0]]}} %1 := [[3, 1], [1, 0], [2, 0]] %2 := [[1, 1], [3, 0], [2, 0]] %3 := [[2, 0], [1, 0], [3, 1]] %4 := [[2, 0], [3, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[3, 1], [2, 0], [1, 0]]}, {%4, %3, [[1, 1], [2, 0], [3, 0]]}, {%4, %2, [[1, 0], [2, 0], [3, 1]]}, {%4, %2, [[3, 1], [2, 0], [1, 0]]}, {%3, %1, [[1, 1], [2, 0], [3, 0]]}, {%3, %1, [[3, 0], [2, 0], [1, 1]]}, {%2, %1, [[3, 0], [2, 0], [1, 1]]}, {%2, %1, [[1, 0], [2, 0], [3, 1]]}} %1 := [[3, 1], [1, 0], [2, 0]] %2 := [[1, 1], [3, 0], [2, 0]] %3 := [[2, 0], [1, 0], [3, 1]] %4 := [[2, 0], [3, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], %1}, {[[2, 0], [1, 0], [3, 1]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 1]], %1, [[3, 0], [2, 0], [1, 1]]}, {[[3, 1], [2, 0], [1, 0]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [2, 0], [1, 0]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], %1, [[3, 0], [2, 0], [1, 1]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}} the member , {[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[1, 0], [3, 1], [2, 0]]}, {%4, %3, [[1, 0], [3, 0], [2, 1]]}, {%4, %3, [[2, 1], [1, 0], [3, 0]]}, {%4, %3, [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 1]], %2, %1}, {%2, %1, [[2, 1], [3, 0], [1, 0]]}, {%2, %1, [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], %2, %1}} %1 := [[3, 0], [2, 0], [1, 1]] %2 := [[3, 1], [2, 0], [1, 0]] %3 := [[1, 0], [2, 0], [3, 1]] %4 := [[1, 1], [2, 0], [3, 0]] the member , {[[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {%1, [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], %2, [[1, 0], [3, 1], [2, 0]]}, {%1, [[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {%2, [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], %2, [[2, 1], [1, 0], [3, 0]]}, {%1, [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], %1}, {[[3, 1], [1, 0], [2, 0]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{%2, %1, [[1, 0], [3, 1], [2, 0]]}, {%3, %1, [[1, 0], [3, 0], [2, 1]]}, {%3, %1, [[2, 1], [3, 0], [1, 0]]}, {%4, %2, [[2, 1], [1, 0], [3, 0]]}, {%4, [[3, 0], [1, 0], [2, 1]], %2}, {%4, %3, [[2, 0], [1, 1], [3, 0]]}, {%4, %3, [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], %2, %1}} %1 := [[1, 0], [2, 0], [3, 1]] %2 := [[3, 0], [2, 0], [1, 1]] %3 := [[3, 1], [2, 0], [1, 0]] %4 := [[1, 1], [2, 0], [3, 0]] the member , {[[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [2, 0], [3, 0]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], %2, [[2, 1], [1, 0], [3, 0]]}, {%1, [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {%1, [[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {%1, [[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {%1, [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%3, %4, [[1, 0], [3, 1], [2, 0]]}, {%1, %4, [[1, 0], [3, 0], [2, 1]]}, {%3, %4, [[2, 0], [3, 1], [1, 0]]}, {%2, %1, [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 1]], %1, %4}, {%2, %3, [[2, 1], [1, 0], [3, 0]]}, {%2, %3, [[2, 1], [3, 0], [1, 0]]}, {%2, [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 0]] %3 := [[3, 1], [2, 0], [1, 0]] %4 := [[1, 0], [2, 0], [3, 1]] the member , {[[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], %1}, {[[3, 1], [1, 0], [2, 0]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], %4, %2}, {[[2, 0], [1, 0], [3, 1]], %4, %2}, {[[3, 1], [1, 0], [2, 0]], %4, %3}, {[[2, 0], [1, 0], [3, 1]], %4, %3}, {[[3, 1], [1, 0], [2, 0]], %3, %1}, {[[1, 1], [3, 0], [2, 0]], %3, %1}, {[[1, 1], [3, 0], [2, 0]], %2, %1}, {[[2, 0], [3, 0], [1, 1]], %2, %1}} %1 := [[1, 0], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 0]] %3 := [[3, 0], [2, 0], [1, 1]] %4 := [[1, 1], [2, 0], [3, 0]] the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], %1}, {[[2, 0], [3, 0], [1, 1]], %1, [[1, 0], [2, 0], [3, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], %1}, {[[2, 0], [1, 0], [3, 1]], %2, [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 1]], %2, [[3, 1], [2, 0], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], %2, [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], %2, [[3, 1], [2, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], %1, [[1, 0], [2, 0], [3, 1]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%6, %2, %1}, {%4, %6, %1}, {%4, %3, %5}, {%4, %6, %5}, {%3, %2, %5}, {%6, %2, %5}, {%4, %3, %1}, {%3, %2, %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[3, 1], [1, 0], [2, 0]] %3 := [[2, 0], [1, 0], [3, 1]] %4 := [[2, 0], [3, 0], [1, 1]] %5 := [[1, 0], [2, 1], [3, 0]] %6 := [[1, 1], [3, 0], [2, 0]] the member , {[[1, 1], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 1]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], %1}, {[[1, 1], [3, 0], [2, 0]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, [[3, 1], [2, 0], [1, 0]], %1}, {%2, %1, [[1, 0], [2, 0], [3, 1]]}, {%2, %1, [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [2, 0], [3, 0]], %2, %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {%1, [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], %2, [[2, 0], [1, 1], [3, 0]]}, {%1, [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], %2, [[1, 0], [3, 0], [2, 1]]}, {%1, [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[3, 0], [2, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 0]], %2, %1}, {[[2, 0], [3, 0], [1, 1]], %2, %1}, {[[3, 1], [1, 0], [2, 0]], %2, %1}, {[[2, 0], [1, 0], [3, 1]], %2, %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {%1, [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {%2, [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 1], [2, 0], [1, 0]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [2, 0], [3, 0]], %1, [[3, 0], [1, 1], [2, 0]]}, {[[3, 1], [2, 0], [1, 0]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], %1, [[2, 1], [3, 0], [1, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], %3, %1}, {[[2, 0], [3, 0], [1, 1]], %4, %3}, {[[3, 1], [1, 0], [2, 0]], %4, %2}, {[[1, 1], [3, 0], [2, 0]], %4, %2}, {[[1, 1], [3, 0], [2, 0]], %4, %3}, {[[2, 0], [1, 0], [3, 1]], %3, %1}, {[[2, 0], [1, 0], [3, 1]], %2, %1}, {[[3, 1], [1, 0], [2, 0]], %2, %1}} %1 := [[1, 0], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 0]] %3 := [[3, 0], [2, 0], [1, 1]] %4 := [[1, 1], [2, 0], [3, 0]] the member , {[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}} the member , {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 0]], %1, [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], %1}, {[[2, 0], [3, 0], [1, 1]], %2, [[1, 0], [2, 0], [3, 1]]}, {[[3, 1], [1, 0], [2, 0]], %2, [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], %2}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], %2}, {[[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], %1}, {[[2, 0], [1, 0], [3, 1]], %1, [[3, 0], [2, 0], [1, 1]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%1, %3, [[2, 1], [1, 0], [3, 0]]}, {%4, %3, [[2, 0], [1, 1], [3, 0]]}, {%4, %3, [[2, 0], [3, 1], [1, 0]]}, {%2, %4, [[2, 1], [3, 0], [1, 0]]}, {%2, %4, [[1, 0], [3, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 1]], %1, %3}, {%2, %1, [[1, 0], [3, 1], [2, 0]]}, {%2, [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 0]] %2 := [[1, 1], [2, 0], [3, 0]] %3 := [[1, 0], [2, 0], [3, 1]] %4 := [[3, 0], [2, 0], [1, 1]] the member , {[[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}} the member , {[[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [2, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [2, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[1, 0], [2, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], %1}, {%1, [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {%1, [[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [2, 0], [3, 0]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{%4, %1, [[2, 1], [1, 0], [3, 0]]}, {%2, %1, [[2, 0], [1, 1], [3, 0]]}, {%4, %1, [[2, 1], [3, 0], [1, 0]]}, {%3, %4, [[2, 0], [3, 1], [1, 0]]}, {%3, %4, [[1, 0], [3, 1], [2, 0]]}, {%3, [[3, 0], [1, 0], [2, 1]], %2}, {%3, %2, [[1, 0], [3, 0], [2, 1]]}, {[[3, 0], [1, 1], [2, 0]], %2, %1}} %1 := [[1, 0], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 0]] %3 := [[1, 1], [2, 0], [3, 0]] %4 := [[3, 0], [2, 0], [1, 1]] the member , {[[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], %1, [[3, 0], [1, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], %1, [[3, 0], [1, 1], [2, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%3, %4, %6}, {%3, %6, %1}, {%2, %1, %5}, {%6, %1, %5}, {%2, %4, %5}, {%4, %6, %5}, {%3, %2, %4}, {%3, %2, %1}} %1 := [[3, 0], [2, 0], [1, 1]] %2 := [[1, 0], [2, 1], [3, 0]] %3 := [[1, 1], [2, 0], [3, 0]] %4 := [[3, 1], [2, 0], [1, 0]] %5 := [[1, 0], [2, 0], [3, 1]] %6 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 1], [2, 0], [1, 0]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [2, 0], [3, 0]], %1, [[3, 0], [1, 0], [2, 1]]}, {[[3, 1], [2, 0], [1, 0]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], %1, [[2, 0], [3, 1], [1, 0]]}, {%1, [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 0]]}} the member , {[[3, 0], [2, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, {{%2, %1, [[2, 1], [3, 0], [1, 0]]}, {%2, %1, [[2, 0], [3, 1], [1, 0]]}, {%2, [[3, 0], [1, 0], [2, 1]], %1}, {%4, %3, [[1, 0], [3, 1], [2, 0]]}, {%4, %3, [[1, 0], [3, 0], [2, 1]]}, {%4, %3, [[2, 1], [1, 0], [3, 0]]}, {%4, %3, [[2, 0], [1, 1], [3, 0]]}, {%2, [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[1, 0], [2, 0], [3, 1]] %2 := [[1, 1], [2, 0], [3, 0]] %3 := [[3, 0], [2, 0], [1, 1]] %4 := [[3, 1], [2, 0], [1, 0]] the member , {[[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], %1}, {%2, [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], %1, [[1, 0], [2, 0], [3, 1]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 1, 1, 1, 1, 1 Using the scheme, the first, , 31, terms are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] For the equivalence class of patterns, { {%1, [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], %1, [[1, 0], [2, 0], [3, 1]]}, {%2, [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {%2, [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[1, 0], [0, 1]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 1, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Out of a total of , 118, cases 115, were successful and , 3, failed Success Rate: , 0.975 Here are the failures {{{%4, %3, [[1, 0], [2, 1], [3, 0]]}, {%2, %1, [[3, 0], [2, 1], [1, 0]]}}, { {%4, %3, [[1, 1], [2, 0], [3, 0]]}, {%4, %3, [[1, 0], [2, 0], [3, 1]]}, {%2, %1, [[3, 1], [2, 0], [1, 0]]}, {%2, %1, [[3, 0], [2, 0], [1, 1]]}}, { {%4, %3, [[2, 1], [1, 0], [3, 0]]}, {%4, %3, [[1, 0], [3, 0], [2, 1]]}, {%4, %3, [[1, 0], [3, 1], [2, 0]]}, {%2, %1, [[3, 0], [1, 0], [2, 1]]}, {%2, %1, [[2, 0], [3, 1], [1, 0]]}, {%2, %1, [[2, 1], [3, 0], [1, 0]]}, {%4, %3, [[2, 0], [1, 1], [3, 0]]}, {%2, %1, [[3, 0], [1, 1], [2, 0]]}}} %1 := [[1, 1], [3, 0], [2, 0]] %2 := [[2, 0], [1, 0], [3, 1]] %3 := [[3, 1], [1, 0], [2, 0]] %4 := [[2, 0], [3, 0], [1, 1]] {{{%4, %3, [[1, 0], [2, 1], [3, 0]]}, {%2, %1, [[3, 0], [2, 1], [1, 0]]}}, { {%4, %3, [[1, 1], [2, 0], [3, 0]]}, {%4, %3, [[1, 0], [2, 0], [3, 1]]}, {%2, %1, [[3, 1], [2, 0], [1, 0]]}, {%2, %1, [[3, 0], [2, 0], [1, 1]]}}, { {%4, %3, [[2, 1], [1, 0], [3, 0]]}, {%4, %3, [[1, 0], [3, 0], [2, 1]]}, {%4, %3, [[1, 0], [3, 1], [2, 0]]}, {%2, %1, [[3, 0], [1, 0], [2, 1]]}, {%2, %1, [[2, 0], [3, 1], [1, 0]]}, {%2, %1, [[2, 1], [3, 0], [1, 0]]}, {%4, %3, [[2, 0], [1, 1], [3, 0]]}, {%2, %1, [[3, 0], [1, 1], [2, 0]]}}} %1 := [[1, 1], [3, 0], [2, 0]] %2 := [[2, 0], [1, 0], [3, 1]] %3 := [[3, 1], [1, 0], [2, 0]] %4 := [[2, 0], [3, 0], [1, 1]] "for patterns of lengths: ", [[3, 1], [3, 1], [3, 2]] There all together, 378, different equivalence classes For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, %1, [[1, 0], [2, 1], [3, 1]]}, {%2, %1, [[1, 1], [2, 1], [3, 0]]}, {%2, %1, [[3, 0], [2, 1], [1, 1]]}, {%2, %1, [[3, 1], [2, 1], [1, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], %2}, {[[2, 0], [1, 0], [3, 1]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], %2}, {[[1, 1], [3, 0], [2, 0]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], %1}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], %1}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], %1}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {%2, [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {%2, [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {%2, [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {%2, [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], %1}, {[[2, 0], [3, 0], [1, 1]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], %1}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], %2}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], %2}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], %1}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 0], [3, 1]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], %1, [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], %1, [[3, 1], [1, 0], [2, 1]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, [[2, 1], [1, 0], [3, 0]], %3}, {%4, [[2, 0], [1, 1], [3, 0]], %3}, {%2, %1, [[2, 1], [3, 0], [1, 0]]}, {%2, %1, [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], %2, %1}, {%4, [[1, 0], [3, 1], [2, 0]], %3}, {%4, [[1, 0], [3, 0], [2, 1]], %3}, {[[3, 0], [1, 1], [2, 0]], %2, %1}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 0], [2, 1], [1, 0]] %3 := [[3, 1], [2, 0], [1, 1]] %4 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%3, [[1, 1], [2, 1], [3, 0]], %1}, {%3, %1, [[3, 1], [2, 1], [1, 0]]}, {%4, %2, [[1, 0], [2, 1], [3, 1]]}, {%4, %2, [[3, 0], [2, 1], [1, 1]]}, {%4, %3, [[1, 0], [2, 1], [3, 1]]}, {%4, %3, [[3, 1], [2, 1], [1, 0]]}, {%2, [[1, 1], [2, 1], [3, 0]], %1}, {%2, %1, [[3, 0], [2, 1], [1, 1]]}} %1 := [[1, 0], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 0]] %3 := [[3, 0], [2, 0], [1, 1]] %4 := [[1, 1], [2, 0], [3, 0]] the member , {[[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 1], [1, 0]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 1], [2, 1]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], %2, [[3, 0], [1, 1], [2, 0]]}, {[[2, 1], [1, 1], [3, 0]], %2, [[3, 0], [1, 0], [2, 1]]}, {%1, [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], %1, [[1, 0], [3, 0], [2, 1]]}, {%1, [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 1], [3, 1]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [3, 0], [1, 1]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], %2, [[2, 0], [3, 1], [1, 0]]}, {%2, [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {%2, [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], %1, [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], %1, [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], %1, [[2, 1], [1, 0], [3, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[2, 1], [1, 0], [3, 1]]}, {%4, %3, [[2, 0], [1, 1], [3, 1]]}, {%4, %3, [[1, 1], [3, 1], [2, 0]]}, {%4, %3, [[1, 1], [3, 0], [2, 1]]}, {%2, %1, [[2, 1], [3, 0], [1, 1]]}, {%2, %1, [[2, 0], [3, 1], [1, 1]]}, {%2, %1, [[3, 1], [1, 0], [2, 1]]}, {%2, %1, [[3, 1], [1, 1], [2, 