What's in your wallet?!

Prof. Pudwell

MathPath plenary
 June 28, 2023

What's in your wallet?!
Prof. Pudwell

(1) The Coin Keeper

(2) The Simple Spender
(3) The Gamblers
(4) The Small Spender
(5) The Whole Shebang

6 ...and More Fun

The Coin Keeper

What percentage of coins in the jar are pennies?

Assumptions...

(1) The fractional parts of prices are distributed uniformly between 0 and 99 cents.

Assumptions...

(1) The fractional parts of prices are distributed uniformly between 0 and 99 cents.
(2) Cashiers give change in a predictable way.

Making change

Make change for....

- 4 cents:

Making change

Make change for....

- 4 cents:

Making change

Make change for....

- 4 cents:
- 6 cents:

Making change

Make change for....

- 4 cents:
- 6 cents:
or

Making change

Make change for....

- 4 cents:
- 6 cents:
or

- 41 cents:

Making change

Make change for....

- 4 cents:

- 6 cents:
or

- 41 cents:

or.... (27 other ways)

That's greedy!

How to give c cents in change:
(1) Give q quarters where $25 q \leq c<25(q+1)$.
(2) Give d dimes where $10 d \leq c-25 q<10(d+1)$.
(3) Give n nickels where $5 n \leq c-25 q-10 d<5(n+1)$.
(9) Give p pennies where $p=c-25 q-10 d-5 n$.

That's greedy!

How to give c cents in change:
(1) Give q quarters where $25 q \leq c<25(q+1)$.
(2) Give d dimes where $10 d \leq c-25 q<10(d+1)$.
(3) Give n nickels where $5 n \leq c-25 q-10 d<5(n+1)$.
(9) Give p pennies where $p=c-25 q-10 d-5 n$.

Example: 47 cents:

That's greedy!

How to give c cents in change:
(1) Give q quarters where $25 q \leq c<25(q+1)$.
(2) Give d dimes where $10 d \leq c-25 q<10(d+1)$.
(3) Give n nickels where $5 n \leq c-25 q-10 d<5(n+1)$.
(9) Give p pennies where $p=c-25 q-10 d-5 n$.

Example: 47 cents:

That's greedy!

How to give c cents in change:
(1) Give q quarters where $25 q \leq c<25(q+1)$.
(2) Give d dimes where $10 d \leq c-25 q<10(d+1)$.
(3) Give n nickels where $5 n \leq c-25 q-10 d<5(n+1)$.
(9) Give p pennies where $p=c-25 q-10 d-5 n$.

Example: 47 cents:

That's greedy!

How to give c cents in change:
(1) Give q quarters where $25 q \leq c<25(q+1)$.
(2) Give d dimes where $10 d \leq c-25 q<10(d+1)$.
(3) Give n nickels where $5 n \leq c-25 q-10 d<5(n+1)$.
(9) Give p pennies where $p=c-25 q-10 d-5 n$.

Example: 47 cents:

That's greedy!

How to give c cents in change:
(1) Give q quarters where $25 q \leq c<25(q+1)$.
(2) Give d dimes where $10 d \leq c-25 q<10(d+1)$.
(3) Give n nickels where $5 n \leq c-25 q-10 d<5(n+1)$.
(9) Give p pennies where $p=c-25 q-10 d-5 n$.

Example: 47 cents:

Is this really the most efficient way to make change?

In another world...

Make change for 6 cents using 1-cent, 3 -cent, and 4 -cent coins,....

In another world...

Make change for 6 cents using 1 -cent, 3 -cent, and 4 -cent coins,....

Greedy: $4+1+1=6$

In another world...

Make change for 6 cents using 1-cent, 3 -cent, and 4 -cent coins,....

Greedy: $4+1+1=6$
vs.
Most efficient: $3+3=6$

In another world...

Make change for 6 cents using 1-cent, 3 -cent, and 4 -cent coins,....

Greedy: $4+1+1=6$
vs.
Most efficient: $3+3=6$

But sometimes greedy is best!
David Pearson, A polynomial-time algorithm for the change-making problem, Operations Research Letters 33 (2005), 231-234.

The Coin Keeper

Change from...

- $\$ 1.00$ is nothing
- \$0.99 is 1 penny
-
- $\$ 0.76$ is 2 dimes, 4 pennies
-

The Coin Keeper

Change from...

