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Abstract

Host manipulation by sexually transmitted parasites which increases host mating

rate and thus parasite transmission rate has long been viewed as a plausible para-

site adaptation. However, empirical evidence for it is rare. Here, using an adaptive

dynamics approach to evolution, we explore conditions under which such disease-

induced mating enhancement is (or is not) likely to occur. We find that increased

mating success is less likely to evolve if the host reproduction rate, or the base-

line disease transmission rate, are reduced, and the parasite affects just one sex,

compared to when it affects both. We also find that it is less likely to evolve if the

virulence-transmission trade-off curve is stronger, since we assume that enhanced

disease transmission can only be achieved at the cost of increased virulence and as

this trade-off is concave. In addition, we demonstrate that if disease-induced mat-

ing enhancement is equally acting in both sexes the mating system has no effect
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on evolutionary outcomes. On the contrary, if disease-induced mating enhance-

ment is acting in just one sex, the potential for its evolution is the higher the more

polygynous the host population is. To study the examined phenomenon in greater

detail we encourage further empirical research on this apparently less explored

impact of sexually transmitted parasites on host fitness.

Keywords: population dynamics, two-sex population model, sexually

transmitted disease, host manipulation, evolution

1. Introduction

Parasites, like any other organism, evolve to maximize their fitness. Parasite

fitness is maximized by maximizing transmission and minimizing virulence, and

it is widely accepted that these two parasite characteristics are constrained by a

concave virulence-transmission trade-off (Dieckmann, 2002; Alizon et al., 2009).

This trade-off states that parasites can increase their transmission only at the cost

of elevated virulence, which causes parasite evolution to tend to intermediate de-

grees of both transmission and virulence (Dieckmann, 2002; Alizon et al., 2009).

Various parasites use various transmission routes to reach susceptible hosts.

Sexually transmitted parasites, in particular, can increase their transmission by in-

fecting susceptible hosts more effectively upon any sexual contact or by enhancing

the rate at which infected individuals succeed to mate. Although disease-induced

mating enhancement has been expected by many to be a natural adaptation for

sexually transmitted parasites to increase their transmission (Knell and Webber-

ley, 2004), it has only been observed rarely. Whereas McLachlan (1999) found

that infestation by the mite Unionicola ypsilophora enhanced the mating success

of males of the midge Paratrichocladius rufiventris, males of the milkweed leaf
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beetle Labidomera clivicollis infected with the mite Chrysomelobia labidomera

were shown to displace rival males from mating pairs more often than uninfected

males (Abbot and Dill, 2001). Furthermore, Raina et al. (2000) found that females

of the corn earworm Helicoverpa zea infected by a gonad-specific virus produced

more sex pheromone than uninfected females, thus enhancing their ability to at-

tract males; however, due to accompanying changes of internal reproductive or-

gans, the infected females forcefully avoided copulation.

Whether these observed instances of disease-induced mating enhancement are

indeed adaptations by the parasite or rather some by-products of the parasite’s

pathology, it is not clear why this phenomenon has been observed so rarely. Does

this apparent rareness reflect underexploration of this phenomenon or is the ac-

companying increase in parasite virulence countering the potential increase in

mating enhancement? In this paper, we aim to address this question by means

of modeling dynamics of sexually transmitted infections, considering the degree

of disease-induced mating enhancement as an evolving trait. The diversity and

extent of eventual evolutionary endpoints might suggest the expected frequency

with which we may anticipate occurrence of this phenomenon in nature, and thus

provide working hypotheses to be considered in future empirical research.

2. Methods

2.1. Models

The disease-induced mating enhancement, the phenomenon we study in this

paper, involves sexually transmitted diseases (STDs) and may, in principle, affect

one or both sexes. Therefore, we start by formulating a general two-sex model of
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host population dynamics affected by an STD:

dSf
dt

= bγf (M(Sf , Sm) + δmM(Sf , Im) + δfM(If , Sm) + δfmM(If , Im))

−µ̄fSf − ξmδmM(Sf , Im)

dSm
dt

= bγm (M(Sf , Sm) + δmM(Sf , Im) + δfM(If , Sm) + δfmM(If , Im))

−µ̄mSm − ξfδfM(If , Sm)

dIf
dt

= ξmδmM(Sf , Im)− µ̄fIf − αfIf

dIm
dt

= ξfδfM(If , Sm)− µ̄mIm − αmIm
(1)

This model describes dynamics of the density of susceptible females (Sf ), suscep-

tible males (Sm), infected females (If ), and infected males (Im), assuming that

infected individuals cannot recover. The two-sex modeling framework we use

was introduced by Kendall (1949) and Goodman (1953) and is now considered

a standard for modeling two-sex population dynamics (Kot, 2001). In animals,

mating and giving birth are often intertwined, and even tightly coupled. Just con-

sider a system where males guard their mates until they cannot be taken by others.

To account for structural consistency between the reproduction and disease trans-

mission processes, mediated by mating, a generic mating function M(X, Y ) in

which X represents susceptible or infected females and Y represents susceptible

or infected males occurs in both the reproduction term and the disease transmis-

sion term (Berec and Maxin, 2013). Moreover, we assume the background (i.e.

in the absence of infection) host mortality to be negatively density-dependent:

µ̄f = µf + wP and µ̄m = µm + wP , where P = Sf + Sm + If + Im is the total

population density. This ensures that in the absence of infection the host popula-
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tion grows logistically, and is a common assumption in epidemiological models

with populations of varying size (e.g. Pugliese, 1990; Altizer and Augustine,

1997).

The parameters that we mostly focus on in this paper are δf , δm, and δfm.

They represent the mating enhancement factors, due to infected females, infected

males, and both infected females and males, respectively. Therefore, we assume

that δf and/or δm are greater than 1; moreover, δfm ≥ max{δf , δm} since there

may or need not be a synergistic effect of δf and δm if both exceed 1. All model

parameters are explained in Table 1.

Given a mating function M(Sf + If , Sm + Im) describing the mating rate

among females and males of any type, we assume random encounters between

individuals (a common feature of many epidemiological models). Therefore, the

mating rate M(Sf , Sm) between susceptible females and susceptible males can

be expressed as

M(Sf , Sm) =M(Sf + If , Sm + Im)
Sf

Sf + If

Sm
Sm + Im

(2)

and similarly for the other three cases.

Most published epidemiological models do not distinguish between females

and males. This entails an implicit assumption that female and male life histories

are identical and hence that model parameters can be assumed sex-independent.

Setting µf = µm = µ, δf = δm = δ > 1, ξf = ξm = ξ, and γf = γm = 1/2,

it follows that Sm = Sf = S/2 where S = Sm + Sf and Im = If = I/2 where

I = Im + If (provided this also holds for the respective initial conditions), and
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the two-sex model (1) reduces to the following asexual model:

dS

dt
= bM

(
P

2
,
P

2

)(
S2

P 2
+ 2δ

SI

P 2
+ δfm

I2

P 2

)
− µ̄S − 2ξδM

(
P

2
,
P

2

)
SI

P 2

dI

dt
= 2ξδM

(
P

2
,
P

2

)
SI

P 2
− µ̄I − αI

(3)

where P = S + I and µ̄ = µ+ wP .

To close the models (1) and (3), we need a specific mating functionM(X, Y ).

A variety of mating functions have been proposed, most of which originate in the

demographic literature where they are commonly referred to as marriage functions

(Iannelli et al., 2005). Of these, most two-sex population models adopt mating

functions that are degree-one homogeneous:M(ax, ay) = aM(x, y) for any pos-

itive x, y, and a (Caswell and Weeks, 1986; Hadeler et al., 1988; Castillo-Chavez

and Huang, 1995; Lindström and Kokko, 1998; Iannelli et al., 2005; Rankin and

Kokko, 2007; Miller et al., 2007; Miller and Inouye, 2011, 2013). This assump-

tion implies that if the female and male populations change by the same factor, the

mating rate also changes by this factor. Here we use a degree-one homogeneous

mating function. The model (3) becomes

dS

dt
=
b

2
M(1, 1)

(
S2

P
+ 2δ

SI

P
+ δfm

I2

P

)
− µ̄S − ξδM(1, 1)

SI

P

dI

dt
= ξδM(1, 1)

SI

P
− µ̄I − αI

(4)

Denoting β ≡ bM(1, 1)/2 and λ ≡ ξM(1, 1), we eventually get the asexual

population model

dS

dt
= β

(
S2

P
+ 2δ

SI

P
+ δfm

I2

P

)
− µ̄S − λδSI

P

dI

dt
= λδ

SI

P
− µ̄I − αI

(5)
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where P = S + I and µ̄ = µ + wP . Note that we need not provide any specific

form of the degree-one homogeneous mating function here, since the model (5)

covers any of these.

2.2. Evolutionary analysis

To study evolution of disease-induced mating enhancement, we assume δfm =

δ2 in the model (5) (i.e. multiplicative effect of infected females and males) and

consider the parameter δ as an evolving trait. We use the techniques of adaptive

dynamics (Dieckmann, 2002; Diekmann, 2004), assuming that a ‘resident’ para-

site strain with δ is established in the host population and a rare ‘mutant’ strain

with δ̂ invades an endemic equilibrium set by the resident. Let the evolution pro-

ceed in small steps, i.e. let the mutant’s δ̂ be close to the resident’s δ. Then, under

rather mild conditions which our models satisfy, successful invasion implies ex-

tinction of the resident population and establishment of the mutant population

(Dercole, 2002, page 46). Now, the formerly mutant population becomes resident

and is challenged by a new mutant strain. Ecological time is thus assumed to run

much faster than evolutionary time (Dieckmann, 2002; Diekmann, 2004).