0]]}} %1 := [[1, 1], [3, 0], [2, 0]] %2 := [[2, 0], [1, 0], [3, 1]] %3 := [[3, 1], [1, 0], [2, 0]] %4 := [[2, 0], [3, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 1], [3, 1]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [3, 0], [1, 1]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], %1, [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], %1, [[3, 1], [1, 1], [2, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], %2}, {[[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], %2}, {[[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], %1}, {[[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], %2}, {[[3, 0], [2, 0], [1, 1]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], %2}, {[[3, 0], [2, 0], [1, 1]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], %1}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], %1}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], %1}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], %2}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], %2}, {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], %2}, {[[3, 1], [1, 0], [2, 0]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], %1, [[2, 1], [3, 0], [1, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {%2, [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], %1, [[1, 1], [2, 1], [3, 0]]}, {%2, [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {%2, [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], %1, [[1, 0], [2, 1], [3, 1]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 0], [1, 1]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [3, 1], [2, 0]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], %2, [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], %2, [[3, 0], [1, 0], [2, 1]]}, {%1, [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], %1, [[1, 0], [3, 0], [2, 1]]}, {%1, [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], %1}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], %2}, {[[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], %2}, {[[1, 1], [2, 0], [3, 0]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], %2}, {[[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], %2}, {[[3, 0], [1, 1], [2, 0]], %1, [[1, 0], [2, 0], [3, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], %2}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], %1}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], %2}, {[[1, 1], [3, 0], [2, 0]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], %2}, {[[2, 0], [1, 0], [3, 1]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 1], [3, 0]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [3, 1], [1, 0]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], %1, [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 1], [2, 1]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], %1, [[3, 0], [1, 1], [2, 1]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], %2}, {%2, [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], %1}, {[[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], %1}, {[[3, 0], [1, 0], [2, 1]], %2, [[1, 0], [2, 0], [3, 1]]}, {[[1, 1], [2, 0], [3, 0]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], %1}, {[[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 1], [2, 0]], %2, [[2, 0], [1, 1], [3, 0]]}, {%1, [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {%1, [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], %1}, {[[2, 0], [1, 1], [3, 1]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], %2, [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 1]], %2, [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], %2, [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], %2, [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], %1, [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [3, 0], [1, 1]], %1, [[1, 1], [2, 1], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], %1, [[1, 1], [2, 1], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], %1, [[1, 0], [2, 1], [3, 1]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 1], [2, 0]], %1, [[2, 0], [1, 1], [3, 0]]}, {%2, [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {%2, [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], %2, [[3, 0], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], %2, [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], %1, [[1, 0], [3, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], %1, [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], %1, [[2, 1], [1, 0], [3, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], %3, %1}, {%3, %1, [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], %4, %2}, {[[2, 0], [3, 1], [1, 1]], %4, %2}, {[[2, 1], [1, 0], [3, 1]], %4, %3}, {%4, %3, [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], %2, %1}, {[[2, 1], [3, 0], [1, 1]], %2, %1}} %1 := [[1, 0], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 0]] %3 := [[3, 0], [2, 0], [1, 1]] %4 := [[1, 1], [2, 0], [3, 0]] the member , {[[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], %1}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], %1}, {[[1, 1], [3, 0], [2, 0]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], %1}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [3, 1], [2, 0]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]], %1}, {%2, [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], %2}, {[[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], %2}, {[[3, 0], [2, 0], [1, 1]], %1, [[1, 0], [3, 0], [2, 1]]}, {[[3, 0], [2, 0], [1, 1]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], %2}, {[[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], %2}, {[[3, 1], [2, 0], [1, 0]], %1, [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [2, 0], [1, 0]], %1, [[2, 1], [1, 0], [3, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], %2, [[2, 0], [1, 1], [3, 0]]}, {%1, [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {%1, [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], %1}, {[[2, 1], [1, 0], [3, 1]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], %1}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], %1}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], %2}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], %1}, {[[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], %2}, {[[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], %2}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[1, 1], [3, 1], [2, 0]]}, {%4, %2, [[2, 1], [1, 0], [3, 1]]}, {%4, %3, [[3, 1], [1, 1], [2, 0]]}, {%4, %2, [[3, 1], [1, 0], [2, 1]]}, {%3, %1, [[1, 1], [3, 0], [2, 1]]}, {%3, %1, [[2, 1], [3, 0], [1, 1]]}, {%2, %1, [[2, 0], [1, 1], [3, 1]]}, {%2, %1, [[2, 0], [3, 1], [1, 1]]}} %1 := [[3, 1], [1, 0], [2, 0]] %2 := [[1, 1], [3, 0], [2, 0]] %3 := [[2, 0], [1, 0], [3, 1]] %4 := [[2, 0], [3, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], %3, %1}, {%3, %1, [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], %4, %2}, {[[2, 1], [3, 0], [1, 1]], %4, %2}, {[[2, 0], [1, 1], [3, 1]], %4, %3}, {%4, %3, [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], %2, %1}, {[[2, 0], [3, 1], [1, 1]], %2, %1}} %1 := [[1, 0], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 0]] %3 := [[3, 0], [2, 0], [1, 1]] %4 := [[1, 1], [2, 0], [3, 0]] the member , {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {%2, [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], %1, [[1, 0], [2, 1], [3, 1]]}, {%2, [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {%2, [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 1], [2, 0]], %1, [[1, 1], [2, 1], [3, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 1], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 0], [3, 1]]}, { [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 1]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], %2, [[3, 0], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], %2, [[3, 0], [1, 0], [2, 1]]}, {%1, [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], %1, [[1, 0], [3, 0], [2, 1]]}, {%1, [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}} the member , {[[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], %3, %1}, {%3, %1, [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], %4, %2}, {[[2, 1], [3, 1], [1, 0]], %4, %2}, {[[2, 1], [1, 1], [3, 0]], %4, %3}, {%4, %3, [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], %2, %1}, {[[2, 1], [3, 1], [1, 0]], %2, %1}} %1 := [[1, 0], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 0]] %3 := [[3, 0], [2, 0], [1, 1]] %4 := [[1, 1], [2, 0], [3, 0]] the member , {[[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%5, %4, %2}, {%5, %2, %1}, {%6, %3, %4}, {%6, %3, %1}, {%6, %5, %4}, {%6, %5, %1}, {%3, %4, %2}, {%3, %2, %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 0], [2, 0], [3, 1]] %3 := [[3, 1], [2, 0], [1, 0]] %4 := [[1, 1], [2, 0], [3, 1]] %5 := [[3, 0], [2, 0], [1, 1]] %6 := [[1, 1], [2, 0], [3, 0]] the member , {[[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], %1, [[2, 0], [1, 1], [3, 0]]}, {%2, [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {%2, [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], %2, [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], %2, [[3, 0], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], %1, [[1, 0], [3, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], %1, [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], %1, [[2, 1], [1, 0], [3, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], %2, [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], %2}, {[[1, 1], [3, 0], [2, 0]], %2, [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], %2}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], %1}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], %1}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], %1}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 1]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], %1}, {%2, [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], %3, %1}, {[[2, 0], [1, 1], [3, 1]], %3, %1}, {[[1, 1], [3, 1], [2, 0]], %4, %2}, {%4, %2, [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], %4, %3}, {[[2, 1], [3, 0], [1, 1]], %4, %3}, {[[2, 1], [1, 0], [3, 1]], %2, %1}, {%2, %1, [[3, 1], [1, 0], [2, 1]]}} %1 := [[1, 0], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 0]] %3 := [[3, 0], [2, 0], [1, 1]] %4 := [[1, 1], [2, 0], [3, 0]] the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {%2, [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {%2, [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {%2, [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {%2, [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[1, 0], [3, 1], [2, 1]]}, {%4, %2, [[2, 1], [1, 1], [3, 0]]}, {%4, %3, [[3, 0], [1, 1], [2, 1]]}, {%4, %2, [[3, 0], [1, 1], [2, 1]]}, {%3, %1, [[1, 0], [3, 1], [2, 1]]}, {%3, %1, [[2, 1], [3, 1], [1, 0]]}, {%2, %1, [[2, 1], [1, 1], [3, 0]]}, {%2, %1, [[2, 1], [3, 1], [1, 0]]}} %1 := [[3, 1], [1, 0], [2, 0]] %2 := [[1, 1], [3, 0], [2, 0]] %3 := [[2, 0], [1, 0], [3, 1]] %4 := [[2, 0], [3, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[1, 1], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[1, 1], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 1], [2, 1]], %2, [[2, 0], [1, 1], [3, 0]]}, {%1, [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {%1, [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]], %1}, {[[2, 1], [1, 1], [3, 0]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[2, 1], [1, 1], [3, 0]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[3, 1], [1, 1], [2, 0]]}, {%4, %3, [[3, 1], [1, 0], [2, 1]]}, {%4, %3, [[2, 1], [3, 0], [1, 1]]}, {%4, %3, [[2, 0], [3, 1], [1, 1]]}, {%2, %1, [[2, 0], [1, 1], [3, 1]]}, {%2, %1, [[1, 1], [3, 1], [2, 0]]}, {%2, %1, [[1, 1], [3, 0], [2, 1]]}, {%2, %1, [[2, 1], [1, 0], [3, 1]]}} %1 := [[1, 1], [3, 0], [2, 0]] %2 := [[2, 0], [1, 0], [3, 1]] %3 := [[3, 1], [1, 0], [2, 0]] %4 := [[2, 0], [3, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, [[2, 0], [1, 1], [3, 0]], %1}, {%4, %3, [[2, 1], [3, 0], [1, 0]]}, {%4, %3, [[2, 0], [3, 1], [1, 0]]}, {%4, [[3, 0], [1, 1], [2, 0]], %3}, {%4, [[3, 0], [1, 0], [2, 1]], %3}, {%2, [[1, 0], [3, 1], [2, 0]], %1}, {%2, [[1, 0], [3, 0], [2, 1]], %1}, {%2, [[2, 1], [1, 0], [3, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[3, 0], [2, 1], [1, 0]] %3 := [[1, 1], [2, 0], [3, 1]] %4 := [[1, 0], [2, 1], [3, 0]] the member , {[[3, 0], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 1], [3, 0]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [3, 1], [1, 0]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], %2, [[2, 0], [3, 1], [1, 0]]}, {%2, [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {%2, [[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], %1, [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [3, 1], [2, 1]], %1, [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], %1, [[2, 1], [1, 0], [3, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], %2}, {[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], %2}, {[[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], %1}, {[[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], %2}, {[[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], %2}, {[[3, 1], [2, 0], [1, 0]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [2, 0], [1, 0]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], %1}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {%1, [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], %2}, {[[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], %2}, {[[3, 0], [1, 0], [2, 1]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], %2}, {[[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], %2}, {[[3, 0], [1, 1], [2, 0]], %1, [[1, 0], [3, 0], [2, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[1, 1], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%3, [[1, 0], [2, 1], [3, 1]], %1}, {%3, %1, [[3, 0], [2, 1], [1, 1]]}, {%4, %2, [[1, 1], [2, 1], [3, 0]]}, {%4, %2, [[3, 1], [2, 1], [1, 0]]}, {%4, %3, [[1, 1], [2, 1], [3, 0]]}, {%4, %3, [[3, 0], [2, 1], [1, 1]]}, {%2, [[1, 0], [2, 1], [3, 1]], %1}, {%2, %1, [[3, 1], [2, 1], [1, 0]]}} %1 := [[1, 0], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 0]] %3 := [[3, 0], [2, 0], [1, 1]] %4 := [[1, 1], [2, 0], [3, 0]] the member , {[[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}} the member , {[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], %3, %1}, {[[2, 1], [3, 1], [1, 0]], %3, %1}, {[[1, 0], [3, 1], [2, 1]], %4, %2}, {%4, %2, [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], %4, %3}, {[[2, 1], [3, 1], [1, 0]], %4, %3}, {[[2, 1], [1, 1], [3, 0]], %2, %1}, {%2, %1, [[3, 0], [1, 1], [2, 1]]}} %1 := [[1, 0], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 0]] %3 := [[3, 0], [2, 0], [1, 1]] %4 := [[1, 1], [2, 0], [3, 0]] the member , {[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], %1}, {[[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], %1}, {[[3, 0], [1, 0], [2, 1]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]], %1}, {[[3, 