- $\$ 1.00$ is nothing
- \$0.99 is 1 penny
-
- $\$ 0.76$ is 2 dimes, 4 pennies
-

Change from all 100 transactions is

- 150 quarters (31.9\%)
- 80 dimes (17%)
- 40 nickels (8.5%)
- 200 pennies (42.6\%)

(1) The Coin Keeper

(2) The Simple Spender

(3) The Gamblers
(4) The Small Spender
(5) The Whole Shebang

6 ...and More Fun

The simple spender

Eric usually uses his debit card... except when he spends $\$ 5.20$ cash on a latte. What does his wallet look like?

The simple spender

Eric usually uses his debit card... except when he spends $\$ 5.20$ cash on a latte. What does his wallet look like?

Start: 0 cents

The simple spender

Eric usually uses his debit card... except when he spends $\$ 5.20$ cash on a latte. What does his wallet look like?

Start: 0 cents
Then: $100-20=80$ cents

The simple spender

Eric usually uses his debit card... except when he spends $\$ 5.20$ cash on a latte. What does his wallet look like?

Start: 0 cents
Then: $100-20=80$ cents
Then: $80-20=60$ cents

The simple spender

Eric usually uses his debit card... except when he spends $\$ 5.20$ cash on a latte. What does his wallet look like?

Start: 0 cents
Then: $100-20=80$ cents
Then: $80-20=60$ cents
Then: $60-20=40$ cents

The simple spender

Eric usually uses his debit card... except when he spends $\$ 5.20$ cash on a latte. What does his wallet look like?

Start: 0 cents
Then: $100-20=80$ cents
Then: $80-20=60$ cents
Then: $60-20=40$ cents
Then: $40-20=20$ cents

The simple spender

Eric usually uses his debit card... except when he spends $\$ 5.20$ cash on a latte. What does his wallet look like?

Start: 0 cents
Then: $100-20=80$ cents
Then: $80-20=60$ cents
Then: $60-20=40$ cents
Then: $40-20=20$ cents
Then: $20-20=0$ cents
...and repeat!

(1) The Coin Keeper

(2) The Simple Spender
(3) The Gamblers

4 The Small Spender
(5) The Whole Shebang

6 ...and More Fun

On the planet Markovia, coins aren't for spending money.
They change colors and they're for playing the lottery.

- Original coin has a 50% chance of being red, 50% chance of being blue.
- For every round of the lottery,
- $1 / 3$ of red coins turn blue.
- $3 / 4$ of blue coins turn red.
- After 10 rounds, all the players with blue coins share the prize.

Shorthand:

	red	blue
start	$\frac{1}{2}$	$\frac{1}{2}$
red	$\frac{2}{3}$	$\frac{1}{3}$
blue	$\frac{3}{4}$	$\frac{1}{4}$

Shorthand:

	red	blue
start	$\frac{1}{2}$	$\frac{1}{2}$
red	$\frac{2}{3}$	$\frac{1}{3}$
blue	$\frac{3}{4}$	$\frac{1}{4}$

Question: If I have a blue coin now, what's the probability that it will be red in the next round, and blue in the round after that?

Shorthand:

	red	blue
start	$\frac{1}{2}$	$\frac{1}{2}$
red	$\frac{2}{3}$	$\frac{1}{3}$
blue	$\frac{3}{4}$	$\frac{1}{4}$

Question: If I have a blue coin now, what's the probability that it will be red in the next round, and blue in the round after that?

Answer: $\frac{3}{4} \cdot \frac{1}{3}=\frac{1}{4}=0.25$

Shorthand:

	red	blue
start	$\frac{1}{2}$	$\frac{1}{2}$
red	$\frac{2}{3}$	$\frac{1}{3}$
blue	$\frac{3}{4}$	$\frac{1}{4}$

Question: What is the probability of starting with a blue coin and having it stay blue for all 10 rounds?

Shorthand:

	red	blue
start	$\frac{1}{2}$	$\frac{1}{2}$
red	$\frac{2}{3}$	$\frac{1}{3}$
blue	$\frac{3}{4}$	$\frac{1}{4}$

Question: What is the probability of starting with a blue coin and having it stay blue for all 10 rounds?

Answer: $\frac{1}{2} \cdot\left(\frac{1}{4}\right)^{10}=\frac{1}{2097152} \approx .0000004768371582$

Shorthand:

	red	blue
start	$\frac{1}{2}$	$\frac{1}{2}$
red	$\frac{2}{3}$	$\frac{1}{3}$
blue	$\frac{3}{4}$	$\frac{1}{4}$

Question: If I play the lottery, what's the probability that I'll have a blue coin at the end of 10 rounds?