In order to determine whether a rare mutant takes over an established resident,

we calculate the mutant’s invasion fitness as the initial growth rate of the mutant

when the resident is at its endemic equilibrium (S∗(δ), I∗(δ)). When this invasion

fitness

f(δ̂, δ) ≡ f(δ̂, δ;S∗(δ), I∗(δ)) (6)

is positive, the mutant invades the resident, if it is negative the mutant dies out and

the resident stays at its endemic equilibrium. We go on by calculating the selection

gradient as the slope of the invasion fitness when the mutant trait is equal to the
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resident trait,

g(δ) =
∂f(δ̂, δ)

∂δ̂

∣∣∣∣∣
δ̂=δ

(7)

The value of δ at which the selection gradient is equal to zero is referred to as the

evolutionary singular point δ∗. If f(δ̂, δ) as a function of δ̂ is maximized at δ∗, or

more formally

E =
∂2f(δ̂, δ)

∂δ̂2

∣∣∣∣∣
δ̂=δ=δ∗

< 0 (8)

then this evolutionary singular point is evolutionary stable. That is, populations

with trait values near δ∗ cannot invade the population with the trait value δ∗. If it

is minimized (E > 0) then δ∗ is evolutionary unstable. In addition, if the selection

gradient is positive in a left neighborhood of δ∗ and negative in a right neighbor-

hood of δ∗, the evolutionary singular point δ∗ is convergence stable. That is, pop-

ulations with trait values δ closer to δ∗ replace those with more distant δ values.

If the opposite inequalities hold, δ∗ is convergence unstable. If an evolutionary

singular point is both evolutionary and convergence stable, it is an evolutionary

attractor. If it is convergence stable but evolutionary unstable, it is an evolution-

ary branching point at which a dimorphic parasite population arises (Dieckmann,

2002; Diekmann, 2004).

2.3. Host and parasite trade-offs

Because of several trade-offs, the mating enhancement factor δ is likely to

both directly and indirectly affect host mortality. The direct way is due to an

interaction with the host’s immune system (Alizon and Van Baalen, 2005). The

indirect way is due to the fact that enhanced mating and reproduction may bring

about a survival cost (Berec and Maxin, 2012, and references therein). This ‘cost

of reproduction’ occurs because by increasing the energy outlay on reproduction
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individuals with enhanced reproduction live for a shorter amount of time. Alter-

natively, fertile individuals or individuals with higher mating success are more

susceptible to predators or parasitoids if the latter can capitalize on mating signals

of the former (Zuk and Kolluru, 1998; Pavlova et al., 2010).

In the absence of infection host mortality is µ̄. In its presence, mortality of

infected individuals raises to µ̄ + α. So α in the asexual model (5) (and similarly

in the two-sex model (1)) is a compound parameter accounting for the disease-

induced mortality and representing virulence. In addition, λδ in the asexual model

(and similarly in the two-sex model) represents disease transmission. Since the

widely accepted virulence-transmission trade-off prescribes that transmission can

increase only at the cost of enhanced virulence (Alizon et al., 2009), we should

expect α to increase with δ. Moreover, the virulence-transmission trade-off is

predicted to be concave (Alizon and Van Baalen, 2005). The function

α(δ) = bδz, z > 1 (9)

is consistent with the expected concavity. Indeed, denoting Λ(δ) = λδ we get the

concave function of α,

Λ(α) = λ
(α
b

)1/z
, z > 1 (10)

Moreover, the closer z is to 1, the less curved the trade-off function (10) is (Fig. 1).

The formula (9) is a simple phenomenological description that aims to cover both

direct and indirect effects of parasites on host mortality.

3. The asexual model: females and males equally affected by infection

We first analyze the asexual model (5), since it is simpler, allows for a com-

plete analysis, and also for an easier comparison with existing, mostly asexual

epidemiological models.
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3.1. Population dynamics

Analysis of population dynamics provides the necessary first step for the study

of evolution via adaptive dynamics. Therefore, we first present results on popu-

lation dynamics described by the asexual model (5). In the absence of infection,

(PDFE, 0) with PDFE = (β − µ)/w is the unique non-zero equilibrium of the

model (5); we refer to it as the disease-free equilibrium (DFE). To allow for pop-

ulation persistence in the absence of infection we assume β > µ.

The basic reproduction number of the infection described by the model (5) is

R0 =
λδ

µ+ wPDFE + α
=

λδ

β + α
(11)

It is equal to the average number of adequate contacts, λδ, of an infected individual

during its mean infectious period, 1/(µ+wPDFE +α), when the host population

is at the DFE. Note that R0 does not depend on µ, the intrinsic host mortality rate,

w, the strength of negative density dependence in the background mortality rate,

and δfm, the mating enhancement factor between infected females and infected

males.

In the rest of this subsection, we summarize the main results of our analysis;

detailed analysis is carried out in Appendix A. If R0 > 1 the infection is able

to invade the host population and the DFE (PDFE, 0), which always exists, is

unstable. The invasion can be successful in which case the system attains a unique,

globally stable endemic equilibrium, or unsuccessful in which case the infection is

too harmful, causing host extinction. The latter possibility is a direct consequence

of the standard-incidence-like transmission term in the model (5). Denoting

∆ = [2β(δ − δfm)− λδ + α]2 − 4β2(1− 2δ + δfm)δfm
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the invasion is successful if K∗ > µ where

K∗ = β
[
(s∗)2 + 2δs∗(1− s∗) + δfm(1− s∗)2

]
− α(1− s∗) (12)

and

s∗ =
2β(δ − δfm)− λδ + α +

√
∆

2β(2δ − 1− δfm)
(13)

is the unique equilibrium proportion of the susceptible hosts. The resulting en-

demic equilibrium is

S∗ =
s∗(K∗ − µ)

w
and I∗ =

(1− s∗)(K∗ − µ)

w
(14)

On the other hand, if K∗ < µ the extinction equilibrium (0, 0) is globally stable

and the invasion is unsuccessful.

If R0 < 1 we need to distinguish two cases. When δ ≤ δfm < 2δ − 1, the

infection cannot invade the host population and the DFE is globally stable. This

is also the case in a part of the parameter space when δfm > 2δ− 1. Otherwise, if

[2β(δ − δfm)− λδ + α]2 − 4β2(1− 2δ + δfm)δfm > 0

and

−2β(1− 2δ + δfm) < 2β(δ − δfm)− λδ + α < 0

the DFE is only locally stable and there are two equilibrium proportions of the

susceptible hosts. The lower of these, denoted s−, is locally stable and the higher

is unstable. In terms of S and I , if K− > µ where

K− = β
[
(s−)2 + 2δs−(1− s−) + δfm(1− s−)2

]
− α(1− s−)

and

s− =
− [2β(δ − δfm)− λδ + α]−

√
∆

2β(1− 2δ + δfm)
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the following, locally stable endemic equilibrium exists:

S− =
s−(K− − µ)

w
and I− =

(1− s−)(K− − µ)

w

If K− < µ, on the other hand, the extinction equilibrium (0, 0) is locally stable.

Hence, even if R0 < 1 the disease can persist in the host population or even

drive it extinct whenever the initial proportion of infected individuals is suffi-

ciently large. In biological terms, this happens because if the infected population

reaches a certain proportion, the regenerative effect of δfm can keep transmission

of the parasite going, and even boost it such that the host population goes extinct.

As a consequence, we may have bistability between the disease-free population

state and either host population extinction or disease persistence at an endemic

equilibrium. This bistability regime is a direct consequence of our assumption

of structural consistency between the processes of host reproduction and disease

transmission, mediated by mating (Sect. 2.1 and Berec and Maxin, 2013).

3.2. Evolution

To study evolution of disease-induced mating enhancement, we assume δfm =

δ2 (i.e. multiplicative effect of infected females and males) and consider evolution

of the single parameter δ. Then, if R0 > 1 the unique equilibrium proportion of

the susceptible hosts is (recall that we have set α(δ) = bδz, z > 1)

s∗ =
2βδ(δ − 1) + λδ − bδz −

√
(λδ − bδz)[4βδ(δ − 1) + λδ − bδz]

2β(δ − 1)2
(15)

and

K∗ = β (s∗ + δ(1− s∗))2 − bδz(1− s∗) (16)

Moreover, even though δfm = δ2 > 2δ − 1 for any δ > 1, no bistability regime

can occur in this case and the DFE is thus always globally stable when R0 < 1.
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Let the model (5) with a resident parasite strain with mating enhancement δ be

at the endemic equilibrium (S∗(δ), I∗(δ)). The invasion fitness of a mutant strain

with mating enhancement δ̂ is

f(δ̂, δ) = λδ̂
S∗(δ)

S∗(δ) + I∗(δ)
− µ− w(S∗(δ) + I∗(δ))− bδ̂z

Since f(δ, δ) = 0 we have

µ+ w(S∗(δ) + I∗(δ)) + bδz = λδ
S∗(δ)

S∗(δ) + I∗(δ)

and hence

f(δ̂, δ) = λ(δ̂ − δ)s∗(δ)− b(δ̂z − δz)

For z > 1, this fitness function implies

∂2f(δ̂, δ)

∂δ̂2
= −bz(z − 1)δ̂z−2 < 0 (17)

Therefore, if an evolutionary singular point exists it is always evolutionary stable.