0], [1, 1], [2, 0]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[1, 1], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], %2}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]], %2}, {[[2, 0], [1, 0], [3, 1]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], %2}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], %2}, {[[1, 1], [3, 0], [2, 0]], %1, [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], %1, [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], %1, [[2, 1], [1, 0], [3, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]], %1}, {[[2, 1], [3, 1], [1, 0]], %2, [[1, 0], [3, 1], [2, 0]]}, {%2, [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], %1}, {[[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], %1}, {[[3, 0], [2, 0], [1, 1]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[3, 0], [2, 0], [1, 1]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], %1}, {[[3, 1], [2, 0], [1, 0]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[3, 1], [2, 0], [1, 0]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 0], [3, 1]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], %2, [[2, 0], [3, 1], [1, 0]]}, {%2, [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {%2, [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], %1, [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], %1, [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], %1, [[2, 1], [1, 0], [3, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, {%2, [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, {%1, [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[3, 0], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], %2}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], %2}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], %2}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], %1}, {[[2, 0], [1, 0], [3, 1]], %1, [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], %1}, {[[1, 1], [3, 0], [2, 0]], %1, [[3, 0], [1, 1], [2, 1]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}} the member , {[[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 1], [2, 1]], %1, [[2, 0], [1, 1], [3, 0]]}, {%2, [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {%2, [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], %2, [[3, 0], [1, 1], [2, 0]]}, {[[2, 1], [3, 1], [1, 0]], %2, [[3, 0], [1, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], %1, [[1, 0], [3, 1], [2, 0]]}, {[[2, 1], [1, 1], [3, 0]], %1, [[1, 0], [3, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], %1, [[2, 1], [1, 0], [3, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], %2}, {[[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], %2}, {[[1, 0], [3, 1], [2, 1]], %2, [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], %2, [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [3, 1], [1, 0]], %1, [[1, 0], [2, 0], [3, 1]]}, {%1, [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], %1}, {[[1, 1], [2, 0], [3, 0]], %1, [[3, 0], [1, 1], [2, 1]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], %1, [[3, 0], [2, 1], [1, 1]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], %1, [[3, 0], [2, 1], [1, 1]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], %2}, {[[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], %2}, {[[2, 0], [1, 1], [3, 1]], %2, [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 1]], %2, [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [3, 1], [1, 1]], %1, [[1, 0], [2, 0], [3, 1]]}, {%1, [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], %1}, {[[1, 1], [2, 0], [3, 0]], %1, [[3, 1], [1, 1], [2, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], %2}, {[[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]], %2}, {[[2, 1], [1, 0], [3, 1]], %2, [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], %2, [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [3, 0], [1, 1]], %1, [[1, 0], [2, 0], [3, 1]]}, {%1, [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], %1}, {[[1, 1], [2, 0], [3, 0]], %1, [[3, 1], [1, 0], [2, 1]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]], %2}, {[[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], %2}, {%2, [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, {%2, [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], %1, [[1, 0], [2, 0], [3, 1]]}, {[[1, 1], [3, 0], [2, 1]], %1, [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], %1}, {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], %2, [[3, 0], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], %2, [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], %1, [[1, 0], [3, 1], [2, 0]]}, {%1, [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], %1, [[2, 1], [1, 0], [3, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[3, 0], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], %2, %1}, {[[2, 1], [1, 1], [3, 0]], %2, %1}, {[[2, 1], [3, 1], [1, 0]], %2, %1}, {%2, %1, [[3, 0], [1, 1], [2, 1]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[3, 1], [2, 1], [1, 0]]}, {%4, %3, [[1, 1], [2, 1], [3, 0]]}, {%4, %2, [[1, 0], [2, 1], [3, 1]]}, {%4, %2, [[3, 1], [2, 1], [1, 0]]}, {%3, %1, [[1, 1], [2, 1], [3, 0]]}, {%3, %1, [[3, 0], [2, 1], [1, 1]]}, {%2, %1, [[1, 0], [2, 1], [3, 1]]}, {%2, %1, [[3, 0], [2, 1], [1, 1]]}} %1 := [[3, 1], [1, 0], [2, 0]] %2 := [[1, 1], [3, 0], [2, 0]] %3 := [[2, 0], [1, 0], [3, 1]] %4 := [[2, 0], [3, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], %2}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], %2}, {[[2, 1], [1, 0], [3, 1]], %2, [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [1, 1], [3, 1]], %2, [[1, 0], [2, 0], [3, 1]]}, {%1, [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {%1, [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], %1, [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [3, 0], [1, 1]], %1, [[3, 0], [2, 0], [1, 1]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[2, 0], [1, 1], [3, 0]]}, {%2, [[2, 1], [3, 0], [1, 0]], %1}, {%2, [[2, 0], [3, 1], [1, 0]], %1}, {[[3, 0], [1, 0], [2, 1]], %2, %1}, {%4, %3, [[1, 0], [3, 1], [2, 0]]}, {%4, %3, [[1, 0], [3, 0], [2, 1]]}, {%4, %3, [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], %2, %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[3, 0], [2, 1], [1, 0]] %3 := [[1, 1], [2, 0], [3, 1]] %4 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 1], [2, 1]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], %1}, {%2, [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 1], [1, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 1]], %2, [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [3, 0], [1, 1]], %2, [[1, 1], [2, 1], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], %2, [[1, 1], [2, 1], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], %2, [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [1, 0], [3, 1]], %1, [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 1]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], %1, [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], %1, [[3, 1], [2, 1], [1, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], %3, %1}, {[[2, 1], [3, 0], [1, 1]], %3, %1}, {[[1, 1], [3, 0], [2, 1]], %4, %2}, {%4, %2, [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], %4, %3}, {[[2, 0], [3, 1], [1, 1]], %4, %3}, {[[2, 0], [1, 1], [3, 1]], %2, %1}, {%2, %1, [[3, 1], [1, 1], [2, 0]]}} %1 := [[1, 0], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 0]] %3 := [[3, 0], [2, 0], [1, 1]] %4 := [[1, 1], [2, 0], [3, 0]] the member , {[[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], %1}, {[[2, 1], [3, 0], [1, 1]], %2, [[1, 0], [3, 1], [2, 0]]}, {%2, [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 1]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], %1}, {[[3, 1], [1, 0], [2, 0]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], %1}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], %1}, {[[3, 1], [1, 0], [2, 0]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], %2}, {[[1, 1], [2, 0], [3, 0]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], %2, [[1, 0], [2, 0], [3, 1]]}, {%2, [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], %1, [[3, 1], [2, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], %1, [[3, 1], [2, 0], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], %1, [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], %1, [[3, 0], [2, 0], [1, 1]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], %2}, {[[3, 1], [1, 0], [2, 0]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], %1}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], %1}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], %1}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 1], [2, 0], [1, 0]], %2, [[1, 0], [2, 1], [3, 1]]}, {[[3, 1], [2, 0], [1, 0]], %2, [[1, 1], [2, 1], [3, 0]]}, {%2, [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {%2, [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, {%1, [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], %1, [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [2, 0], [3, 0]], %1, [[3, 1], [2, 1], [1, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {%2, [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], %1}, {[[1, 1], [2, 0], [3, 0]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], %1}, {[[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]], %1}, {[[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], %1}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], %1, [[1, 0], [2, 0], [3, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], %2}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], %1}, {[[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], %2}, {[[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], %2}, {[[3, 1], [1, 0], [2, 0]], %1, [[1, 0], [2, 0], [3, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {%1, [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 1]], %1, [[3, 1], [2, 1], [1, 0]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 1], [2, 0]], %1, [[3, 1], [2, 1], [1, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], %2}, {[[1, 1], [2, 0], [3, 0]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], %2, [[1, 0], [2, 0], [3, 1]]}, {%2, [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], %1, [[3, 1], [2, 0], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], %1, [[3, 1], [2, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], %1, [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], %1, [[3, 0], [2, 0], [1, 1]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], %2, [[3, 0], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], %2, [[3, 0], [1, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], %1, [[1, 0], [3, 1], [2, 0]]}, {%1, [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], %1, [[2, 1], [1, 0], [3, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[3, 0], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], %2}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], %2}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], %2}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], %1}, {[[2, 0], [1, 0], [3, 1]], %1, [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], %1}, {[[1, 1], [3, 0], [2, 0]], %1, [[3, 1], [1, 0], [2, 1]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 1]], %2, [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], %1}, {[[3, 1], [1, 0], [2, 0]], %2, [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], %1}, {[[3, 1], [1, 0], [2, 0]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], %1}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], %2}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], %2}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], %2}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], %1}, {[[2, 0], [1, 0], [3, 1]], %1, [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], %1}, {[[1, 1], [3, 0], [2, 0]], %1, [[3, 1], [1, 1], [2, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], %2}, {[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], %2}, {[[1, 1], [3, 1], [2, 0]], %2, [[1, 0], [2, 0], [3, 1]]}, {[[1, 1], [3, 0], [2, 1]], %2, [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [3, 1], [1, 1]], %1, [[3, 1], [2, 0], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], %1, [[3, 1], [2, 0], [1, 0]]}, {%1, [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, {%1, [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 1], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[1, 1], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [2, 0], [3, 0]], %2, [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], %2}, {[[2, 1], [3, 1], [1, 0]], %2, [[1, 0], [2, 0], [3, 1]]}, {%2, [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], %1, [[3, 1], [2, 0], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], %1, [[3, 1], [2, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], %1, [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], %1, [[3, 0], [2, 0], [1, 1]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%6, %5, %4}, {%6, %5, %1}, {%6, %3, %4}, {%6, %3, %1}, {%5, %2, %4}, {%5, %2, %1}, {%3, %2, %4}, {%3, %2, %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[3, 1], [1, 0], [2, 0]] %3 := [[1, 1], [3, 0], [2, 0]] %4 := [[1, 1], [2, 0], [3, 1]] %5 := [[2, 0], [1, 0], [3, 1]] %6 := [[2, 0], [3, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], %1}, {%2, [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {%2, [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [2, 0], [3, 0]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], %1}, {[[1, 1], [2, 0], [3, 0]], %2, [[2, 0], [1, 1], [3, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], %1}, {[[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 1], [2, 0], [1, 0]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[3, 1], [2, 0], [1, 0]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], %2, [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [3, 1], [1, 1]], %2, [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], %1, [[1, 0], [2, 0], [3, 1]]}, {[[2, 1], [1, 0], [3, 1]], %1, [[1, 0], [2, 0], [3, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], %1}, {[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[1, 0], [2, 1], [3, 1]]}, {%4, %3, [[3, 0], [2, 1], [1, 1]]}, {%4, %2, [[1, 1], [2, 1], [3, 0]]}, {%4, %2, [[3, 0], [2, 1], [1, 1]]}, {%3, %1, [[1, 0], [2, 1], [3, 1]]}, {%3, %1, [[3, 1], [2, 1], [1, 0]]}, {%2, %1, [[1, 1], [2, 1], [3, 0]]}, {%2, %1, [[3, 1], [2, 1], [1, 0]]}} %1 := [[3, 1], [1, 0], [2, 0]] %2 := [[1, 1], [3, 0], [2, 0]] %3 := [[2, 0], [1, 0], [3, 1]] %4 := [[2, 0], [3, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[1, 1], [3, 0], [2, 1]]}, {%4, %2, [[2, 0], [1, 1], [3, 1]]}, {%4, %3, [[3, 1], [1, 0], [2, 1]]}, {%4, %2, [[3, 1], [1, 1], [2, 0]]}, {%3, %1, [[1, 1], [3, 1], [2, 0]]}, {%3, %1, [[2, 0], [3, 1], [1, 1]]}, {%2, %1, [[2, 1], [1, 0], [3, 1]]}, {%2, %1, [[2, 1], [3, 0], [1, 1]]}} %1 := [[3, 1], [1, 0], [2, 0]] %2 := [[1, 1], [3, 0], [2, 0]] %3 := [[2, 0], [1, 