Shorthand:

	red	blue
start	$\frac{1}{2}$	$\frac{1}{2}$
red	$\frac{2}{3}$	$\frac{1}{3}$
blue	$\frac{3}{4}$	$\frac{1}{4}$

Question: If I play the lottery, what's the probability that I'll have a blue coin at the end of 10 rounds?

Answer: Markov chains!

Side note: Matrix Multiplication

We have:

	red	blue
start	$\frac{1}{2}$	$\frac{1}{2}$
red	$\frac{2}{3}$	$\frac{1}{3}$
blue	$\frac{3}{4}$	$\frac{1}{4}$

Represent this with two matrices:
Initial state matrix: $v^{(0)}=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2}\end{array}\right)$
Transition probability matrix: $P=\left(\begin{array}{cc}2 / 3 & 1 / 3 \\ 3 / 4 & 1 / 4\end{array}\right)$

Side note: Matrix Multiplication

We have:

	red	blue
start	$\frac{1}{2}$	$\frac{1}{2}$
red	$\frac{2}{3}$	$\frac{1}{3}$
blue	$\frac{3}{4}$	$\frac{1}{4}$

Represent this with two matrices:
Initial state matrix: $v^{(0)}=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2}\end{array}\right)$
Transition probability matrix: $P=\left(\begin{array}{ll}2 / 3 & 1 / 3 \\ 3 / 4 & 1 / 4\end{array}\right)$
Here's how to multiply a 1×2 matrix times a 2×2 matrix:
$\left(\begin{array}{ll}A & B\end{array}\right) \times\left(\begin{array}{ll}C & D \\ E & F\end{array}\right)=\left(\begin{array}{ll}? & ?\end{array}\right)$

Side note: Matrix Multiplication

We have:

	red	blue
start	$\frac{1}{2}$	$\frac{1}{2}$
red	$\frac{2}{3}$	$\frac{1}{3}$
blue	$\frac{3}{4}$	$\frac{1}{4}$

Represent this with two matrices:
Initial state matrix: $v^{(0)}=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2}\end{array}\right)$
Transition probability matrix: $P=\left(\begin{array}{ll}2 / 3 & 1 / 3 \\ 3 / 4 & 1 / 4\end{array}\right)$
Here's how to multiply a 1×2 matrix times a 2×2 matrix:
$\left(\begin{array}{ll}A & B\end{array}\right) \times\left(\begin{array}{ll}C & D \\ E & F\end{array}\right)=\left(\begin{array}{ll}A C+B E & ?\end{array}\right)$

Side note: Matrix Multiplication

We have:

	red	blue
start	$\frac{1}{2}$	$\frac{1}{2}$
red	$\frac{2}{3}$	$\frac{1}{3}$
blue	$\frac{3}{4}$	$\frac{1}{4}$

Represent this with two matrices:
Initial state matrix: $v^{(0)}=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2}\end{array}\right)$
Transition probability matrix: $P=\left(\begin{array}{ll}2 / 3 & 1 / 3 \\ 3 / 4 & 1 / 4\end{array}\right)$
Here's how to multiply a 1×2 matrix times a 2×2 matrix:
$\left(\begin{array}{ll}A & B\end{array}\right) \times\left(\begin{array}{ll}C & D \\ E & F\end{array}\right)=\left(\begin{array}{ll}A C+B E & ?\end{array}\right)$

Side note: Matrix Multiplication

We have:

	red	blue
start	$\frac{1}{2}$	$\frac{1}{2}$
red	$\frac{2}{3}$	$\frac{1}{3}$
blue	$\frac{3}{4}$	$\frac{1}{4}$

Represent this with two matrices:
Initial state matrix: $v^{(0)}=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2}\end{array}\right)$
Transition probability matrix: $P=\left(\begin{array}{ll}2 / 3 & 1 / 3 \\ 3 / 4 & 1 / 4\end{array}\right)$
Here's how to multiply a 1×2 matrix times a 2×2 matrix:
$\left(\begin{array}{ll}A & B\end{array}\right) \times\left(\begin{array}{ll}C & D \\ E & F\end{array}\right)=\left(\begin{array}{ll}A C+B E & A D+B F\end{array}\right)$

Side note: Matrix Multiplication

We have:

	red	blue
start	$\frac{1}{2}$	$\frac{1}{2}$
red	$\frac{2}{3}$	$\frac{1}{3}$
blue	$\frac{3}{4}$	$\frac{1}{4}$