This excludes the possibility of evolutionary branching.

Let us start with the limiting case z = 1 for which α(δ) = bδ and

f(δ̂, δ) = (δ̂ − δ)[λs∗(δ)− b]

Mating enhancement will evolve to lower or higher values, depending on the sign

of the selection gradient g(δ) = λs∗(δ)− b, for which

s∗(δ) =
2βδ

2β(δ − 1) + λ− b+
√

(λ− b)[4β(δ − 1) + λ− b]

In Appendix B we show that if the infection rate is low compared with the re-

production rate, λ < 4β, then the virulence-transmission trade-off is not strong

enough to prevent the evolution to ever higher mating enhancement. Conversely,
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if λ > 4β then whether δ evolves to higher or lower values depends on how strong

the trade-off factor b is and how large the current strain value of δ is. If b is rel-

atively large and the current strain value of δ is close to 1 then the system will

evolve to either a value δ∗ > 1 or to no disease-induced mating enhancement. For

large enough current δ’s, the system evolves to ever higher mating enhancement.

If the trade-off factor b is too small then the system always evolves to ever higher

mating enhancement.

The only case beyond z = 1 that we can rigorously analyze is z = 2. Then,

the mutant’s invasion fitness is

f(δ̂, δ) = (δ̂ − δ)[λs∗(δ)− b(δ̂ + δ)]

The endemicity condition R0 > 1 now implies

λ >
√

4bβ and R1 < δ < R2 (18)

where we define

R1 ≡
λ−

√
λ2 − 4bβ

2b
and R2 ≡

λ+
√
λ2 − 4bβ

2b

Since the resident strain with a trait value δ > 1 needs to be endemic, we have

either

1 < R1 < R2 ⇔ β + b > λ > 2b (19)

(R1 > 1 implies λ− 2b >
√
λ2 − 4bβ > 0) or

R1 < 1 < R2 ⇔ λ > β + b (20)

The selection gradient is now

g(δ) = λs∗(δ)− 2bδ = 2δh(δ)
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where

h(δ) =
λβ

2β(δ − 1) + λ− bδ +
√

(λ− bδ)[4β(δ − 1) + λ− bδ]
− b (21)

To find the evolutionary singular points δ∗ and assess their convergence sta-

bility, we first need to establish the domain of the function h(δ) and its possible

roots (i.e. the values of δ at which the selection gradient vanishes). The expression

under the radical of h(δ) has two roots,

D1 =
4β − λ
4β − b

and D2 =
λ

b

Since R0 > 1 implies λ > bδ > b, then D2 > 1 and the domain of h(δ) is

(D1, D2) if b < 4β, with D1 < 1, or (−∞, D2) ∪ (D1,∞) if b > 4β, with

D1 > 1. Since R0 > 1 implies δ < D2 and since δ cannot be negative, only the

interval [0, D2) is relevant to explore in the latter case.

While technical details are provided in Appendix C, the evolutionary out-

comes in the case z = 2 are summarized in Table 2 and visualized in Fig. 2. The

evolutionary analysis reveals that evolution to disease-induced mating enhance-

ment occurs if R1 < 1 < R2, b < 4β, h(D1) > 0, h(1) > 0, and h(D2) < 0,

or if 1 < R1 < R2. The latter case requires that some form of mating enhance-

ment already exists in the host, since in this case R0(1) < 1. In all of the other

scenarios evolution pushes δ below one, which actually means evolution to no

disease-induced mating enhancement. Within this latter group of scenarios we

can further distinguish two subcases. First, we may have evolution to an evolu-

tionary attractor δ∗ < 1, which we will refer to as evolution to disease-induced

mating decrement. Second, we may have evolutionary suicide when δ passes

through the lower endemicity boundary R1 (the infection prevalence is positive

and the selection gradient g(δ) is negative at R1). As Fig. 2 suggests, evolution
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to disease-induced mating enhancement is more likely the higher β and λ are and

the lower b is; this is because the ‘cusp’ point at which the shaded area emerges

has components β = b and λ = 2b.

However, this is still not the whole story. The above evolutionary results were

based on the assumption thatR0 > 1 guarantees parasite persistence at an endemic

equilibrium. This assumption arose quite naturally here since invasion fitness, the

quantity of fundamental importance to our evolutionary analysis, was indepen-

dent of the host intrinsic mortality rate µ. However, we know from the previous

subsection that the infection can drive the host population to extinction and that

this happens as soon as K∗ < µ. The direct implication of this is that the actual

endemicity range of δ is an intersection of the interval (R1, R2) and an interval for

which K∗ > µ. More importantly, any δ∗ found to be an evolutionary attractor

by our evolutionary analysis must also satisfy K∗(δ∗) > µ. Otherwise, an evolu-

tionary suicide is the evolutionary outcome in such a situation, since if K∗ > µ

changes to K∗ < µ due to an evolutionary step in δ, we face sudden extinction

of both the parasite and its host. For appropriate parameter values, this situation

may affect both disease-induced mating decrement (δ∗ < 1) and disease-induced

mating enhancement (δ∗ > 1) (Fig. 2), as also exemplified in Fig. 3.

On the way to population extinction, chance effects can play a significant role.

Before or even just beyond the point of evolutionary suicide, population densities

are commonly very low (Fig. 3). Due to chance effects, extinction of the host

and hence of the parasite is not the only possible outcome. Alternatively, one

may expect an infection fade-out whereby all infected host individuals go extinct

before all susceptible host individuals do. Then, the remaining susceptible host

population may escape the pitfalls of stochasticity and recover to the DFE.
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For z 6= 2 we are not able to derive any analytical results. Therefore, we

provide just a single figure showing how evolutionary outcomes may vary with

increasing costs of disease-induced mating enhancement (i.e. with increasing z).

Figure 4 shows that when relatively low values of z lead to relatively high values

of mating enhancement, for high enough z evolution will rather tend to mating

decrement (i.e. to no mating enhancement). That is, the higher cost of mating

enhancement z lowers the likelihood that disease-induced mating enhancement

will evolve.

4. The two-sex model: just one sex affected by infection

The empirical observations of disease-induced mating enhancement that we

refer to in the introduction suggest that the corresponding parasites may be sex-

specific in their mating enhancement ability. Moreover, the cost of reproduc-

tion can also be biased towards the sex that is more active in its mating behav-

ior (Pavlova et al., 2010; Berec and Maxin, 2012). Therefore, in this section,

we assume that infected individuals of only one sex demonstrate disease-induced

mating enhancement.

4.1. Population dynamics

Consideration of sex-specific mating enhancement requires the two-sex model

(1) and, contrary to the asexual model (5), an explicit specification for the mat-

ing function M(Sf + If , Sm + Im). Here we choose the (modified) harmonic

mean mating function, which is the most commonly used degree-one homoge-

neous mating function (Caswell and Weeks, 1986; Lindström and Kokko, 1998;

Miller et al., 2007; Bacelar et al., 2011; Miller and Inouye, 2013) and which has

17



also got some empirical support (Miller and Inouye, 2011):

M(Sf + If , Sm + Im) = 2c
(Sf + If )(Sm + Im)

(Sf + If )/h+ Sm + Im
(22)

where c is a positive scaling constant. The modification of the standard har-

monic mean mating function concerns the introduction of the parameter h, which

allows for capturing a variety of mating systems. In particular, h = 1 repre-

sents monogamy and corresponds to the standard harmonic mean mating function,

h > 1 corresponds to polygyny (a mating system involving one male and two or

more females), and h < 1 is a model for polyandry (a mating system involving

one female and two or more males) (Caswell and Weeks, 1986; Lindström and

Kokko, 1998; Miller et al., 2007; Bacelar et al., 2011; Miller and Inouye, 2013).

This will allow us to assess whether polygamous mating systems have different

evolutionary outcomes than the monogamous one.