0], [3, 1]] %4 := [[2, 0], [3, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], %2}, {[[2, 0], [1, 0], [3, 1]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], %1}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], %1}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], %1}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], %2, [[3, 0], [1, 1], [2, 0]]}, {[[1, 0], [3, 1], [2, 1]], %2, [[3, 0], [1, 0], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], %1, [[1, 0], [3, 1], [2, 0]]}, {%1, [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], %1, [[2, 1], [1, 0], [3, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[3, 0], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[2, 1], [3, 1], [1, 0]]}, {%4, %3, [[2, 1], [1, 1], [3, 0]]}, {%4, %2, [[1, 0], [3, 1], [2, 1]]}, {%4, %2, [[2, 1], [3, 1], [1, 0]]}, {%3, %1, [[2, 1], [1, 1], [3, 0]]}, {%3, %1, [[3, 0], [1, 1], [2, 1]]}, {%2, %1, [[1, 0], [3, 1], [2, 1]]}, {%2, %1, [[3, 0], [1, 1], [2, 1]]}} %1 := [[3, 1], [1, 0], [2, 0]] %2 := [[1, 1], [3, 0], [2, 0]] %3 := [[2, 0], [1, 0], [3, 1]] %4 := [[2, 0], [3, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], %2}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], %2}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], %2}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], %1}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], %1}, {[[3, 1], [1, 0], [2, 0]], %1, [[3, 1], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], %1, [[3, 1], [1, 0], [2, 1]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]]}, {[[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%2, [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]], %1}, {[[2, 0], [3, 1], [1, 1]], %2, [[1, 0], [3, 1], [2, 0]]}, {%2, [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], %2, [[2, 1], [1, 0], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 0], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 1]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], %2}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], %2}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], %1}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], %1}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], %1}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 0], [2, 1]], %1, [[2, 1], [1, 0], [3, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], %2}, {%1, [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]], %2}, {%1, [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], %2}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], %2}, {[[3, 0], [1, 1], [2, 0]], %1, [[1, 0], [3, 1], [2, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [2, 0], [3, 0]], %2, [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [2, 0], [3, 0]], %2, [[3, 1], [2, 1], [1, 0]]}, {%2, [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {%2, [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, {%1, [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, {%1, [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, {%1, [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[2, 1], [3, 0], [1, 1]]}, {%4, %3, [[2, 1], [1, 0], [3, 1]]}, {%4, %2, [[1, 1], [3, 1], [2, 0]]}, {%4, %2, [[2, 0], [3, 1], [1, 1]]}, {%3, %1, [[2, 0], [1, 1], [3, 1]]}, {%3, %1, [[3, 1], [1, 1], [2, 0]]}, {%2, %1, [[1, 1], [3, 0], [2, 1]]}, {%2, %1, [[3, 1], [1, 0], [2, 1]]}} %1 := [[3, 1], [1, 0], [2, 0]] %2 := [[1, 1], [3, 0], [2, 0]] %3 := [[2, 0], [1, 0], [3, 1]] %4 := [[2, 0], [3, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {%1, [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {%2, [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, {%2, [[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, {%1, [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[3, 0], [2, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}} the member , {[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], %2}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], %2}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], %2}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], %1, [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], %1, [[3, 1], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], %1}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[2, 0], [3, 1], [1, 1]]}, {%4, %3, [[2, 0], [1, 1], [3, 1]]}, {%4, %2, [[1, 1], [3, 0], [2, 1]]}, {%4, %2, [[2, 1], [3, 0], [1, 1]]}, {%3, %1, [[2, 1], [1, 0], [3, 1]]}, {%3, %1, [[3, 1], [1, 0], [2, 1]]}, {%2, %1, [[1, 1], [3, 1], [2, 0]]}, {%2, %1, [[3, 1], [1, 1], [2, 0]]}} %1 := [[3, 1], [1, 0], [2, 0]] %2 := [[1, 1], [3, 0], [2, 0]] %3 := [[2, 0], [1, 0], [3, 1]] %4 := [[2, 0], [3, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, {[[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, %1, [[2, 0], [1, 1], [3, 0]]}, {%4, [[2, 1], [3, 0], [1, 0]], %3}, {%4, [[2, 0], [3, 1], [1, 0]], %3}, {%4, [[3, 0], [1, 1], [2, 0]], %3}, {%4, [[3, 0], [1, 0], [2, 1]], %3}, {%2, %1, [[1, 0], [3, 1], [2, 0]]}, {%2, %1, [[1, 0], [3, 0], [2, 1]]}, {%2, %1, [[2, 1], [1, 0], [3, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 0], [2, 1], [1, 0]] %3 := [[3, 1], [2, 0], [1, 1]] %4 := [[1, 0], [2, 1], [3, 0]] the member , {[[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [1, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, {[[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]]}} the member , {[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 1], [2, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[1, 1], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], %2, %1}, {[[1, 1], [3, 0], [2, 1]], %2, %1}, {[[2, 1], [1, 0], [3, 1]], %2, %1}, {[[2, 0], [1, 1], [3, 1]], %2, %1}, {[[2, 0], [3, 1], [1, 1]], %2, %1}, {[[2, 1], [3, 0], [1, 1]], %2, %1}, {%2, %1, [[3, 1], [1, 1], [2, 0]]}, {%2, %1, [[3, 1], [1, 0], [2, 1]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], %2}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], %2}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], %1}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 0], [2, 1]], %2}, {[[1, 1], [3, 0], [2, 0]], %1, [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], %1, [[2, 1], [3, 0], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 0]], %2}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], %1}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], %2}, {[[2, 1], [1, 0], [3, 0]], [[2, 0], [3, 1], [1, 0]], %2}, {[[3, 0], [1, 0], [2, 1]], %1, [[1, 0], [3, 1], [2, 0]]}, {%1, [[2, 0], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], %2}, {%1, [[1, 0], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], %2}, {[[3, 0], [1, 1], [2, 0]], %1, [[2, 1], [1, 0], [3, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[1, 0], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], %4, %3}, {[[1, 1], [3, 0], [2, 1]], %4, %3}, {[[2, 1], [1, 0], [3, 1]], %4, %3}, {[[2, 0], [1, 1], [3, 1]], %4, %3}, {[[2, 1], [3, 0], [1, 1]], %2, %1}, {[[2, 0], [3, 1], [1, 1]], %2, %1}, {%2, %1, [[3, 1], [1, 0], [2, 1]]}, {%2, %1, [[3, 1], [1, 1], [2, 0]]}} %1 := [[1, 0], [2, 0], [3, 1]] %2 := [[1, 1], [2, 0], [3, 0]] %3 := [[3, 0], [2, 0], [1, 1]] %4 := [[3, 1], [2, 0], [1, 0]] the member , {[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], %4, %3}, {[[2, 0], [3, 1], [1, 1]], %4, %3}, {[[2, 0], [1, 1], [3, 1]], %2, %1}, {[[1, 1], [3, 1], [2, 0]], %2, %1}, {[[1, 1], [3, 0], [2, 1]], %2, %1}, {%4, %3, [[3, 1], [1, 1], [2, 0]]}, {%4, %3, [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], %2, %1}} %1 := [[1, 0], [2, 0], [3, 1]] %2 := [[1, 1], [2, 0], [3, 0]] %3 := [[3, 0], [2, 0], [1, 1]] %4 := [[3, 1], [2, 0], [1, 0]] the member , {[[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [3, 0], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[3, 0], [2, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Out of a total of , 378, cases 378, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {} "for patterns of lengths: ", [[3, 1], [3, 2], [3, 2]] There all together, 378, different equivalence classes For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], %2}, {[[2, 1], [1, 0], [3, 1]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]], %2}, {[[1, 1], [3, 1], [2, 0]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], %1}, {[[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]], %1}, {[[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], %1}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]], %2}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], %1}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], %1}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], %2}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], %2}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], %1}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], %1}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[1, 0], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], %1}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], %1}, {[[3, 1], [1, 0], [2, 0]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], %2}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], %1}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%3, [[2, 0], [1, 1], [3, 0]], %4}, {[[3, 0], [1, 1], [2, 0]], %2, %1}, {%3, [[2, 0], [3, 1], [1, 0]], %4}, {[[3, 0], [1, 0], [2, 1]], %3, %1}, {%2, [[2, 1], [3, 0], [1, 0]], %4}, {%2, [[1, 0], [3, 0], [2, 1]], %4}, {%3, [[2, 1], [1, 0], [3, 0]], %1}, {%2, [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 1]] %2 := [[1, 0], [2, 1], [3, 1]] %3 := [[1, 1], [2, 1], [3, 0]] %4 := [[3, 1], [2, 1], [1, 0]] the member , {[[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], %2}, {[[2, 0], [1, 1], [3, 1]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], %2}, {[[1, 1], [3, 0], [2, 1]], %1, [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], %1, [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], %1}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], %2}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], %2}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], %2}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]], %2}, {%1, [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], %1, [[2, 1], [1, 0], [3, 0]]}, {%1, [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], %1, [[1, 0], [3, 1], [2, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], %2}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]], %2}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]], %2}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], %2}, {%1, [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], %1, [[2, 1], [1, 0], [3, 0]]}, {%1, [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], %1, [[1, 0], [3, 1], [2, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], %2}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], %2}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], %2}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], %2}, {[[2, 1], [3, 1], [1, 0]], %1, [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], %1, [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], %1, [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], %1, [[3, 0], [1, 1], [2, 1]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%3, %2, %6}, {%3, %6, %5}, {%4, %2, %6}, {%4, %6, %5}, {%3, %1, %5}, {%4, %1, %5}, {%4, %2, %1}, {%3, %2, %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[2, 1], [3, 1], [1, 0]] %3 := [[2, 1], [1, 1], [3, 0]] %4 := [[1, 0], [3, 1], [2, 1]] %5 := [[3, 0], [1, 1], [2, 1]] %6 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, { [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[1, 0], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], %1}, {[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], %1}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]], %2}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], %2}, {[[3, 1], [2, 0], [1, 0]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[3, 1], [2, 0], [1, 0]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], %1}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], %2}, {[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], %1}, {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], %1}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], %2}, {[[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], %2}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]], %2}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]], %1}, {[[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, {[[1, 0], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], %2}, {[[2, 1], [1, 1], [3, 0]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], %2}, {[[1, 0], [3, 1], [2, 1]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], %1, [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], %1, [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], %1}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], %2, [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], %2}, {[[2, 0], [1, 1], [3, 1]], %2, [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], %2}, {[[1, 0], [3, 1], [2, 1]], %1, [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], %1, [[3, 1], [1, 1], [2, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], %1}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], %2}, {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], %2}, {%2, [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {%2, [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], %1}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], %1}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], %1}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], %2}, {[[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]], %2}, {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], %1}, {[[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], %1}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], %2}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], %2}, {[[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], %1}, {[[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], %1}, {[[2, 0], [1, 0], [3, 1]], %1, [[3, 0], [1, 1], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], %2}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], %2}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], %2}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], %1}, {[[1, 1], [3, 0], [2, 0]], %1, [[3, 0], [1, 1], [2, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%6, %5, %4}, {%6, %5, %1}, {%6, %2, %4}, {%6, %2, %1}, {%3, %5, %4}, {%3, %5, %1}, {%3, %2, %4}, {%3, %2, %1}} %1 := [[3, 0], [2, 1], [1, 1]] %2 := [[1, 1], [2, 1], [3, 0]] %3 := [[1, 0], [2, 1], [3, 0]] %4 := [[3, 1], [2, 1], [1, 0]] %5 := [[1, 0], [2, 1], [3, 1]] %6 := [[3, 0], [2, 1], [1, 0]] the member , {[[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], %2}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]], %2}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]], %2}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]], %2}, {%1, [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [3, 