Represent this with two matrices:
Initial state matrix: $v^{(0)}=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2}\end{array}\right)$
Transition probability matrix: $P=\left(\begin{array}{ll}2 / 3 & 1 / 3 \\ 3 / 4 & 1 / 4\end{array}\right)$
Here's how to multiply a 1×2 matrix times a 2×2 matrix:
$\left(\begin{array}{ll}A & B\end{array}\right) \times\left(\begin{array}{ll}C & D \\ E & F\end{array}\right)=\left(\begin{array}{ll}A C+B E & A D+B F\end{array}\right)$

Initial state matrix: $v^{(0)}=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2}\end{array}\right)$
Transition probability matrix: $P=\left(\begin{array}{cc}2 / 3 & 1 / 3 \\ 3 / 4 & 1 / 4\end{array}\right)$
$v^{(i)}=$ probability matrix after i steps $=v^{(0)} P^{i}$.

Initial state matrix: $v^{(0)}=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2}\end{array}\right)$
Transition probability matrix: $P=\left(\begin{array}{ll}2 / 3 & 1 / 3 \\ 3 / 4 & 1 / 4\end{array}\right)$
$v^{(i)}=$ probability matrix after i steps $=v^{(0)} P^{i}$.

$$
\begin{aligned}
v^{(1)} & =\left(\begin{array}{ll}
\left(\frac{1}{2} \cdot \frac{2}{3}+\frac{1}{2} \cdot \frac{3}{4}\right) & \left(\frac{1}{2} \cdot \frac{1}{3}+\frac{1}{2} \cdot \frac{1}{4}\right)
\end{array}\right) \\
& =\left(\begin{array}{lll}
\frac{17}{24} & \frac{7}{24}
\end{array}\right) \approx\left(\begin{array}{ll}
0.7083 & 0.2917
\end{array}\right)
\end{aligned}
$$

Initial state matrix: $v^{(0)}=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2}\end{array}\right)$
Transition probability matrix: $P=\left(\begin{array}{cc}2 / 3 & 1 / 3 \\ 3 / 4 & 1 / 4\end{array}\right)$
$v^{(i)}=$ probability matrix after i steps $=v^{(0)} P^{i}$.

$$
\left.\begin{array}{rl}
v^{(1)} & =\left(\left(\frac{1}{2} \cdot \frac{2}{3}+\frac{1}{2} \cdot \frac{3}{4}\right)\left(\frac{1}{2} \cdot \frac{1}{3}+\frac{1}{2} \cdot \frac{1}{4}\right)\right.
\end{array}\right)
$$

Initial state matrix: $v^{(0)}=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2}\end{array}\right)$
Transition probability matrix: $P=\left(\begin{array}{ll}2 / 3 & 1 / 3 \\ 3 / 4 & 1 / 4\end{array}\right)$
$v^{(i)}=$ probability matrix after i steps $=v^{(0)} P^{i}$.

$$
\begin{aligned}
v^{(1)} & =\left(\begin{array}{ll}
\left(\frac{1}{2} \cdot \frac{2}{3}+\frac{1}{2} \cdot \frac{3}{4}\right) & \left(\frac{1}{2} \cdot \frac{1}{3}+\frac{1}{2} \cdot \frac{1}{4}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{17}{24} & \frac{7}{24}
\end{array}\right) \approx\left(\begin{array}{cc}
0.7083 & 0.2917
\end{array}\right) \\
v^{(2)} & =v^{(0)} P^{2}=v^{(1)} P \approx\left(\begin{array}{ll}
0.6910 & 0.3090
\end{array}\right)
\end{aligned}
$$

and

$$
v^{(10)}=v^{(0)} P^{10} \approx\left(\begin{array}{ll}
0.6923 & 0.3077
\end{array}\right)
$$

After 10 rounds, you have a 30.77% chance of winning the Markovian lottery!

Markov chain behaviors:
(1) absorbing - there are states where you can get stuck for forever.
(2) cyclic - there exist some states where you cycle between them for forever.
(3) regular - for some positive integer n, P^{n} has no zero entries.

Markov chain behaviors:
(1) absorbing - there are states where you can get stuck for forever.
(2) cyclic - there exist some states where you cycle between them for forever.
(3) regular - for some positive integer n, P^{n} has no zero entries.

The Markovian lottery is regular.
Question: What if we played the Markovian lottery for infinitely many rounds?

For regular Markov chains

- Have transition probability matrix P.
- Want long term probability matrix L of ending up in each state. Big idea: $L P=L$ (and the entries in L sum to 1 .)