Since analysis of the resulting two-sex model (the model (D.2) in Appendix

D) is cumbersome, we assume that, besides mating enhancement, all other model

parameters are sex-independent. Setting δf = δfm = δ, δm = 1 (only females

affected by the infection) and denoting β ≡ 2cb, λ ≡ 2cξm = 2cξf , our two-sex

model becomes
dSf
dt

=
β

2

(
SfSm
T

+
SfIm
T

+ δ
IfSm
T

+ δ
IfIm
T

)
− µ̄Sf − λ

SfIm
T

dSm
dt

=
β

2

(
SfSm
T

+
SfIm
T

+ δ
IfSm
T

+ δ
IfIm
T

)
− µ̄Sm − λδ

IfSm
T

dIf
dt

= λ
SfIm
T
− µ̄If − αfIf

dIm
dt

= λδ
IfSm
T
− µ̄Im − αmIm

(23)
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where T = (Sf + If )/h+Sm+ Im. An analogous model results when only males

are affected by the infection, i.e. when δm = δfm = δ, δf = 1. In both, the basic

reproduction number of the infection (D.5) given in Appendix D simplifies to

R0 =
2λ
√
δ√

(β + 2(1/h+ 1)αf )(β + 2(1/h+ 1)αm)
(24)

In Appendix E we show that the only boundary equilibrium of the model

(23) that can be stable is the DFE. In particular, the DFE is stable if R0 < 1

and unstable if R0 > 1. Unfortunately, endemic equilibria of the model (23) are

difficult to analyze. Still, the equation for the total population size P (E.2) implies

that if

K∗2 ≡
β(x∗ + δz∗)(1− x∗ − z∗)
1 + (1/h− 1)(x∗ + z∗)

− αfz∗ − αm(1− x∗ − y∗ − z∗) < µ (25)

the host population goes extinct due to the disease. Here x∗, y∗ and z∗ refer to

proportions of the susceptible females, susceptible males and infected females,

respectively, in a stable positive equilibrium of the proportional model (E.1). If

K∗2 > µ, on the other hand, the host population grows when small and attains

a stable endemic equilibrium. In addition, numerical simulations suggest that if

R0 > 1 then the proportional model (E.1) has a unique equilibrium that satisfies

0 < x∗ < 1, 0 < y∗ < 1, and 0 < z∗ < 1. If a need arises during the subsequent

evolutionary analysis, we calculate it numerically. These results stay the same if

males instead of females are the sex affected by the infection.

4.2. Evolution

To study evolution of disease-induced mating enhancement we assume that the

resident parasite strain has δ ≥ 1 and the system is in a stable endemic equilibrium

(S∗f (δ), S
∗
m(δ), I∗f (δ), I∗m(δ)). Also here we assume that disease virulence is traded
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off with disease transmission, but this trade-off now acts only in the sex in which

the parasite promotes mating enhancement. Therefore, αf (δ) = bδz, z > 1,

αm(δ) = b in the model (23), and vice versa in the analogous model with mating

enhancement in males.

Following Bacelar et al. (2011), we show in Appendix E that the invasion

fitness of the mutant strain in the two-sex model (23) is

f(δ̂, δ) = λ2(δ̂ − δ)
S∗mS

∗
f

(T ∗)2
− b(δ̂z − δz)λδ

S∗mI
∗
f

T ∗I∗m
(26)

If males instead of females are the sex affected by the infection, the invasion

fitness becomes

f(δ̂, δ) = λ2(δ̂ − δ)
S∗mS

∗
f

(T ∗)2
− b(δ̂z − δz)λδ

S∗fI
∗
m

T ∗I∗f
(27)

For the limiting trade-off with z = 1 the invasion fitness (26) simplifies to

f(δ̂, δ) = λ
S∗mI

∗
f

T ∗I∗m
(δ̂ − δ)µ̄∗

This implies that f(δ̂, δ) > 0 whenever δ̂ > δ. For αf = bδ and αm = b the

endemicity condition R0(δ) > 1 is equivalent to

δ > δc ≡
β(β + 2b(1/h+ 1))

4λ2 − 2b(1/h+ 1)(β + 2b(1/h+ 1))

Hence, evolution will always proceed to ever higher mating enhancement. The

same analysis can be used to show that this is also true if males instead of females

are affected by the infection.

In the case of trade-off with z = 2 the invasion fitness (26) simplifies to

f(δ̂, δ) = λ
S∗mI

∗
f

T ∗I∗m
(δ̂ − δ)(µ̄∗ − bδδ̂)
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The selection gradient

g(θ) =
∂f(δ̂, δ)

∂δ̂

∣∣∣∣∣
δ̂=δ

= λ
S∗mI

∗
f

T ∗I∗m
(µ̄∗ − bδ2)

vanishes whenever

µ̄∗ = bδ2

where µ̄∗ is a complicated function of δ,

µ̄∗ =
β(x∗ + δz∗)(1− x∗ − z∗)
1 + (1/h− 1)(x∗ + z∗)

− bδ2z∗ − b(1− x∗ − y∗ − z∗)

The same analysis can be used to show that the sign of the selection gradient

coincides with the sign of the term µ̄∗ − bδ2 also if males instead of females are

affected by the infection.

Since we are not able to conduct any detailed analysis comparable to that of

the asexual model (5), we instead demonstrate that mating enhancement can also

evolve in the two-sex model (23). Before we do that, we emphasize that all types

of results observed for the asexual model (evolutionary suicide, evolution to mat-

ing decrement, and evolution to mating enhancement) were also observed here.

Regarding evolution of disease-induced mating enhancement, we observe that the

area in the (β, λ) parameter space in which this is possible is more restricted; com-

pare the left panel of Fig. 2 with the middle bottom panel of Fig. 5. This suggests

that mating enhancement is less likely to evolve if the parasite is affecting just one

sex relative to when it affects both. As in the asexual case, the area with a po-

tential for disease-induced mating enhancement shrinks (or more precisely moves

up and to the right) when b increases, but also when the mating system goes from

polygyny (h > 1) through monogamy (h = 1) to polyandry (h < 1) (Fig. 5).

Polygynous populations with low b thus have the highest potential for evolution
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of disease-induced mating enhancement. These results are independent of which

sex is affected by the infection.

As the area in the (β, λ) parameter space in which evolution of mating en-

hancement is possible shrinks, the magnitude of the evolutionary attractor δ∗ also

decreases. All else being equal, δ∗ declines with increasing b and decreasing h

(Fig. 6). These results, other than small quantitative differences, are independent

of the affected sex.

5. Discussion

In this paper we were interested in the potential of parasites that are transmitted

sexually in animals to evolve the means to spread more effectively by promoting

mating success in the infected hosts. Such a disease-induced mating enhancement,

while expected by many to be a natural adaptation of sexually transmitted para-

sites (Knell and Webberley, 2004), has so far been observed only rarely, and we

are aware of only three studies that unequivocally demonstrated it (McLachlan,

1999; Abbot and Dill, 2001; Raina et al., 2000, details are given in the introduc-

tion). While it is possible that this phenomenon might occur more frequently in

nature, we were primarily interested in identifying conditions under which evolu-

tion of disease-induced mating enhancement is not likely. In other words, we aim

to provide a plausible explanation as to why disease-induced mating enhancement

appears to be rare in nature. The results of this study can then be used to make

empirical predictions.

Unfortunately, it is difficult to generalize the three existing studies demonstrat-

ing disease-induced mating enhancement in order to provide a foundation for our

models. Therefore, we simply assumed that mating enhancement is either equal
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in both females and males or present in just one sex. In the former case we also

assumed that the effects on females and males are multiplicative, whereas in the

latter we separately studied the cases of either females or males affected by the

STD. Also, we explored the effect of mating system (i.e. polyandry, monogamy,

polygyny) on evolutionary outcomes. Each of these scenarios assumed that the

degree of mating enhancement traded off with virulence so that enhanced disease

transmission could only be achieved at the cost of increased virulence. It was also

assumed that this trade-off was concave.

Using techniques from adaptive dynamics (Dieckmann, 2002; Diekmann, 2004),

we found that disease-induced mating enhancement was generally less likely to

evolve with a lower host reproduction rate β or a lower baseline disease trans-

mission rate λ. In fact, β and λ are not only functions of the progeny size and

the likelihood of disease transmission upon mating, respectively, but both are also

functions of a constant scaling of the actual mating rate (c andM(1, 1) when one

or both sexes are affected by the infection, respectively). Hence, the higher the

mating rate, the more effective the sexual route for disease transmission appears to

be and therefore a higher potential for disease-induced mating enhancement can

be expected. Further, if the parasite was affecting one sex only, disease-induced

mating enhancement was found to be less likely to evolve relative to when the

parasite affected both sexes.

We also demonstrated that evolution to disease-induced mating enhancement

was less likely with lower b (the scaling for disease virulence) and higher z (quan-

tifies the cost of mating enhancement). Hence, increasing the strength of the

virulence-transmission trade-off may limit the evolution of mating enhancement.

In this context it is interesting to note that the limiting, linear trade-off (with z = 1)
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frequently led to evolution of ever higher mating enhancement (this was always

the case when just one sex was affected by the infection). This implies that if

real virulence-transmission trade-offs are linear then the model is missing an im-

portant component to capture why mating enhancement is not observed. How-

ever, it appears that real virulence-transmission trade-offs are concave (Alizon

and Van Baalen, 2005; Alizon et al., 2009).

When disease-induced mating enhancement was equal in both females and

males, the mating system had no effect on evolutionary outcomes. In contrast, if

it acted on just one sex, the mating system played a significant role. In particular,

the potential for evolution to disease-induced mating enhancement was higher the

more polygynous the host population was. Therefore, it might be less probable

to detect mating enhancement in polyandrous and monogamous species, relative

to polygynous ones. Somewhat unexpectedly, this result did not depend on the

affected sex; only minor quantitative differences were detectable between the al-

ternative cases.

What are the other hypotheses concerning why mating enhancement is so rare?

This is a difficult question to answer, given that literature addressing this is rare.