1], [1, 0]], %1, [[1, 0], [3, 0], [2, 1]]}, {%1, [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], %2}, {%2, [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], %2}, {%2, [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], %1}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 0]], %1}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]], %1}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], %2}, {[[2, 1], [1, 1], [3, 0]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], %2}, {[[1, 0], [3, 1], [2, 1]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], %1, [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], %1, [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], %1}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], %2, [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [3, 1], [2, 0]], %2, [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], %2, [[1, 0], [2, 1], [3, 1]]}, {[[2, 1], [1, 0], [3, 1]], %2, [[1, 0], [2, 1], [3, 1]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], %1, [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [3, 1], [1, 1]], %1, [[3, 0], [2, 1], [1, 1]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], %4, %3}, {[[1, 1], [3, 1], [2, 0]], %4, %3}, {[[2, 0], [1, 1], [3, 1]], %4, %3}, {[[2, 1], [1, 0], [3, 1]], %4, %3}, {%2, [[3, 1], [1, 0], [2, 1]], %1}, {%2, [[3, 1], [1, 1], [2, 0]], %1}, {[[2, 1], [3, 0], [1, 1]], %2, %1}, {[[2, 0], [3, 1], [1, 1]], %2, %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 0], [2, 1], [3, 0]] %3 := [[1, 1], [2, 0], [3, 1]] %4 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], %1}, {[[1, 1], [2, 0], [3, 0]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], %2}, {[[3, 0], [2, 0], [1, 1]], %2, [[1, 1], [2, 1], [3, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], %2}, {[[3, 1], [2, 0], [1, 0]], %2, [[1, 1], [2, 1], [3, 0]]}, {[[1, 0], [2, 0], [3, 1]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], %1}, {[[2, 0], [1, 0], [3, 1]], %1, [[3, 1], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], %2}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], %2}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], %2}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], %1}, {[[1, 1], [3, 0], [2, 0]], %1, [[3, 1], [1, 0], [2, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], %2, [[1, 0], [2, 1], [3, 1]]}, {[[1, 1], [3, 1], [2, 0]], %2, [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [1, 1], [3, 1]], %2, [[1, 1], [2, 1], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], %2, [[1, 1], [2, 1], [3, 0]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [3, 0], [1, 1]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], %1, [[3, 1], [2, 1], [1, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, {[[1, 0], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], %2}, {[[1, 1], [3, 1], [2, 0]], %2, [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], %2}, {[[2, 1], [1, 0], [3, 1]], %2, [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], %1, [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 1], [3, 0]], %1, [[3, 1], [1, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], %1}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[3, 0], [2, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 1], [3, 0]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]], %2}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], %2}, {[[1, 0], [3, 1], [2, 1]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], %1}, {[[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]], %1}, {[[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]], %1}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], %2}, {[[1, 1], [3, 1], [2, 0]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], %2}, {[[2, 1], [1, 0], [3, 1]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], %1, [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], %1, [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], %1}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], %2, [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], %2, [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], %2, [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], %2, [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [3, 0], [1, 1]], %1, [[1, 0], [2, 1], [3, 1]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], %1, [[1, 1], [2, 1], [3, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], %1}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], %2}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]], %1}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], %2}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], %2}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], %1}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[2, 0], [3, 1], [1, 0]]}, {%4, %3, [[3, 0], [1, 0], [2, 1]]}, {%4, %3, [[3, 0], [1, 1], [2, 0]]}, {%4, %3, [[2, 1], [3, 0], [1, 0]]}, {%2, [[2, 1], [1, 0], [3, 0]], %1}, {%2, [[2, 0], [1, 1], [3, 0]], %1}, {%2, [[1, 0], [3, 0], [2, 1]], %1}, {%2, [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[3, 0], [1, 1], [2, 1]] %2 := [[2, 1], [3, 1], [1, 0]] %3 := [[2, 1], [1, 1], [3, 0]] %4 := [[1, 0], [3, 1], [2, 1]] the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 1], [2, 0]], %4, %3}, {[[3, 0], [1, 0], [2, 1]], %2, %3}, {%2, [[2, 0], [3, 1], [1, 0]], %1}, {%4, [[2, 1], [3, 0], [1, 0]], %1}, {%2, [[1, 0], [3, 0], [2, 1]], %3}, {%4, [[2, 1], [1, 0], [3, 0]], %1}, {%4, [[2, 0], [1, 1], [3, 0]], %3}, {%2, [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 1]] %2 := [[1, 1], [2, 1], [3, 0]] %3 := [[3, 1], [2, 1], [1, 0]] %4 := [[1, 0], [2, 1], [3, 1]] the member , {[[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], %2}, {[[1, 1], [3, 1], [2, 0]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], %2}, {[[2, 1], [1, 0], [3, 1]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], %1, [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], %1, [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], %1}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], %1}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], %2}, {[[2, 0], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]], %1}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], %2}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], %2}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], %1}, {[[1, 1], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[2, 0], [3, 1], [1, 0]]}, {%2, [[3, 0], [1, 1], [2, 0]], %1}, {%4, [[3, 0], [1, 0], [2, 1]], %1}, {%2, %3, [[2, 1], [3, 0], [1, 0]]}, {%4, [[2, 1], [1, 0], [3, 0]], %1}, {%2, %3, [[1, 0], [3, 0], [2, 1]]}, {%4, %3, [[2, 0], [1, 1], [3, 0]]}, {%2, [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[3, 0], [1, 1], [2, 1]] %2 := [[1, 0], [3, 1], [2, 1]] %3 := [[2, 1], [3, 1], [1, 0]] %4 := [[2, 1], [1, 1], [3, 0]] the member , {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], %2}, {%2, [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], %2}, {%2, [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], %1}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], %1}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]], %1}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], %1}, {[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], %1}, {[[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]], %2}, {[[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], %2}, {[[3, 0], [2, 0], [1, 1]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[3, 0], [2, 0], [1, 1]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], %1}, {[[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %3, [[3, 0], [1, 1], [2, 0]]}, {%2, [[2, 0], [3, 1], [1, 0]], %1}, {%2, %3, [[3, 0], [1, 0], [2, 1]]}, {%4, [[2, 1], [3, 0], [1, 0]], %1}, {%4, [[2, 1], [1, 0], [3, 0]], %1}, {%4, %3, [[2, 0], [1, 1], [3, 0]]}, {%2, %3, [[1, 0], [3, 0], [2, 1]]}, {%2, [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[3, 0], [1, 1], [2, 1]] %2 := [[2, 1], [1, 1], [3, 0]] %3 := [[2, 1], [3, 1], [1, 0]] %4 := [[1, 0], [3, 1], [2, 1]] the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, { [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], %1}, {[[3, 0], [1, 1], [2, 0]], %2, [[3, 0], [2, 1], [1, 1]]}, {%2, [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], %2, [[3, 0], [2, 1], [1, 1]]}, {%2, [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]], %1}, {[[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], %1}, {[[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], %2}, {[[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], %2}, {[[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]], %2}, {[[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]], %2}, {%1, [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], %2, [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], %2, [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 1], [1, 0]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], %1}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], %1}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], %1}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], %2}, {[[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]], %2}, {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], %1}, {[[1, 1], [2, 0], [3, 0]], %1, [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]], %2}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]], %2}, {[[2, 1], [3, 0], [1, 1]], %1, [[1, 0], [2, 0], [3, 1]]}, {%1, [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], %1}, {[[2, 0], [1, 0], [3, 1]], %1, [[3, 1], [1, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], %2}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], %2}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], %1}, {[[1, 1], [3, 0], [2, 0]], %1, [[3, 1], [1, 1], [2, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 1], [1, 0]], %2, [[1, 0], [2, 1], [3, 1]]}, {[[2, 1], [3, 1], [1, 0]], %2, [[1, 1], [2, 1], [3, 0]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], %1, [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], %1, [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], %1, [[3, 1], [2, 1], [1, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%3, [[2, 0], [1, 1], [3, 0]], %4}, {[[3, 0], [1, 1], [2, 0]], %3, %4}, {%2, [[2, 0], [3, 1], [1, 0]], %1}, {[[3, 0], [1, 0], [2, 1]], %2, %4}, {%2, [[1, 0], [3, 0], [2, 1]], %4}, {%3, [[2, 1], [3, 0], [1, 0]], %1}, {%3, [[2, 1], [1, 0], [3, 0]], %1}, {%2, [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 1]] %3 := [[1, 1], [2, 1], [3, 0]] %4 := [[3, 0], [2, 1], [1, 1]] the member , {[[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], %2}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], %2}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], %2}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], %2}, {%1, [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {%1, [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], %1}, {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 1]], %2, %1}, {[[3, 0], [1, 1], [2, 0]], %2, %1}, {%2, [[2, 0], [3, 1], [1, 0]], %1}, {%2, [[2, 1], [3, 0], [1, 0]], %1}, {%2, [[1, 0], [3, 0], [2, 1]], %1}, {%2, [[2, 1], [1, 0], [3, 0]], %1}, {%2, [[2, 0], [1, 1], [3, 0]], %1}, {%2, [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], %4, %3}, {[[1, 1], [3, 1], [2, 0]], %4, %3}, {[[2, 0], [1, 1], [3, 1]], %4, %3}, {[[2, 1], [1, 0], [3, 1]], %4, %3}, {[[2, 1], [3, 0], [1, 1]], %2, %1}, {[[2, 0], [3, 1], [1, 1]], %2, %1}, {%2, %1, [[3, 1], [1, 1], [2, 0]]}, {%2, %1, [[3, 1], [1, 0], [2, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[1, 0], [2, 1], [3, 0]] %3 := [[3, 1], [2, 0], [1, 1]] %4 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, [[2, 0], [3, 1], [1, 0]], %3}, {%4, %1, [[3, 0], [1, 0], [2, 1]]}, {%2, %1, [[3, 0], [1, 1], [2, 0]]}, {%2, [[2, 1], [3, 0], [1, 0]], %3}, {%4, %1, [[2, 1], [1, 0], [3, 0]]}, {%4, [[2, 0], [1, 1], [3, 0]], %3}, {%2, [[1, 0], [3, 0], [2, 1]], %3}, {%2, %1, [[1, 0], [3, 1], [2, 0]]}} %1 := [[2, 1], [3, 1], [1, 0]] %2 := [[2, 1], [1, 1], [3, 0]] %3 := [[3, 0], [1, 1], [2, 1]] %4 := [[1, 0], [3, 1], [2, 1]] the member , {[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 1]], %4, %3}, {[[2, 0], [3, 1], [1, 0]], %4, %3}, {[[3, 0], [1, 1], [2, 0]], %4, %3}, {%2, %1, [[1, 0], [3, 0], [2, 1]]}, {%2, %1, [[2, 1], [1, 0], [3, 0]]}, {%2, %1, [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [3, 0], [1, 0]], %4, %3}, {%2, %1, [[1, 0], [3, 1], [2, 0]]}} %1 := [[1, 1], [2, 1], [3, 0]] %2 := [[1, 0], [2, 1], [3, 1]] %3 := [[3, 1], [2, 1], [1, 0]] %4 := [[3, 0], [2, 1], [1, 1]] the member , {[[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, { [[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], %2}, {[[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]], %2}, {[[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], %2}, {%1, [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], %2}, {%1, [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], %1}, {[[2, 0], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]], %1}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], %2}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], %2}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], %1}, {[[1, 1], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], %2}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], %2}, {[[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]], %2}, {[[1, 1], [3, 1], [2, 0]], %1, [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], %2}, {[[1, 1], [3, 0], [2, 1]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], %1, [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], %1, [[1, 0], [3, 1], [2, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 1], [3, 0]], %2, [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], %2, [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [3, 1], [2, 1]], %2, [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], %2, [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [3, 1], [1, 0]], %1, [[1, 0], [2, 1], [3, 1]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], %1, [[1, 1], [2, 1], [3, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], %2}, {[[2, 0], [1, 1], [3, 1]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], %2}, {[[1, 1], [3, 0], [2, 1]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]], %1}, {[[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], %1}, {[[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]], %1}, {[[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], %2, [[1, 1], [2, 1], [3, 0]]}, {[[2, 1], [3, 0], [1, 1]], %2, [[1, 0], [2, 1], [3, 1]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], %1, [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], %1, [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], %1, [[3, 1], [2, 1], [1, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], %4, %1}, {[[1, 1], [2, 0], [3, 0]], %4, %3}, {[[3, 0], [2, 0], [1, 1]], %4, %3}, {[[3, 1], [2, 0], [1, 0]], %4, %1}, {[[3, 0], [2, 0], [1, 1]], %2, %3}, {[[3, 1], [2, 0], [1, 0]], %2, %1}, {%2, [[1, 0], [2, 0], [3, 1]], %3}, {%2, [[1, 0], [2, 0], [3, 1]], %1}} %1 := [[3, 0], [2, 1], [1, 1]] %2 := [[1, 1], [2, 1], [3, 0]] %3 := [[3, 1], [2, 1], [1, 0]] %4 := [[1, 0], [2, 1], [3, 1]] the member , {[[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 1], [2, 1]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]], %1}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]], %2}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], %2}, {[[2, 1], [1, 1], [3, 0]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]], %1}, {[[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]], %1}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 1], [2, 0]], %2, [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], %2, [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], %1}, {[[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]], %1}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], %1}, {[[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], %4, %3}, {[[2, 0], [1, 0], [3, 1]], %4, %1}, {[[2, 0], [3, 0], [1, 1]], %4, %3}, {[[2, 0], [3, 0], [1, 1]], %2, %3}, {[[3, 1], [1, 0], [2, 0]], %2, %1}, {[[3, 1], [1, 0], [2, 0]], %4, %1}, {[[1, 1], [3, 0], [2, 0]], %2, %3}, {[[1, 1], [3, 0], [2, 0]], %2, %1}} %1 := [[3, 0], [2, 1], [1, 1]] %2 := [[1, 0], [2, 1], [3, 1]] %3 := [[3, 1], [2, 1], [1, 0]] %4 := [[1, 1], [2, 1], [3, 0]] the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], %2}, {[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], %2}, {[[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], %2}, {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], %1}, {[[1, 1], [2, 0], [3, 0]], %1, [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]], %2}, {[[2, 0], [3, 1], [1, 1]], %1, [[1, 0], [2, 0], [3, 1]]}, {%1, [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], %2}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]], %2}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]], %2}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], %2}, {[[2, 1], [3, 1], [1, 0]], %1, [[2, 1], [1, 0], [3, 0]]}, {%1, [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], %1, [[1, 0], [3, 1], [2, 0]]}, {%1, [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 0], [2, 1]], %2, [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]], %2}, {[[3, 0], [1, 1], [2, 0]], %2, [[3, 1], [2, 1], [1, 0]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 0], [2, 1], [3, 1]], %1, [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], %2}, {[[1, 0], [2, 1], [3, 1]], %1, [[2, 0], [1, 1], [3, 0]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], %2, %1}, {[[3, 1], [1, 0], [2, 0]], %2, %1}, {[[2, 0], [3, 0], [1, 1]], %2, %1}, {[[1, 1], [3, 0], [2, 0]], %2, %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]], %2}, {[[2, 0], [3, 1], [1, 0]], %2, [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]], %2}, {[[1, 0], [2, 1], [3, 1]], %1, [[1, 0], [3, 0], [2, 1]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [3, 0], [1, 0]], %2, [[3, 1], [2, 1], [1, 0]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [2, 1], [3, 1]], %1, [[1, 0], [3, 1], [2, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], %4, %3}, {[[2, 1], [3, 0], [1, 1]], %4, %3}, {%4, %3, [[3, 1], [1, 1], [2, 0]]}, {%4, %3, [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], %2, %1}, {[[2, 1], [1, 0], [3, 1]], %2, %1}, {[[2, 0], [1, 1], [3, 1]], %2, %1}, {[[1, 1], [3, 1], [2, 0]], %2, %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 0], [2, 1], [3, 0]] %3 := [[1, 1], [2, 0], [3, 1]] %4 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], %2}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], %2}, {[[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]], %2}, {[[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], %2}, {[[1, 1], [3, 0], [2, 1]], %1, [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 1], [2, 0]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], %1, [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], %1, [[1, 0], [3, 1], [2, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 1], [2, 0]], %2, [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]], %1}, {[[1, 0], [2, 1], [3, 1]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], %2}, {%2, [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]], %1}, {[[2, 1], [1, 0], [3, 0]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], %1, [[3, 1], [2, 1], [1, 0]]}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], %1, [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 0], [3, 1]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], %2}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], %2}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], %2}, {[[1, 1], [3, 0], [2, 0]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], %1, [[3, 0], [2, 1], [1, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]], %2}, {[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], %1}, {[[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], %2}, {[[1, 1], [2, 0], [3, 0]], %1, [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], %2}, {[[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], %2}, {[[2, 1], [3, 1], [1, 0]], %1, [[1, 0], [2, 0], [3, 1]]}, {%1, [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]], %2}, {[[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]], %2}, {[[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]], %2}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]], %2}, {[[2, 0], [1, 1], [3, 1]], %1, [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 1], [2, 0]], %1, [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 1]], %1, [[1, 0], [3, 1], [2, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, %1, [[2, 0], [3, 1], [1, 0]]}, {%2, [[3, 0], [1, 0], [2, 1]], %3}, {%4, [[3, 0], [1, 1], [2, 0]], %3}, {%4, %1, [[2, 1], [3, 0], [1, 0]]}, {%4, %1, [[2, 1], [1, 0], [3, 0]]}, {%2, [[1, 0], [3, 0], [2, 1]], %3}, {%4, [[2, 0], [1, 1], [3, 0]], %3}, {%2, %1, [[1, 0], [3, 1], [2, 0]]}} %1 := [[2, 1], [3, 1], [1, 0]] %2 := [[1, 0], [3, 1], [2, 1]] %3 := [[3, 0], [1, 1], [2, 1]] %4 := [[2, 1], [1, 1], [3, 0]] the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], %2, [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], %2, [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], %2, [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], %2, [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], %1, [[1, 0], [2, 1], [3, 1]]}, {%1, [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], %1, [[1, 1], [2, 1], [3, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]], %2}, {[[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]], %2}, {[[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]], %2}, {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], %2}, {[[2, 1], [1, 0], [3, 1]], %1, [[2, 1], [1, 0], [3, 0]]}, {[[1, 1], [3, 0], [2, 1]], %1, [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[1, 1], [3, 1], [2, 0]], %1, [[1, 0], [3, 1], [2, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], %2}, {[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], %2}, {[[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]], %1}, {[[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], %1}, {[[1, 1], [3, 1], [2, 0]], %2, [[1, 0], [2, 0], [3, 1]]}, {[[1, 1], [3, 0], [2, 1]], %2, [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]], %1}, {[[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]], %1}, {[[1, 1], [3, 1], [2, 0]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]], %2}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]], %2}, {[[2, 1], [1, 0], [3, 1]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]], %1}, {[[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], %1}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], %1}, {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], %1}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], %2}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], %1}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], %4, %3}, {[[2, 0], [1, 0], [3, 1]], %4, %1}, {[[3, 1], [1, 0], [2, 0]], %4, %3}, {[[3, 1], [1, 0], [2, 0]], %2, %3}, {[[2, 0], [3, 0], [1, 1]], %4, %1}, {[[2, 0], [3, 0], [1, 1]], %2, %1}, {[[1, 1], [3, 0], [2, 0]], %2, %3}, {[[1, 1], [3, 0], [2, 0]], %2, %1}} %1 := [[3, 0], [2, 1], [1, 1]] %2 := [[1, 1], [2, 1], [3, 0]] %3 := [[3, 1], [2, 1], [1, 0]] %4 := [[1, 0], [2, 1], [3, 1]] the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], %2}, {[[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]], %2}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], %1}, {[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], %1}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]], %2}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], %2}, {[[2, 1], [1, 0], [3, 1]], %1, [[1, 0], [2, 0], [3, 1]]}, {[[2, 0], [1, 1], [3, 1]], %1, [[1, 0], [2, 0], [3, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 1], [2, 0]], %4, %3}, {[[2, 0], [1, 1], [3, 0]], %2, %1}, {%4, %3, [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], %4, %3}, {%4, %3, [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], %2, %1}, {[[2, 1], [1, 0], [3, 0]], %2, %1}, {[[1, 0], [3, 1], [2, 0]], %2, %1}} %1 := [[3, 1], [2, 1], [1, 0]] %2 := [[3, 0], [2, 1], [1, 1]] %3 := [[1, 1], [2, 1], [3, 0]] %4 := [[1, 0], [2, 1], [3, 1]] the member , {[[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], %2, [[1, 0], [2, 1], [3, 1]]}, {[[2, 1], [3, 0], [1, 1]], %2, [[1, 1], [2, 1], [3, 0]]}, {%2, [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], %1, [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 1]], %1, [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], %1, [[3, 1], [2, 1], [1, 0]]}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]], %2}, {[[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]], %2}, {[[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]], %2}, {[[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]], %2}, {[[2, 1], [1, 1], [3, 0]], %1, [[2, 1], [1, 0], [3, 0]]}, {[[1, 0], [3, 1], [2, 1]], %1, [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[1, 0], [3, 1], [2, 1]], %1, [[1, 0], [3, 1], [2, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [2, 0], [3, 0]], %2, [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], %2, [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], %1}, {[[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], %1}, {[[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], %1}, {%2, [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {%2, [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], %2, %1}, {[[3, 0], [2, 0], [1, 1]], %2, %1}, {[[3, 1], [2, 0], [1, 0]], %2, %1}, {%2, [[1, 0], [2, 0], [3, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], %2}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], %2}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]], %2}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], %2}, {%1, [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], %1, [[2, 0], [1, 1], [3, 0]]}, {%1, [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], %1, [[1, 0], [3, 0], [2, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], %2, [[1, 0], [2, 1], [3, 1]]}, {[[1, 1], [3, 0], [2, 1]], %2, [[1, 0], [2, 1], [3, 1]]}, {[[2, 1], [1, 0], [3, 1]], %2, [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], %2, [[1, 1], [2, 1], [3, 0]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 1], [2, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 0], [1, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], %2, %1}, {[[2, 1], [3, 0], [1, 1]], %2, %1}, {[[1, 1], [3, 0], [2, 1]], %4, %3}, {[[2, 1], [1, 0], [3, 1]], %4, %3}, {[[2, 0], [1, 1], [3, 1]], %4, %3}, {[[1, 1], [3, 1], [2, 0]], %4, %3}, {%2, [[3, 1], [1, 0], [2, 1]], %1}, {%2, [[3, 1], [1, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[3, 0], [2, 1], [1, 0]] %3 := [[1, 1], [2, 0], [3, 1]] %4 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 1]], %4, %1}, {%4, [[2, 0], [3, 1], [1, 0]], %3}, {[[3, 0], [1, 1], [2, 0]], %2, %1}, {%2, [[1, 0], [3, 0], [2, 1]], %3}, {%4, [[2, 1], [1, 0], [3, 0]], %1}, {%2, [[2, 1], [3, 0], [1, 0]], %3}, {%4, [[2, 0], [1, 1], [3, 0]], %3}, {%2, [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 1], [1, 0]] %2 := [[1, 1], [2, 1], [3, 0]] %3 := [[3, 0], [2, 1], [1, 1]] %4 := [[1, 0], [2, 1], [3, 1]] the member , {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, {[[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, %1, [[3, 1], [2, 0], [1, 0]]}, {%4, %1, [[1, 1], [2, 0], [3, 0]]}, {%4, [[1, 1], [2, 0], [3, 0]], %3}, {%4, [[3, 0], [2, 0], [1, 1]], %3}, {%4, %1, [[3, 1], [2, 0], [1, 0]]}, {%2, [[3, 0], [2, 0], [1, 1]], %3}, {%2, [[1, 0], [2, 0], [3, 1]], %3}, {%2, %1, [[1, 0], [2, 0], [3, 1]]}} %1 := [[2, 1], [3, 1], [1, 0]] %2 := [[1, 0], [3, 1], [2, 1]] %3 := [[3, 0], [1, 1], [2, 1]] %4 := [[2, 1], [1, 1], [3, 0]] the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], %2}, {[[3, 1], [1, 0], [2, 0]], %2, [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [1, 0], [3, 1]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]], %1}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], %2, [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[3, 0], [2, 1], [1, 1]], %1}, {[[1, 1], [3, 0], [2, 0]], %1, [[3, 1], [2, 1], [1, 0]]}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[3, 1], [1, 0], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], %1, [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [3, 0], [1, 1]], %1, [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], %2, [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [1, 1], [3, 1]], %2, [[1, 0], [2, 1], [3, 1]]}, {[[1, 1], [3, 1], [2, 0]], %2, [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 1]], %2, [[1, 1], [2, 1], [3, 0]]}, {%1, [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}} %1 := [[3, 0], [2, 1], [1, 0]] %2 := [[1, 0], [2, 1], [3, 0]] the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]]}} the member , {[[2, 0], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 0]]}, {[[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 0], [2, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 0], [3, 1]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 1], [2, 0]], %2, [[3, 1], [2, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], %2, [[3, 1], [2, 1], [1, 0]]}, {%2, [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {%2, [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]], %1}, {[[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]], %1}, {[[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]], %1}, {[[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 0], [3, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]], %2}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], %2}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], %2}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], %2}, {%1, [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [3, 