However, given that we are discussing a sexually transmitted parasite it is not un-

reasonable to consider the possibility of a host protection being inherited and co-

evolving with the parasite strategy. In particular, an idea has been proposed that

females may choose mates based on their resistance to parasites (Kokko et al.,

2002, and references therein). For males, higher resistance would thus result in an

increased chance of mating, but with lowered or no mating enhancement. While

we acknowledge that this idea is compelling and worthy of further research within

our modeling framework, it currently receives minimal support for STDs. In par-
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ticular, it was suggested that there was a strong selection on STDs to become

cryptic (Knell, 1999; Knell and Webberley, 2004) and that STDs could even act

as a cost of choosing mates (Kokko et al., 2002; Knell and Webberley, 2004).

Nevertheless, we believe that this would be an interesting topic for a follow-up

study.

Alternatively, an infection may enhance one component of mating behavior

while suppressing another one. As mentioned in the introduction, corn earworm

Helicoverpa zea females infected by a gonad-specific virus produced up to three

times more sex pheromone compared to uninfected females; however, because of

severe deformities in their reproductive organs these females did not mate, force-

fully avoiding copulation (Raina et al., 2000). Hence, the net effect of infection

in this particular case is no reproduction of infected females. Thus, looking only

at the net effect would not reveal the existing mating enhancement. Still, there is

a possibility that the lack of evidence for disease-induced mating enhancement is

in part due to a lack of studies, rather than because it is actually rare in nature. In

any case, it remains a challenge to confidently state how widespread this type of

mating enhancement is.

What values of δ correspond to the known observations of disease-induced

mating enhancement as referred to in the introduction? For the midge Paratri-

chocladius rufiventris infested by the mite Unionicola ypsilophora, males form

mating swarms that females enter and males then capture, suggesting that only

males undergo behavioral changes from the infection. McLachlan (1999) ob-

served that while the proportion of infected males in swarms was ∼ 4%, it was

∼ 15% in mated pairs. We can use these values to estimate the degree of mating

enhancement in this species as δ = (0.15/0.85)/(0.04/0.96) ≈ 4.24, a value that
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fits our observed range e.g. in Fig. 6. For the milkweed leaf beetle Labidomera

clivicollis infected with the mite Chrysomelobia labidomera, males were shown

to displace rival males from mating pairs twice as much than uninfected males

(Abbot and Dill, 2001). This suggests that it is males that might be affected by

the infection; however the authors of that study doubt this male behavior is an

adaptation by the parasite. Nonetheless, δ can in this case be roughly estimated

as 2, which is again in the observed range (Fig. 6). Of course, a bit of caution

is needed here, since we do not know an appropriate mating function as well as

whether there is any potential trade-off that can act in these species. Still, it is

appealing that the degree of mating enhancement observed in these two species is

not at odds with what we arrive at with our relatively simple and generic models.

As we mention in the previous paragraph, the net effect of infection of females of

the corn earworm Helicoverpa zea by a gonad-specific virus is no reproduction of

infected females, so it is not sensible to quantify the degree of mating enhance-

ment in this particular case. Still, it is interesting to observe that there are systems

in which females, not males, are the sex affected by the infection.

Acknowledging that disease-induced mating enhancement makes sense only

for sexually transmitted infections, the key ingredients of our modeling approach

are: (i) initial model formulation that accounts for both sexes, (ii) structural con-

sistency between the processes of reproduction and disease transmission, medi-

ated by mating, (iii) modeling mating rate via a degree-one homogeneous func-

tion, specifically the harmonic mean mating function when mating enhancement

occurs in just one sex, and (iv) considering that enhanced mating and hence in-

creased disease transmission will likely occur at the cost of increased virulence.

The points (i), (ii) and (iv) above were broadly motivated and justified within
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the methods section. Degree-one homogeneous functions as models of mating

(point (iii)) are widely accepted but at the same time also controversial. While

scale invariant and ‘naturally generalizing’ linear birth rates are commonly as-

sumed in many asexual models (Iannelli et al., 2005), these functions keep the

per female mating rate constant if the adult sex ratio stays constant, irrespec-

tively of how low male and female densities might be. This can be question-

able, for example, when hosts are challenged by an Allee effect due to diffi-

culty in finding mates at low densities (Courchamp et al., 2008; Gascoigne et al.,

2009). A way to introduce this mate-finding Allee effect is to replace the har-

monic mean mating functionM(Nf , Nm) = 2cNfNm/(Nf+Nm) by the function

M(Nf , Nm) = 2cNfNm/(Nf +Nm + θ), where θ is a positive constant. Indeed,

for a fixed female-to-male ratio, the per female mating rateM(Nf , Nm)/Nf now

decreases with decreasing male density. Introduction of the mate-finding Allee ef-

fect into population models commonly begets population extinction when the host

density falls below a critical value and there is a discontinuous change in equilib-

rium population density when the parameter θ exceeds a value (Courchamp et al.,

2008; Boukal and Berec, 2009). Therefore, we expect such a modification to

change the qualitative behavior of the model, the issue certainly worth separate

investigation.

Another potential future direction of this work would be to include finite pop-

ulation sizes and demographic stochasticity. When the male mating potential h is

not close to 1, the harmonic mean mating function amplifies demographic stochas-

ticity such that populations can have larger fluctuations in size and sex ratio and

are consequently more likely to go extinct (Bessa-Gomes et al., 2010). Because h

also affects the potential for evolution of mating enhancement by an STD, adding
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the next level of demographic realism could affect the results reported in this pa-

per.

Beyond possible model extensions and alternative formulations of certain model

components, the important issue is that there is need for an effort to identify more

host populations and their parasites that interact such that mating within the host is

enhanced by an action of the parasite. Only further empirical evidence can allow

us to further distill fundamental characteristics of that interaction and allow us to

develop and study the most appropriate models.
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Parameter Meaning

b Birth rate

γm (γf ) Fraction of males (females) among offspring

δm (δf ) Factor enhancing mating rate of infected males (females)

δfm Factor enhancing mating rate between infected males and infected

females

µm (µf ) Male (female) intrinsic mortality rate

w Strength of negative density dependence in background mortality

rate

αm (αf ) Male (female) disease-induced mortality rate

ξm (ξf ) Probability of disease transmission upon mating between a suscepti-

ble female and an infected male (a susceptible male and an infected

female)

Table 1: Parameters used in the model (1).

33



Condition Cases h(D1) h(1) h(D2) Evolutionary outcome

1 < R1 < R2 > 0a > 0a < 0a evolution to δ∗ > 1b

R1 < 1 < R2,

b < 4β

1 > 0 < 0 any evolution to δ∗ < 1b,c or evo-

lutionary suicide in δ < 1 (δ

passing through R1)c

2 < 0 > 0 any impossible case

3 & 4 < 0 < 0 any evolutionary suicide in δ < 1

(δ passing through R1)c

5 > 0 > 0 > 0 impossible case

6 > 0 > 0 < 0 evolution to δ∗ > 1b

R1 < 1 < R2,

b > 4β

1 & 2 ×d < 0a any evolutionary suicide in δ < 1

(δ passing through R1)c

Note: a this is not an option but an implied result; b δ∗ = [2β(λ + 2b) − bλ −
√

∆]/(4bβ) where ∆ = bλ[4βλ + b(λ − 8β)] (see Appendix C); c this case

actually means no disease-induced mating enhancement; d h(D1) is irrelevant in

this case

Table 2: Possible outcomes of evolution of the mating enhancement factor δ in the asexual case

described by the model (5) and z = 2; see Appendix C for more details.
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Figure legends:

Figure 1: The virulence-transmission trade-off (10), with b = 3 and λ = 1.

Figure 2: The (β, λ) parameter space split according to different potential

evolutionary outcomes. Parameters: z = 2, b = 3 (left panels), b = 6 (right

panels). The shaded area to the right of each panel corresponds to where the

potential evolutionary attractor is disease-induced mating enhancement with δ∗ >

1 (white corresponds to δ∗ = 1 and black to the maximum observed δ∗ in this area

of the parameter space and for these parameter values). The shaded area to the

left of each panel corresponds to either β < µ (to the left of the vertical dashed

line; resident cannot persist) or K∗ < µ for the respective potential evolutionary

outcome (to the right of the vertical dashed line; evolutionary suicide is here the

actual evolutionary outcome); µ = 0.1 for the top panels, µ = 1.5 for the middle

panels, and µ = 4 for the bottom panels. In the bottom left figure, the two shaded

areas overlap, so that a dark gray line is used to emphasize the border of the left

shaded area.

Figure 3: Example of evolutionary suicide. The top panel is the pairwise

invasibility plot (PIP) for β = 4.5, λ = 10, b = 3, z = 2, µ = 4, and w = 0.1.

These parameters correspond to the mating enhancement area in the left column

of Fig. 2. Evolution of δ here proceeds towards the lower left corner of the PIP,

at which δ = 1.59. The middle panels follows the resident-only dynamics for

δ = 1.61, i.e. just above the lower left corner of the PIP. After it establishes at the

endemic equilibrium, a rare mutant with δ = 1.57, i.e. just below the lower left

corner of the PIP, is introduced, resulting in extinction of both hosts and parasites

(the bottom panel).
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Figure 4: Evolutionary outcome as a function of the cost of mating enhance-

ment z. The thin black lines delimit the interval of δ for which R0(δ) > 1, and the

thick gray line connects the evolutionary attractors as they vary with z. Parameter

values: β = 7, λ = 15, b = 3.