0], [1, 1]], %1, [[1, 0], [3, 0], [2, 1]]}, {%1, [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], %4, %1}, {[[2, 0], [1, 0], [3, 1]], %4, %3}, {[[3, 1], [1, 0], [2, 0]], %2, %3}, {[[3, 1], [1, 0], [2, 0]], %4, %3}, {[[2, 0], [3, 0], [1, 1]], %2, %1}, {[[2, 0], [3, 0], [1, 1]], %4, %1}, {[[1, 1], [3, 0], [2, 0]], %2, %3}, {[[1, 1], [3, 0], [2, 0]], %2, %1}} %1 := [[2, 1], [3, 1], [1, 0]] %2 := [[1, 0], [3, 1], [2, 1]] %3 := [[3, 0], [1, 1], [2, 1]] %4 := [[2, 1], [1, 1], [3, 0]] the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], %2}, {[[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 0]], %2}, {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 0]], %1}, {[[1, 1], [2, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]], %1}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 0], [1, 1]], %2}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 0], [1, 1]], %2}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 0], [3, 1]], %1}, {[[1, 0], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], %2}, {%2, [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]], %2}, {%2, [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]], %1}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]], %1}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]], %1}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]]}, {[[2, 0], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, %1, [[1, 1], [2, 0], [3, 0]]}, {%4, [[3, 1], [2, 0], [1, 0]], %3}, {%4, [[1, 1], [2, 0], [3, 0]], %3}, {%2, %1, [[3, 0], [2, 0], [1, 1]]}, {%2, [[3, 1], [2, 0], [1, 0]], %3}, {%4, %1, [[3, 0], [2, 0], [1, 1]]}, {%2, [[1, 0], [2, 0], [3, 1]], %3}, {%2, %1, [[1, 0], [2, 0], [3, 1]]}} %1 := [[2, 1], [3, 1], [1, 0]] %2 := [[2, 1], [1, 1], [3, 0]] %3 := [[3, 0], [1, 1], [2, 1]] %4 := [[1, 0], [3, 1], [2, 1]] the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 1], [2, 0]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], %1}, {[[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]], %1}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]], %1}, {[[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]], %1}, {[[1, 1], [3, 0], [2, 1]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], %2}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], %2}, {[[2, 0], [1, 1], [3, 1]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]], %1}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]], %1}, {[[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], %2}, {[[2, 0], [1, 1], [3, 0]], %1, [[3, 1], [2, 1], [1, 0]]}, {%2, [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], %2, [[1, 1], [2, 1], [3, 0]]}, {[[1, 0], [2, 1], [3, 1]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]], %1}, {[[1, 0], [3, 0], [2, 1]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], %2}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]], %2}, {[[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]], %2}, {[[1, 0], [3, 1], [2, 1]], %1, [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], %2}, {[[1, 0], [3, 1], [2, 1]], %1, [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 1], [3, 0]], %1, [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], %1, [[1, 0], [3, 1], [2, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], %4, %1}, {[[2, 0], [1, 0], [3, 1]], %4, %3}, {[[3, 1], [1, 0], [2, 0]], %4, %1}, {[[3, 1], [1, 0], [2, 0]], %2, %1}, {[[2, 0], [3, 0], [1, 1]], %4, %3}, {[[2, 0], [3, 0], [1, 1]], %2, %3}, {[[1, 1], [3, 0], [2, 0]], %2, %3}, {[[1, 1], [3, 0], [2, 0]], %2, %1}} %1 := [[2, 1], [3, 1], [1, 0]] %2 := [[2, 1], [1, 1], [3, 0]] %3 := [[3, 0], [1, 1], [2, 1]] %4 := [[1, 0], [3, 1], [2, 1]] the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[3, 0], [1, 1], [2, 0]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [3, 0], [1, 1]], %2, [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], %2, [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]], %1}, {[[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]], %1}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 0]], %1}, {[[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [2, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 1], [3, 0], [2, 1]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], %2}, {[[2, 0], [1, 1], [3, 1]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], %2}, {[[1, 1], [3, 1], [2, 0]], %1, [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], %1, [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], %1}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], %1}} %1 := [[1, 0], [2, 1], [3, 0]] %2 := [[3, 0], [2, 1], [1, 0]] the member , {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 0]]}, {[[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, { [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], %1}, {[[2, 0], [1, 0], [3, 1]], [[2, 0], [1, 1], [3, 1]], %1}, {[[3, 1], [1, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], %2}, {[[3, 1], [1, 0], [2, 0]], [[3, 1], [1, 1], [2, 0]], %2}, {[[2, 0], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 1]], %2}, {[[2, 0], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 1]], %2}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 1], [2, 0]], %1}, {[[1, 1], [3, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], %1}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [2, 0], [3, 0]], %2, %3}, {[[1, 1], [2, 0], [3, 0]], %2, %1}, {[[3, 0], [2, 0], [1, 1]], %4, %3}, {[[3, 1], [2, 0], [1, 0]], %4, %1}, {[[3, 0], [2, 0], [1, 1]], %2, %3}, {%4, [[1, 0], [2, 0], [3, 1]], %1}, {%4, [[1, 0], [2, 0], [3, 1]], %3}, {[[3, 1], [2, 0], [1, 0]], %2, %1}} %1 := [[3, 1], [2, 1], [1, 0]] %2 := [[1, 1], [2, 1], [3, 0]] %3 := [[3, 0], [2, 1], [1, 1]] %4 := [[1, 0], [2, 1], [3, 1]] the member , {[[1, 1], [2, 0], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, {[[3, 0], [1, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[3, 0], [1, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[3, 1], [2, 0], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 1], [2, 0], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[2, 0], [3, 1], [1, 0]]}, {[[1, 0], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 0], [1, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[2, 1], [1, 0], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, [[3, 0], [1, 1], [2, 0]], %3}, {%4, [[2, 0], [3, 1], [1, 0]], %3}, {%4, [[3, 0], [1, 0], [2, 1]], %3}, {%4, [[2, 1], [3, 0], [1, 0]], %3}, {%2, %1, [[2, 1], [1, 0], [3, 0]]}, {%2, %1, [[1, 0], [3, 0], [2, 1]]}, {%2, %1, [[2, 0], [1, 1], [3, 0]]}, {%2, %1, [[1, 0], [3, 1], [2, 0]]}} %1 := [[2, 1], [1, 1], [3, 0]] %2 := [[1, 0], [3, 1], [2, 1]] %3 := [[3, 0], [1, 1], [2, 1]] %4 := [[2, 1], [3, 1], [1, 0]] the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]]}, { [[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[3, 1], [1, 0], [2, 0]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[3, 1], [1, 0], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 0], [3, 0], [1, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 0]], [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]]}} the member , {[[2, 0], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 0], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[3, 0], [1, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 0], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[3, 0], [1, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[3, 0], [1, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [1, 0], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [3, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [1, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [3, 1], [2, 0]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 0], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[2, 1], [1, 0], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 0], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Out of a total of , 378, cases 378, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {} "for patterns of lengths: ", [[3, 2], [3, 2], [3, 2]] There all together, 118, different equivalence classes For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [2, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%3, %4, %5}, {%3, %5, %1}, {%6, %4, %5}, {%6, %2, %4}, {%6, %2, %1}, {%6, %5, %1}, {%3, %2, %4}, {%3, %2, %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[2, 1], [3, 1], [1, 0]] %3 := [[2, 1], [1, 1], [3, 0]] %4 := [[1, 1], [2, 0], [3, 1]] %5 := [[3, 0], [1, 1], [2, 1]] %6 := [[1, 0], [3, 1], [2, 1]] the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], %2, %3}, {[[1, 0], [3, 1], [2, 1]], %4, %3}, {[[1, 0], [3, 1], [2, 1]], %4, %1}, {%4, [[3, 0], [1, 1], [2, 1]], %3}, {[[2, 1], [3, 1], [1, 0]], %4, %1}, {[[2, 1], [3, 1], [1, 0]], %2, %1}, {%2, [[3, 0], [1, 1], [2, 1]], %3}, {[[2, 1], [1, 1], [3, 0]], %2, %1}} %1 := [[3, 0], [2, 1], [1, 1]] %2 := [[1, 0], [2, 1], [3, 1]] %3 := [[3, 1], [2, 1], [1, 0]] %4 := [[1, 1], [2, 1], [3, 0]] the member , {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, [[1, 0], [2, 1], [3, 1]], %3}, {%2, %3, [[3, 1], [2, 1], [1, 0]]}, {%4, %1, [[3, 0], [2, 1], [1, 1]]}, {%4, %1, [[1, 1], [2, 1], [3, 0]]}, {%4, %3, [[3, 1], [2, 1], [1, 0]]}, {%4, [[1, 1], [2, 1], [3, 0]], %3}, {%2, %1, [[1, 0], [2, 1], [3, 1]]}, {%2, %1, [[3, 0], [2, 1], [1, 1]]}} %1 := [[2, 1], [3, 1], [1, 0]] %2 := [[2, 1], [1, 1], [3, 0]] %3 := [[3, 0], [1, 1], [2, 1]] %4 := [[1, 0], [3, 1], [2, 1]] the member , {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 0], [3, 1]], %2, [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], %1}, {[[2, 0], [1, 1], [3, 1]], %2, [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 1]], %2, [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], %2, [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]], %1}, {[[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]], %1}, {[[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, [[1, 1], [2, 1], [3, 0]], %1}, {%4, %3, [[1, 0], [2, 1], [3, 1]]}, {%4, [[1, 0], [2, 1], [3, 1]], %1}, {%4, %3, [[3, 1], [2, 1], [1, 0]]}, {%4, %1, [[3, 0], [2, 1], [1, 1]]}, {%2, %3, [[1, 1], [2, 1], [3, 0]]}, {%2, %3, [[3, 1], [2, 1], [1, 0]]}, {%2, %1, [[3, 0], [2, 1], [1, 1]]}} %1 := [[3, 0], [1, 1], [2, 1]] %2 := [[2, 1], [1, 1], [3, 0]] %3 := [[2, 1], [3, 1], [1, 0]] %4 := [[1, 0], [3, 1], [2, 1]] the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], %4, %3}, {[[2, 0], [1, 1], [3, 1]], %4, %3}, {[[1, 1], [3, 0], [2, 1]], %4, %3}, {[[2, 1], [3, 0], [1, 1]], %2, %1}, {[[1, 1], [3, 1], [2, 0]], %4, %3}, {[[2, 0], [3, 1], [1, 1]], %2, %1}, {[[3, 1], [1, 0], [2, 1]], %2, %1}, {[[3, 1], [1, 1], [2, 0]], %2, %1}} %1 := [[3, 1], [2, 1], [1, 0]] %2 := [[3, 0], [2, 1], [1, 1]] %3 := [[1, 1], [2, 1], [3, 0]] %4 := [[1, 0], [2, 1], [3, 1]] the member , {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]]}} the member , {[[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 0], [3, 1]], %2, [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], %2}, {[[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], %2}, {[[2, 0], [1, 1], [3, 1]], %2, [[1, 1], [2, 1], [3, 0]]}, {[[2, 1], [3, 0], [1, 1]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]], %1}, {[[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], %2, %4}, {[[1, 0], [3, 1], [2, 1]], %3, %4}, {[[1, 0], [3, 1], [2, 1]], %3, %1}, {[[2, 1], [3, 1], [1, 0]], %2, %4}, {%2, [[3, 0], [1, 1], [2, 1]], %1}, {[[2, 1], [3, 1], [1, 0]], %3, %4}, {%3, [[3, 0], [1, 1], [2, 1]], %1}, {[[2, 1], [1, 1], [3, 0]], %2, %1}} %1 := [[3, 0], [2, 1], [1, 1]] %2 := [[1, 1], [2, 1], [3, 0]] %3 := [[1, 0], [2, 1], [3, 1]] %4 := [[3, 1], [2, 1], [1, 0]] the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], %1}, {[[2, 1], [3, 0], [1, 1]], %2, [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]], %1}, {[[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], %1}, {[[2, 0], [3, 1], [1, 1]], %2, [[3, 1], [2, 1], [1, 0]]}, {%2, [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {%2, [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], %2, %1}, {[[1, 0], [3, 1], [2, 1]], %2, %1}, {[[2, 1], [3, 1], [1, 0]], %2, %1}, {%2, [[3, 0], [1, 1], [2, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], %4, %1}, {[[2, 1], [3, 0], [1, 1]], %2, %3}, {[[2, 0], [1, 1], [3, 1]], %4, %3}, {[[1, 1], [3, 0], [2, 1]], %2, %3}, {%4, [[3, 1], [1, 0], [2, 1]], %1}, {[[2, 0], [3, 1], [1, 1]], %4, %3}, {[[1, 1], [3, 1], [2, 0]], %2, %1}, {%2, [[3, 1], [1, 1], [2, 0]], %1}} %1 := [[3, 0], [2, 1], [1, 1]] %2 := [[1, 0], [2, 1], [3, 1]] %3 := [[3, 1], [2, 1], [1, 0]] %4 := [[1, 1], [2, 1], [3, 0]] the member , {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], %4, %3}, {[[2, 1], [3, 0], [1, 1]], %4, %3}, {[[2, 0], [1, 1], [3, 1]], %4, %1}, {[[1, 1], [3, 0], [2, 1]], %2, %1}, {%4, [[3, 1], [1, 1], [2, 0]], %1}, {[[2, 0], [3, 1], [1, 1]], %2, %3}, {[[1, 1], [3, 1], [2, 0]], %2, %3}, {%2, [[3, 1], [1, 0], [2, 1]], %1}} %1 := [[3, 0], [2, 1], [1, 1]] %2 := [[1, 0], [2, 1], [3, 1]] %3 := [[3, 1], [2, 1], [1, 0]] %4 := [[1, 1], [2, 1], [3, 0]] the member , {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], %1}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], %1}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]], %2}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]], %2}, {[[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]], %2}, {[[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]], %2}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], %1}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], %1}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], %4, %1}, {[[2, 1], [3, 0], [1, 1]], %4, %1}, {[[2, 0], [1, 1], [3, 1]], %4, %3}, {[[1, 1], [3, 0], [2, 1]], %2, %3}, {[[1, 1], [3, 1], [2, 0]], %2, %1}, {%2, [[3, 1], [1, 0], [2, 1]], %3}, {%4, [[3, 1], [1, 1], [2, 0]], %3}, {[[2, 0], [3, 1], [1, 1]], %2, %1}} %1 := [[3, 0], [2, 1], [1, 1]] %2 := [[1, 1], [2, 1], [3, 0]] %3 := [[3, 1], [2, 1], [1, 0]] %4 := [[1, 0], [2, 1], [3, 1]] the member , {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 0], [3, 1]]}, { [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 1], [3, 0]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], %1, [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]], %2}, {[[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]], %2}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], %2}, {[[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]], %2}, {[[2, 1], [1, 1], [3, 0]], %1, [[3, 0], [2, 1], [1, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, [[2, 1], [1, 0], [3, 1]], %3}, {%4, [[2, 0], [1, 1], [3, 1]], %1}, {%2, [[2, 1], [3, 0], [1, 1]], %1}, {%4, [[2, 0], [3, 1], [1, 1]], %1}, {%4, %3, [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], %2, %3}, {%2, %3, [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], %2, %1}} %1 := [[3, 0], [1, 1], [2, 1]] %2 := [[2, 1], [1, 1], [3, 0]] %3 := [[2, 1], [3, 1], [1, 0]] %4 := [[1, 0], [3, 1], [2, 1]] the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], %2, %3}, {[[2, 1], [3, 0], [1, 