Figure 5: Potential for disease-induced mating enhancement in the two-sex

model (23) with z = 2 and females affected by the infection. In the grey area the

infection persists in an endemic equilibrium and the selection gradient is positive

for δ = 1.01. Other parameter values: µ = 0.2, w = 0.1. Virtually identical

results were obtained when males were affected by the infection.

Figure 6: Evolutionary attractor δ∗ as a function of the parameter b and the

mating system parameter h, for two pairs of (β, λ) values and either females

(left) or males (right) affected by the infection. Solid lines: β = 10, λ = 20;

dashed lines: β = 20, λ = 20; black: h = 0.5 (polyandry); dark gray: h = 1

(monogamy); light gray: h = 2 (polygyny). Other parameter values: z = 2,

µ = 0.2, w = 0.1.
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Appendix A. Analysis of the asexual model (5)

We start with rewriting model (5) for the proportion of susceptible individuals

s = S/(S + I),

ds

dt
= (1− s)

{
β(1− 2δ + δfm)s2 + [2β(δ − δfm)− λδ + α] s+ βδfm

}
(A.1)

and the total population density P = S + I ,

dP

dt
=
[
βs2 + 2βδs(1− s) + βδfm(1− s)2 − α(1− s)− µ− wP

]
P (A.2)

Let f(s) denote the right-hand side of equation (A.1). The equilibrium 1 of

this equation corresponds to the disease-free equilibrium (DFE) of the original

model (5) and f ′(1) = −β − α + λδ. Hence, the DFE is stable if and only if

R0 < 1. If s → 1, it follows from equation (A.2) that S → (β − µ) /w and

I → 0.

Let g(s) denote the quadratic function in the curly brackets of equation (A.1),

so that ds/dt = (1− s)g(s). The discriminant of g(s) is

∆ = [2β(δ − δfm)− λδ + α]2 − 4β2(1− 2δ + δfm)δfm

and we consider two cases:

(1) δ ≤ δfm < 2δ − 1. Since in this case ∆ > 0 and the coefficient by s2

is negative, we have two distinct real roots of which one is positive and one is

negative. The positive root is

s∗ =
2β(δ − δfm)− λδ + α +

√
∆

2β(2δ − 1− δfm)
(A.3)

The negative leading coefficient of g(s) also implies that 0 < s∗ < 1 if and only if

g(1) < 0. Since g(1) = β−λδ+α < 0 if and only ifR0 > 1 then, as expected, the
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interior equilibrium for s is feasible if and only if the basic reproduction number

of the infection is greater than one.

Denoting by s1 the other (negative) real root of g(s) we can write f(s) =

a(1−s)(s−s1)(s−s∗), where a = β(1−2δ+δfm). Since a < 0 and s1 < s∗ < 1,

then f ′(s∗) = a(1 − s∗)(s∗ − s1) < 0, which means that s∗ is stable whenever it

exists.

Returning to equation (A.2) for P and denoting

K∗ = β
[
(s∗)2 + 2δs∗(1− s∗) + δfm(1− s∗)2

]
− α(1− s∗)

we distinguish two subcases. First, if K∗ < µ then P → 0 (note that K∗ does not

depend on µ) and the host population goes extinct. Second, if K∗ > µ then the

following endemic equilibrium is globally stable:

S → s∗(K∗ − µ)

w
and I → (1− s∗)(K∗ − µ)

w

(2) δfm > 2δ − 1. In this case the coefficient by s2 in g(s) is positive and the

product of two roots of g(s) is also positive. Hence, if they are real, these roots

are either both negative or both positive.

Suppose R0 > 1 which is equivalent to g(1) < 0. Since g(0) > 0 and g(∞) >

0 there are two positive real roots of g(s) of which just the smaller one lies in

the interval (0, 1). Moreover, this smaller root is defined by expression (A.3). A

similar argument as above shows that also in this case s∗ is stable.

Now suppose R0 < 1 and write g(s) shortly as g(s) = a2s
2 + a1s + a0. The

vertex of this quadratic function is located at smin = −a1/(2a2) and has the value

g(smin) = a0 − a21/(4a2). Since a2 > 0 and R0 < 1 is equivalent to g(1) > 0, the

only case with feasible equilibria is when smin ∈ (0, 1) and g(smin) < 0. But this
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also means that there will be two feasible equilibria in (0, 1),

s− =
− [2β(δ − δfm)− λδ + α]−

√
∆

2β(1− 2δ + δfm)

and

s+ =
− [2β(δ − δfm)− λδ + α] +

√
∆

2β(1− 2δ + δfm)

with s− < s+. In addition, a2 > 0 implies f ′(s−) < 0 and f ′(s+) > 0. Hence,

the lower equilibrium s− is stable and the higher equilibrium s+ is unstable. As

a result, we observe bistability in the dynamics of the proportion of susceptible

individuals s. Whereas for s(0) < s+ model solutions approach s−, for s(0) > s+

they approach 1. In terms of model parameters, the condition g(smin) < 0 is

equivalent to ∆ > 0, and the condition smin ∈ (0, 1) is equivalent to

−2β(1− 2δ + δfm) < 2β(δ − δfm)− λδ + α < 0 (A.4)

For s(0) < s+, system dynamics with respect to the original state variables S and

I are as follows. Denoting

K− = β
[
(s−)2 + 2δs−(1− s−) + δfm(1− s−)2

]
− α(1− s−)

we distinguish two subcases. First, if K− < µ then P → 0 (note that K− does

not depend on µ) and the host population goes extinct. Second, if K− > µ then

the following endemic equilibrium is (now locally) stable:

S → s−(K− − µ)

w
and I → (1− s−)(K− − µ)

w
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Appendix B. Evolution of disease-induced mating enhancement for the asex-

ual model (5) and z = 1

The assumption of endemicity of a resident strain, R0 > 1 is equivalent to

λ > b and δ > δR = β/(λ− b). The selection gradient g(δ) = λs∗(δ)− b where

s∗(δ) =
2βδ

2β(δ − 1) + λ− b+
√

(λ− b)[4β(δ − 1) + λ− b]

is defined for any δ > δs = 1− (λ− b)/(4β) and has two roots (note that δs < 1):

δ1 =
b(λ− 2β −

√
λ2 − 4βλ)

2β(λ− b)
and δ2 =

b(λ− 2β +
√
λ2 − 4βλ)

2β(λ− b)
.

Since δ1δ2 > 0 both roots, if real, have the same sign. Also, δR > δs and δs <

δ1 < δ2. Moreover, g(δ) has a positive horizontal asymptote g(∞) = λ− b > 0.

If λ < 4β then g(δ) has no real root, hence g(δ) > 0 for all δ in the domain of

g. This implies that the system evolves to ever higher mating enhancement.

If λ > 4β then both δ1 and δ2 are real and positive. This implies g(δ) < 0

whenever δ1 < δ < δ2. It remains to compare these thresholds with 1 since by

definition δ > 1.

(1) 1 < δ1 < δ2 which is equivalent to

b >
λ+

√
λ2 − 4βλ

2

In this case g(δ) > 0 for δ ∈ (1, δ1) ∪ (δ2,∞) and negative otherwise. Also,

δR < δ1. Therefore, if our current strain has δ < δ2 then it will evolve to δ1. If it

has δ > δ2 then it will evolve to ever higher mating enhancement.

(2) δ1 < 1 < δ2 which is equivalent to

λ−
√
λ2 − 4βλ

2
< b <

λ+
√
λ2 − 4βλ

2
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Here g(δ) < 0 if δ < δ2 and g(δ) > 0 if δ > δ2. This also implies δR < δ2.

Moreover, since δ1 < δR is equivalent to b < [λ− 2β +
√
λ2 − 4βλ]/2 this case

splits into two subcases. If

λ−
√
λ2 − 4βλ

2
< b <

λ− 2β +
√
λ2 − 4βλ

2

then δ1 < δR so that if our current strain has δ < δ2 we observe evolutionary

suicide as the parasite aims to reach δ1. If, on the other hand,

λ− 2β +
√
λ2 − 4βλ

2
< b <

λ+
√
λ2 − 4βλ

2

then δ1 > δR so that if our current strain has δ < δ2 it will evolve to δ1 < 1 (i.e.

sterilization). In both subcases, if our current strain has δ > δ2 it will evolve to

ever higher mating enhancement.

(3) δ1 < δ2 < 1 which is equivalent to

b <
λ−

√
λ2 − 4βλ

2

In this case g(δ) > 0 for all δ > 1. Hence, for all initial δ > δR the system evolves

to ever higher mating enhancement.

Appendix C. Evolution of disease-induced mating enhancement for the asex-

ual model (5) and z = 2

The function h(δ) defined by (21) has at most two roots:

δ1 =
2β(λ+ 2b)− bλ−

√
∆

4bβ
and δ2 =

2β(λ+ 2b)− bλ+
√

∆

4bβ

with ∆ = bλ[4βλ + b(λ− 8β)]. Since R0 > 1 requires λ >
√

4bβ and since it is

easy to show that √
4bβ >

8bβ

4β + b
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we have λ > 8bβ/(4β + b) and hence ∆ > 0. Therefore, both δ1 and δ2 are real.