1]], %4, %1}, {[[2, 0], [1, 1], [3, 1]], %2, %1}, {[[1, 1], [3, 0], [2, 1]], %4, %1}, {[[1, 1], [3, 1], [2, 0]], %4, %3}, {%4, [[3, 1], [1, 1], [2, 0]], %3}, {%2, [[3, 1], [1, 0], [2, 1]], %3}, {[[2, 0], [3, 1], [1, 1]], %2, %1}} %1 := [[3, 0], [2, 1], [1, 1]] %2 := [[1, 0], [2, 1], [3, 1]] %3 := [[3, 1], [2, 1], [1, 0]] %4 := [[1, 1], [2, 1], [3, 0]] the member , {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], %2}, {[[2, 1], [3, 0], [1, 1]], %1, [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 1]], %2}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], %2}, {[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], %2}, {%1, [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {%1, [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], %1, [[3, 0], [2, 1], [1, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], %2}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], %2}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], %1}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], %1}, {[[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]], %2}, {[[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]], %2}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], %1}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], %1}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]]}, {[[1, 1], [2, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], %4, %3}, {%2, %1, [[2, 1], [3, 0], [1, 1]]}, {%2, %1, [[2, 0], [3, 1], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], %4, %3}, {[[1, 1], [3, 0], [2, 1]], %4, %3}, {[[1, 1], [3, 1], [2, 0]], %4, %3}, {%2, %1, [[3, 1], [1, 0], [2, 1]]}, {%2, %1, [[3, 1], [1, 1], [2, 0]]}} %1 := [[2, 1], [1, 1], [3, 0]] %2 := [[1, 0], [3, 1], [2, 1]] %3 := [[3, 0], [1, 1], [2, 1]] %4 := [[2, 1], [3, 1], [1, 0]] the member , {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 0], [3, 1]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], %2}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], %1}, {[[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]], %1}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], %2}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], %1}, {[[1, 1], [3, 1], [2, 0]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 0], [3, 1]], %1, [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], %1}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], %2}, {[[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]], %2}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], %2}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], %1}, {[[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]], %2}, {[[1, 1], [3, 1], [2, 0]], %1, [[3, 1], [1, 0], [2, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 1], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], %2}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 1]], %2}, {[[1, 1], [3, 0], [2, 1]], %2, [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [3, 1], [2, 0]], %2, [[1, 1], [2, 1], [3, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]], %1}, {[[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 1]], %1}, {[[3, 1], [1, 0], [2, 1]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[3, 1], [1, 1], [2, 0]], %1, [[3, 1], [2, 1], [1, 0]]}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], %1}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], %2}, {[[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]], %1}, {[[2, 0], [1, 1], [3, 1]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], %2}, {[[1, 1], [3, 0], [2, 1]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], %1}, {[[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 0], [3, 1]], %2, [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], %1}, {[[2, 0], [1, 1], [3, 1]], %2, [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], %2, [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], %2, [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]], %1}, {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]], %1}, {[[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 1], [3, 0]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], %1}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], %2}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]], %1}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], %2}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]], %1}, {[[1, 0], [3, 1], [2, 1]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [2, 1], [3, 1]], %2, %1}, {%2, [[1, 1], [2, 1], [3, 0]], %1}, {%2, %1, [[3, 1], [2, 1], [1, 0]]}, {%2, [[3, 0], [2, 1], [1, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]], %2}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], %1}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], %2}, {[[2, 0], [1, 1], [3, 1]], %1, [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], %1, [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], %2}, {[[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]], %2}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], %1}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]]}, {[[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]]}} the member , {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, %1, [[3, 1], [1, 1], [2, 0]]}, {%2, [[2, 1], [3, 0], [1, 1]], %3}, {%4, [[2, 0], [3, 1], [1, 1]], %3}, {%4, [[1, 1], [3, 0], [2, 1]], %1}, {%4, [[1, 1], [3, 1], [2, 0]], %3}, {%4, %1, [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], %2, %3}, {[[2, 0], [1, 1], [3, 1]], %2, %1}} %1 := [[3, 0], [1, 1], [2, 1]] %2 := [[2, 1], [1, 1], [3, 0]] %3 := [[2, 1], [3, 1], [1, 0]] %4 := [[1, 0], [3, 1], [2, 1]] the member , {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%4, [[2, 1], [1, 0], [3, 1]], %1}, {%4, [[2, 0], [1, 1], [3, 1]], %3}, {%4, [[2, 1], [3, 0], [1, 1]], %1}, {%2, [[2, 0], [3, 1], [1, 1]], %1}, {%4, %3, [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 0], [2, 1]], %2, %3}, {%2, %3, [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], %2, %1}} %1 := [[3, 0], [1, 1], [2, 1]] %2 := [[2, 1], [1, 1], [3, 0]] %3 := [[2, 1], [3, 1], [1, 0]] %4 := [[1, 0], [3, 1], [2, 1]] the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], %2, %1}, {[[2, 1], [3, 0], [1, 1]], %2, %1}, {[[2, 0], [1, 1], [3, 1]], %2, %1}, {[[1, 1], [3, 0], [2, 1]], %2, %1}, {[[1, 1], [3, 1], [2, 0]], %2, %1}, {%2, [[3, 1], [1, 1], [2, 0]], %1}, {%2, [[3, 1], [1, 0], [2, 1]], %1}, {[[2, 0], [3, 1], [1, 1]], %2, %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 1], [1, 0], [3, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], %4, %3}, {[[2, 1], [3, 0], [1, 1]], %2, %1}, {[[2, 0], [1, 1], [3, 1]], %4, %3}, {[[1, 1], [3, 0], [2, 1]], %4, %3}, {%2, %1, [[3, 1], [1, 1], [2, 0]]}, {%2, %1, [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], %4, %3}, {[[2, 0], [3, 1], [1, 1]], %2, %1}} %1 := [[1, 1], [2, 1], [3, 0]] %2 := [[1, 0], [2, 1], [3, 1]] %3 := [[3, 1], [2, 1], [1, 0]] %4 := [[3, 0], [2, 1], [1, 1]] the member , {[[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 1], [3, 0]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], %2}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]], %1}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], %2}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], %1}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], %1}, {[[1, 0], [3, 1], [2, 1]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], %1}, {[[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], %1}, {[[2, 1], [3, 0], [1, 1]], %2, [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 1], [1, 0]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[2, 0], [3, 1], [1, 1]], %2, [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], %1}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], %4, %3}, {[[2, 0], [3, 1], [1, 1]], %4, %3}, {%4, %3, [[3, 1], [1, 1], [2, 0]]}, {%4, %3, [[3, 1], [1, 0], [2, 1]]}, {%2, [[2, 1], [1, 0], [3, 1]], %1}, {%2, [[2, 0], [1, 1], [3, 1]], %1}, {%2, [[1, 1], [3, 1], [2, 0]], %1}, {%2, [[1, 1], [3, 0], [2, 1]], %1}} %1 := [[2, 1], [1, 1], [3, 0]] %2 := [[1, 0], [3, 1], [2, 1]] %3 := [[3, 0], [1, 1], [2, 1]] %4 := [[2, 1], [3, 1], [1, 0]] the member , {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 0], [1, 1], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, {[[1, 1], [3, 1], [2, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]], %2}, {[[2, 1], [1, 0], [3, 1]], %1, [[3, 0], [1, 1], [2, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], %2}, {[[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], %2}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], %1}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], %1}, {[[1, 0], [3, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]], %2}, {[[1, 1], [3, 1], [2, 0]], %1, [[3, 0], [1, 1], [2, 1]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]], [[3, 1], [2, 0], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [2, 1], [3, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 0], [1, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 1], [3, 0], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 0], [3, 1], [1, 1]], [[3, 0], [1, 1], [2, 1]]}, {[[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 1], [1, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}} the member , {[[1, 0], [3, 1], [2, 1]], [[2, 1], [1, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%2, %1, [[3, 1], [1, 0], [2, 1]]}, {%4, [[2, 1], [3, 0], [1, 1]], %3}, {%2, [[2, 0], [3, 1], [1, 1]], %3}, {%4, [[1, 1], [3, 0], [2, 1]], %3}, {%4, [[1, 1], [3, 1], [2, 0]], %1}, {%4, %1, [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], %2, %3}, {[[2, 1], [1, 0], [3, 1]], %2, %1}} %1 := [[3, 0], [1, 1], [2, 1]] %2 := [[2, 1], [1, 1], [3, 0]] %3 := [[2, 1], [3, 1], [1, 0]] %4 := [[1, 0], [3, 1], [2, 1]] the member , {[[2, 1], [1, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, { [[2, 1], [1, 1], [3, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, { [[1, 1], [3, 1], [2, 0]], [[3, 0], [1, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 1], [3, 0]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [2, 1], [3, 1]], %2, [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], [[1, 0], [2, 1], [3, 1]], %2}, {[[1, 0], [3, 1], [2, 1]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[3, 0], [2, 1], [1, 1]], %1}, {%2, [[1, 1], [2, 1], [3, 0]], [[3, 0], [1, 1], [2, 1]]}, {[[2, 1], [3, 1], [1, 0]], %2, [[1, 1], [2, 1], [3, 0]]}, {[[2, 1], [1, 1], [3, 0]], [[3, 0], [2, 1], [1, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 1], [1, 1], [3, 0]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 0], [1, 1], [3, 1]], [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, { [[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]], [[3, 1], [1, 0], [2, 1]]}, { [[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}} the member , {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 1], [3, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]], %2}, {[[1, 0], [2, 1], [3, 1]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], %1, [[3, 1], [2, 1], [1, 0]]}, {[[2, 1], [3, 0], [1, 1]], %2, [[1, 1], [2, 1], [3, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 0], [2, 1], [1, 1]], %1}, {[[1, 1], [3, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]], %1}, {%2, [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 1], [2, 0]]}, {[[1, 1], [3, 1], [2, 0]], %1, [[3, 1], [2, 1], [1, 0]]}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 0], [3, 1], [1, 1]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{%3, %6, %2}, {%3, %6, %4}, {%5, %1, %4}, {%6, %5, %4}, {%5, %2, %1}, {%6, %5, %2}, {%3, %1, %4}, {%3, %2, %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[3, 0], [2, 1], [1, 1]] %3 := [[1, 0], [2, 1], [3, 1]] %4 := [[3, 1], [2, 1], [1, 0]] %5 := [[1, 1], [2, 1], [3, 0]] %6 := [[1, 1], [2, 0], [3, 1]] the member , {[[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], %2}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], %1}, {[[2, 0], [1, 1], [3, 1]], %2, [[3, 1], [1, 1], [2, 0]]}, {[[2, 0], [1, 1], [3, 1]], [[3, 1], [1, 1], [2, 0]], %1}, {[[1, 1], [3, 0], [2, 1]], %2, [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], %2}, {[[1, 1], [3, 1], [2, 0]], [[2, 0], [3, 1], [1, 1]], %1}, {[[1, 1], [3, 0], [2, 1]], [[3, 1], [1, 0], [2, 1]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 1], [1, 0], [3, 1]], [[2, 1], [3, 0], [1, 1]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], [[1, 0], [2, 1], [3, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], [[1, 0], [2, 1], [3, 1]]}, {[[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]]}, { [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]], [[3, 0], [2, 1], [1, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]]}, { [[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], [[1, 1], [2, 1], [3, 0]]}} the member , {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[3, 1], [2, 1], [1, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, {{[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, { [[1, 0], [3, 1], [2, 1]], [[1, 1], [2, 0], [3, 1]], [[1, 1], [2, 1], [3, 0]]}, {[[3, 0], [1, 1], [2, 1]], [[3, 1], [2, 0], [1, 1]], [[3, 1], [2, 1], [1, 0]]}, { [[2, 1], [3, 1], [1, 0]], [[3, 0], [2, 1], [1, 1]], [[3, 1], [2, 0], [1, 1]]}} the member , {[[2, 1], [1, 1], [3, 0]], [[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[1, 0], [2, 1], [3, 1]], %1, [[3, 1], [1, 1], [2, 0]]}, {[[2, 1], [3, 0], [1, 1]], [[1, 0], [2, 1], [3, 1]], %1}, {[[2, 1], [1, 0], [3, 1]], [[3, 0], [2, 1], [1, 1]], %2}, {[[2, 0], [1, 1], [3, 1]], %2, [[3, 1], [2, 1], [1, 0]]}, {[[1, 1], [3, 0], [2, 1]], %2, [[3, 1], [2, 1], [1, 0]]}, {%1, [[1, 1], [2, 1], [3, 0]], [[3, 1], [1, 0], [2, 1]]}, {[[1, 1], [3, 1], [2, 0]], [[3, 0], [2, 1], [1, 1]], %2}, {[[2, 0], [3, 1], [1, 1]], %1, [[1, 1], [2, 1], [3, 0]]}} %1 := [[1, 1], [2, 0], [3, 1]] %2 := [[3, 1], [2, 0], [1, 1]] the member , {[[1, 0], [2, 1], [3, 1]], [[1, 1], [2, 0], [3, 1]], [[3, 1], [1, 1], [2, 0]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] For the equivalence class of patterns, { {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], %2}, {[[2, 0], [3, 1], [1, 1]], [[2, 1], [3, 1], [1, 0]], %2}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 0], [2, 1]], %1}, {[[1, 0], [3, 1], [2, 1]], [[1, 1], [3, 1], [2, 0]], %1}, {%2, [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 1], [2, 0]]}, {%2, [[3, 0], [1, 1], [2, 1]], [[3, 1], [1, 0], [2, 1]]}, {[[2, 1], [1, 0], [3, 1]], [[2, 1], [1, 1], [3, 0]], %1}, {[[2, 0], [1, 1], [3, 1]], [[2, 1], [1, 1], [3, 0]], %1}} %1 := [[3, 1], [2, 0], [1, 1]] %2 := [[1, 1], [2, 0], [3, 1]] the member , {[[2, 1], [3, 0], [1, 1]], [[2, 1], [3, 1], [1, 0]], [[1, 1], [2, 0], [3, 1]]}, has a scheme of depth , 1 here it is: {[[], {}, {}, {}], [[1], {[0, 0]}, {1}, {}]} Naively, we would expect the sequence to begin , 1, 0, 0, 0, 0, 0, 0 Using the scheme, the first, , 31, terms are [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Out of a total of , 118, cases 118, were successful and , 0, failed Success Rate: , 1. Here are the failures {} {}