However, one or both of these roots may be extraneous, since they are com-

puted by squaring the radical in the equation h(δ) = 0 (after isolating the radical).

The true solutions of the equation h(δ) = 0 must satisfy

λ(β − b) + 2bβ + bδ(b− 2β) = b
√

(λ− bδ)[4β(δ − 1) + λ− bδ] > 0 (C.1)

We also note that h(δ1) < 0 or h(δ2) < 0 whenever δ1 or δ2 is extraneous, respec-

tively.

For δ1 or δ2 to be evolutionary singular points, they must lie in the interval

(max{R1, 1}, R2). However, if δ2 is a root of h(δ), then δ2 > R2 and hence δ2

cannot be an evolutionary singular point. Indeed, if δ2 satisfies condition (C.1)

then by inserting δ2 into this condition, one obtains

λ(β − b) + 2bβ + b(b− 2β)
2β(λ+ 2b)− bλ+

√
∆

4bβ
> 0

and hence

4bβ[λ(β − b) + 2bβ] + b(b− 2β)[2β(λ+ 2b)− bλ] + b(b− 2β)
√

∆ > 0

Moving the radical to the right and simplifying the left-hand side,

b3(4β − λ) > b(2β − b)
√

∆⇔ b2(4β − λ) + b
√

∆ > 2β
√

∆

We need to prove δ2 −R2 > 0 which is equivalent to

b2(4β − λ) + b
√

∆− 2bβ
√
λ2 − 4bβ > 0

but the previous inequality implies

b2(4β − λ) + b
√

∆− 2bβ
√
λ2 − 4bβ > 2β(

√
∆− b

√
λ2 − 4bβ)
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Finally, the right-hand side of this inequality is positive since ∆− b2(λ2− 4bβ) =

4bβ(λ− b)2 > 0, and we are done.

As far as location of the h(δ) domain end-points D1 and D2 relative to the

endemicity thresholds R1 andR2 we have the following result. If the h(δ) domain

is (D1, D2) then D1 < R1 < R2 < D2. The right side of the inequality is easy to

check. To show D1 < R1 requires some computation but it is equivalent to

(4β − b)
√
λ2 − 4bβ <

∆

bλ
⇔ 4bβ(b+ 4β − 2λ)2 > 0

If the (relevant) h(δ) domain is [0, D2) it is easy to show that R1 < R2 < D2.

We are now going to analyze all possible situations in detail, noting that

h(D1) =
2b2 + λ(4β − 3b)

2(λ− b)
, h(1) =

2b2 + λ(β − 2b)

2(λ− b)
, h(D2) =

b(2b− λ)

2(λ− b)

First, assume (18) and (19), i.e. 1 < R1 < R2, for which the domain of h(δ)

is (D1, D2). Moreover, β + b > λ > 2b which in turn implies β > b and 2β > λ.

Since h(D1) > 0 and h(D2) < 0, h(δ) has a unique root in its domain. This root

must be δ1 since if it was δ2 it would imply that δ1 is extraneous and h(δ1) > 0,

contrary to what we know from above. We also note that h(1) > 0. This is

obvious if β > 2b, otherwise, it follows from λ < β + b < 2b2/(2b − β). A

tedious computation also shows that R1 < δ1 < R2. Specifically,

δ1 > R1 ⇔ [4bβ(4β − λ)
√
λ2 − 4bβ + 4β(β − b)(λ2 − 4bβ)] > 0

and

δ1 < R2 ⇔ [4β
√

∆
√
λ2 − 4bβ + 4β(β + b)(λ2 − 4bβ)] > 0

Hence, altogether, we have D1 < 1 < R1 < δ1 < R2 < D2 and h(δ) > 0 if

δ < δ1 and h(δ) < 0 if δ > δ1. So, the mating enhancement trait δ∗ = δ1 > 1
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is convergence stable. Since we already know it is evolutionary stable, it is the

unique evolutionary attractor.

Second, assume (18) and (20), i.e. R1 < 1 < R2 and hence λ > β + b > b.

We need to distinguish several subcases. We first assume b < 4β for which the

h(δ) domain is (D1, D2) and for which we have six subcases:

(1) h(D1) > 0 and h(1) < 0. This implies that h(δ) has a unique root in the

interval (D1, 1). If h(D2) > 0 there is another root δ2 in the interval (R2, D2)

and the first root is δ1. If h(D2) < 0 the first root must be δ1 since if it was δ2 it

would imply that δ1 is extraneous and h(δ1) > 0, contrary to what we know from

above. In both cases we have h(δ) > 0 in the interval (D1, δ1) and h(δ) < 0 in

the interval (δ1, R2). The evolutionary outcome thus depends on how δ1 compares

to R1. For D1 < R1 < δ1 < 1 < R2 < D2 evolution leads to δ∗ = δ1 < 1

(i.e. mating decrement). For D1 < δ1 < R1 < 1 < R2 < D2 evolution leads to

evolutionary suicide in the domain δ < 1. In any case, we have here evolution to

no disease-induced mating enhancement.

(2) h(D1) < 0 and h(1) > 0. This case is impossible. To realize this, first

note that h(D1) < 0 implies β < 3b/4 < b which also implies β < 2b. Given this

we see that h(1) > 0 implies λ < 2b2/(2b− β). However, this must be consistent

with λ > β + b. Some computation shows that

β + b <
2b2

2b− β
⇔ b < β

which contradicts the upper bound on β established above.

(3) h(D1) < 0, h(1) < 0 and h(D2) > 0. In this case there is a unique root

in the h(δ) domain which must be δ2 for reasons similar to those given in the case

(1). Since we know δ2 > R2, we have D1 < R1 < 1 < R2 < δ2 < D2 and

evolution leads to evolutionary suicide in the domain δ < 1. Again, we have here
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evolution to no disease-induced mating enhancement.

(4) h(D1) < 0, h(1) < 0 and h(D2) < 0. This implies there are no roots of

h(δ) at all. For if there is a root, there must be two of them and, due to continuity

of the derivative of h(δ) on its domain there must be a positive maximum of h(δ)

between those two roots. However, this is not possible since

δ̃ =
b2 + 4βλ− 2bλ

b(4β − b)

is the only critical point of h(δ) and

h(δ̃) = − ∆

8βλ(λ− b)
< 0

So h(δ) is negative on its entire domain and we again observe evolutionary suicide

as in the case (3), so evolution to no disease-induced mating enhancement.

(5) h(D1) > 0, h(1) > 0 and h(D2) > 0. This case is impossible. To see

this, first note that h(D2) > 0 implies b > β. Then it follows from h(1) > 0 that

λ < 2b2/(2b− β) but this leads to contradiction since λ > β + b implies

β + b <
2b2

2b− β
⇔ b < β

(6) h(D1) > 0, h(1) > 0 and h(D2) < 0. This implies a unique root in the

interval (1, D2) which must be δ1 for reasons similar to those given in the case

(1). Moreover, we know from the case (1) that δ1 < R2. So we have h(δ) > 0 for

δ < δ1 and h(δ) < 0 for δ > δ1. Therefore, D1 < R1 < 1 < δ1 < R2 < D2 and

evolution leads to δ∗ = δ1 > 1.

Second, we assume b > 4β for which the (relevant) h(δ) domain is (0, D2).

Note first that this implies h(1) < 0 (h(1) > 0 would again imply a conflict

with λ > β + b as shown above). Two possible cases are thus h(D2) > 0 and
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h(D2) < 0. For both, we observe evolutionary suicide when the declining δ hits

the R1 value, so evolution to no disease-induced mating enhancement:

(1) h(D2) > 0. This implies a unique root in the interval (1, D2) which must

be δ2. Since δ2 > R2 we have that h(δ) < 0 on (R1, R2) and we thus get evolu-

tionary suicide.

(2) h(D2) < 0. In this case, also using the observation that h(−∞) = −b < 0,

we can show that there are no roots of h(δ), using a similar argument as in the case

(4). So again we have h(δ) < 0 on its domain and thus get evolutionary suicide.

Appendix D. The basic reproduction number R0 of the infection described

by the two-sex model (1) with the harmonic mean mating func-

tion

Let us assume the harmonic mean mating function

M(Sf + If , Sm + Im) = 2c
(Sf + If )(Sm + Im)

(Sf + If )/h+ Sm + Im
(D.1)

where h < 1 corresponds to polyandry, h = 1 to monogamy, and h > 1 to

polygyny. With this function, model (1) becomes

dSf
dt

= 2cbγf

(
SfSm
T

+ δm
SfIm
T

+ δf
IfSm
T

+ δfm
IfIm
T

)
− µ̄fSf − 2cξmδm

SfIm
T

dSm
dt

= 2cbγm

(
SfSm
T

+ δm
SfIm
T

+ δf
IfSm
T

+ δfm
IfIm
T

)
− µ̄mSm − 2cξfδf

IfSm
T

dIf
dt

= 2cξmδm
SfIm
T
− µ̄fIf − αfIf

dIm
dt

= 2cξfδf
IfSm
T
− µ̄mIm − αmIm

(D.2)

where T = (Sf + If )/h+ Sm + Im.
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In the absence of disease, model (D.2) reduces to the two-sex model

dSf
dt

= 2cbγf
SfSm

Sf/h+ Sm
− µ̄fSf

dSm
dt

= 2cbγm
SfSm

Sf/h+ Sm
− µ̄mSm

(D.3)

This model has been analyzed in Maxin et al. (2012) for the monogamous case

(h = 1). Here, we obtain a similar result for the polygamous case (h 6= 1). From

inequalities
Sm

Sf/h+ Sm
< 1 and

Sf
Sf/h+ Sm

< h

we obtain that

S ′f < 2cbγfSf − µ̄fSf and S ′m < 2cbγmhSm − µ̄mSm

This means that a necessary condition for host population persistence is

Rf =
2cbγf
µf

> 1 and Rm =
2cbγmh

µm
> 1

Rewriting model (D.3) in terms of the proportion of females x = Sf/P and

the total population density P we obtain, noting that γf + γm = 1,

dx

dt
= x(1− x)

[
2cb(γf − x)

x/h+ 1− x
+ µm − µf

]
dP

dt
=

[
2cbx(1− x)

x/h+ 1− x
− µfx− µm(1− x)− wP

]
P

(D.4)

There are three equilibria for x: 0 and 1 which both lead to population extinction,

and an interior one

x∗ =
2cbγf − µf + µm

2cb+ (1/h− 1)(µf − µm)

which is globally stable whenever it exists in the feasible interval (0, 1).
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It is easy to see thatRf > 1 andRm > 1 imply x∗ ∈ (0, 1). Letting x(t)→ x∗

in the equation for P (D.4) we obtain a limiting logistic equation in P ,

P ′ =

[
2cbγfγm − γmµf − γfµm/h

γf/h+ γm
− wP

]
P

With this equation, the limit of P (t) as t→∞ is as follows:

P (t)→ P ∗ =
2cbγfγm

w(γf/h+ γm)

(
1− 1

R

)
if and only if

R =
RmRf

Rm +Rf

> 1

Otherwise, if R < 1, P (t) → 0. In addition, Sf (t) → S∗f = x∗P ∗ and Sm(t) →

S∗m = (1− x∗)P ∗.

Hence, altogether, if R > 1 then the interior equilibrium (S∗f , S
∗
m) is globally

stable and the extinction equilibrium (0, 0) is unstable. Conversely, if R < 1,

the extinction equilibrium (0, 0) is globally stable and the interior equilibrium

(S∗f , S
∗
m) is not (biologically) feasible.

Now, let the population persist in the absence of disease, i.e. assume thatR >

1, and denote µ∗f = µf +w(S∗f +S∗m) and µ∗m = µm+w(S∗f +S∗m). Using the next

generation matrix approach (van den Driessche and Watmough, 2002), the basic

reproduction number R0 of the infection corresponding to model (D.2) is given

by the spectral radius of the matrix FV −1 where

F =


0

2cξmδmS
∗
f

S∗f/h+ S∗m

2cξfδfS
∗
m

S∗f/h+ S∗m
0
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and

V =


µ∗f + αf 0

0 µ∗m + αm


The characteristic polynomial of the matrix FV −1 is

λ2 −
2cξm2cξfδmδfS

∗
fS
∗
m

(S∗f/h+ S∗m)2(µ∗f + αf )(µ∗m + αm)

It has one positive root and one negative root. Since both roots have the same

absolute value, the basic reproduction number R0 of the infection described by

the two-sex model (1) with the harmonic mean mating function is

R0 = 2c

√
ξmξfδmδfS∗fS

∗
m

(S∗f/h+ S∗m)2(µ∗f + αf )(µ∗m + αm)
(D.5)

Appendix E. Population dynamics and evolution for the two-sex model (23)

We start with analyzing population dynamics of the two-sex model (23). In

terms of proportions x = Sf/P , y = Sm/P and z = If/P , the model (23) can be

rewritten as:

dx

dt
= β

(
1

2
− x
)

(x+ δz)(1− x− z)

1 + (1/h− 1)(x+ z)
+ x[αfz + αm(1− x− y − z)]− λx(1− x− y − z)

1 + (1/h− 1)(x+ z)

dy

dt
= β

(
1

2
− y
)

(x+ δz)(1− x− z)

1 + (1/h− 1)(x+ z)
+ y[αfz + αm(1− x− y − z)]− λδyz

1 + (1/h− 1)(x+ z)

dz

dt
=
λx(1− x− y − z)− βz(x+ δz)(1− x− z)

1 + (1/h− 1)(x+ z)
− αfz + z[αfz + αm(1− x− y − z)]

(E.1)

with the total population density P evolving as

dP

dt
=

[
β(x+ δz)(1− x− z)

1 + (1/h− 1)(x+ z)
− αfz − αm(1− x− y − z)− µ− wP

]
P

(E.2)
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The subsystem of x, y and z has five boundary equilibria: (1, 0, 0), (0, 1, 0),

(0, 0, 1), (0, 0, 0) and (1/2, 1/2, 0). The first four equilibria are all unstable since

they have positive eigenvalue βh/2, β/2, αf , and αm, respectively. The equilib-

rium (1/2, 1/2, 0) is the DFE; its highest eigenvalue is

−
β + (1/h+ 1)(αf + αm)−

√
(1/h+ 1)2(αf − αm)2 + 4δλ2

2(1/h+ 1)

This eigenvalue is negative if and only if R0 < 1; the DFE is thus stable if R0 < 1

and unstable if R0 > 1. We note that these results stay the same if males instead

of females are affected by the infection.

To study evolution of disease-induced mating enhancement, i.e. of the mating

enhancement factor δ, we assume that the resident parasite strain has δ ≥ 1 and

that the system is in a stable endemic equilibrium (S∗f (δ), S
∗
m(δ), I∗f (δ), I∗m(δ)).

To see how δ evolves in the two-sex model (23) we look at when this resident

endemic equilibrium becomes unstable (Bacelar et al., 2011). Assuming no co-

infection or superinfection, the full model containing both the resident parasite

strain δ and the mutant strain δ̂ is

dSf
dt

=
β

2

(Sf + δIf + δ̂Jf )(Sm + Im + Jm)

T
− µ̄Sf − λ

SfIm
T
− λSfJm

T

dSm
dt

=
β

2

(Sf + δIf + δ̂Jf )(Sm + Im + Jm)

T
− µ̄Sm − λδ

SmIf
T
− λδ̂SmJf

T

dIf
dt

= λ
SfIm
T
− µ̄If − bδzIf

dIm
dt

= λδ
IfSm
T
− µ̄Im − bIm

dJf
dt

= λ
SfJm
T
− µ̄Jf − bδ̂zJf

dJm
dt

= λδ̂
JfSm
T
− µ̄Jm − bJm

(E.3)
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where Jf and Jm are densities of females and males infected by the mutant, re-

spectively, and T = (Sf + If + Jf )/h+ Sm + Im + Jm. Following Bacelar et al.

(2011), we calculate the Jacobian of the (Jf , Jm) subsystem of the model (E.3)

and evaluate it at the resident boundary equilibrium EI = (S∗f , S
∗
m, I

∗
f , I

∗
m, 0, 0).

This Jacobian is

JEI
=

 −µ− wP ∗ − bδ̂z λ
S∗
f

T ∗

λδ̂ S
∗
m

T ∗ −µ− wP ∗ − b


Since the trace of JEI

is negative, EI will be unstable and the mutant will be able

to invade as soon as det(JEI
) < 0. Hence, we can consider the function

f(δ̂, δ) = − det JEI

as a proxy for the invasion fitness in the two-sex model (23); see also Bacelar et al.

(2011). The equations for If and Im in the model (E.3) imply that at EI

µ+ wP ∗ + bδ̂z = b(δ̂z − δz) + λ
S∗fI

∗
m

T ∗I∗f

and

µ+ wP ∗ + b = λδ
S∗mI

∗
f

T ∗I∗m

Using these identities, the invasion fitness of the mutant strain is

f(δ̂, δ) = − det JEI
= λ2(δ̂ − δ)

S∗mS
∗
f

(T ∗)2
− b(δ̂z − δz)λδ

S∗mI
∗
f

T ∗I∗m
(E.4)

If males instead of females are the sex affected by the infection, the invasive fitness

is

f(δ̂, δ) = − det JEI
= λ2(δ̂ − δ)

S∗mS
∗
f

(T ∗)2
− b(δ̂z − δz)λδ

S∗fI
∗
m

T ∗I∗f
(E.5)
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The evolution makes sense only if it starts at δ for which R0(δ) > 1. If we

replace αf = bδ2 and αm = b in the formula (24) then

R0(δ) =
2λ
√
δ√

(β + 2(1/h+ 1)bδ2)(β + 2(1/h+ 1)b)
> 1

if and only if ∆ ≡ 16λ4 − 8bβ(1/h+ 1)(β + 2b(1/h+ 1))2 > 0 and δ1 < δ < δ2

where

δ1 =
4λ2 −

√
∆

4b(1/h+ 1)(β + 2b(1/h+ 1))
, δ2 =

4λ2 +
√

∆

4b(1/h+ 1)(β + 2b(1/h+ 1))

So if we look at ∆ a bigger b will decrease the area in the (β, λ) parameter

subspace where ∆ > 0. The same happens if h decreases, i.e. if there is more

polyandry.
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