For regular Markov chains

- Have transition probability matrix P.
- Want long term probability matrix L of ending up in each state. Big idea: $L P=L$ (and the entries in L sum to 1.)

Here: $\left(\begin{array}{ll}p_{r} & p_{b}\end{array}\right)\left(\begin{array}{ll}2 / 3 & 1 / 3 \\ 3 / 4 & 1 / 4\end{array}\right)=\left(\begin{array}{ll}p_{r} & p_{b}\end{array}\right)$

For regular Markov chains

- Have transition probability matrix P.
- Want long term probability matrix L of ending up in each state. Big idea: $L P=L$ (and the entries in L sum to 1 .)

Here: $\left(\begin{array}{cc}p_{r} & p_{b}\end{array}\right)\left(\begin{array}{ll}2 / 3 & 1 / 3 \\ 3 / 4 & 1 / 4\end{array}\right)=\left(\begin{array}{ll}p_{r} & p_{b}\end{array}\right)$
Solve:

- $2 / 3 p_{r}+3 / 4 p_{b}=p_{r}$
- $1 / 3 p_{r}+1 / 4 p_{b}=p_{b}$
- $p_{r}+p_{b}=1$

$$
p_{r}=\frac{9}{13} \approx 0.6923, p_{b}=\frac{4}{13} \approx 0.3077
$$

(1) The Coin Keeper

(2) The Simple Spender
(3) The Gamblers

4 The Small Spender
(5) The Whole Shebang

6and More Fun

Markov chains for coins

In the land of simplicity there are 25 -cent and 50 -cent coins.
All prices end in $0,25,50$, or 75 cents.

Possible wallet states?

```charged start```	0	25	50	75
empty				

## Markov chains for coins

In the land of simplicity there are 25 -cent and 50 -cent coins.
All prices end in $0,25,50$, or 75 cents.

Possible wallet states?

```charged start```	0	25	50	75
empty	empty	\{25,50\}	\{50\}	\{25\}

Markov chains for coins

In the land of simplicity there are 25 -cent and 50 -cent coins.
All prices end in $0,25,50$, or 75 cents.

Possible wallet states?

charged start	0	25	50	75
empty	empty	$\{25,50\}$	$\{50\}$	$\{25\}$
$\{25\}$				
$\{50\}$				
$\{25,50\}$				

Markov chains for coins

In the land of simplicity there are 25 -cent and 50 -cent coins.
All prices end in $0,25,50$, or 75 cents.

Possible wallet states?

charged start	0	25	50	75
empty	empty	$\{25,50\}$	$\{50\}$	$\{25\}$
$\{25\}$	$\{25\}$	empty	$\{25,50\}$	$\{25,25\}$
$\{50\}$	$\{50\}$	$\{25\}$	empty	$\{25,50\}$
$\{25,50\}$	$\{25,50\}$	$\{50\}$	$\{25\}$	empty

Markov chains for coins

In the land of simplicity there are 25 -cent and 50 -cent coins.
All prices end in $0,25,50$, or 75 cents.

Possible wallet states?

charged start	0	25	50	75
empty	empty	$\{25,50\}$	$\{50\}$	$\{25\}$
$\{25\}$	$\{25\}$	empty	$\{25,50\}$	$\{25,25\}$
$\{50\}$	$\{50\}$	$\{25\}$	empty	$\{25,50\}$
$\{25,50\}$	$\{25,50\}$	$\{50\}$	$\{25\}$	empty

Markov chains for coins

In the land of simplicity there are 25 -cent and 50 -cent coins.
All prices end in $0,25,50$, or 75 cents.

Possible wallet states?

charged start	0	25	50	75
empty	empty	\{25,50\}	\{50\}	\{25\}
\{25\}	\{25\}	empty	\{25,50\}	\{25,25\}
\{50\}	\{50\}	\{25\}	empty	\{25,50\}
\{25,25\}				
\{25,50\}	\{25,50\}	\{50\}	\{25\}	empty

Markov chains for coins

In the land of simplicity there are 25 -cent and 50 -cent coins.
All prices end in $0,25,50$, or 75 cents.

Possible wallet states?

charged start	0	25	50	75
empty	empty	\{25,50\}	\{50\}	\{25\}
\{25\}	\{25\}	empty	\{25,50\}	\{25,25\}
\{50\}	\{50\}	\{25\}	empty	\{25,50\}
\{25,25\}	\{25,25\}	\{25\}	empty	\{25,25,25\}
\{25,50\}	\{25,50\}	\{50\}	\{25\}	empty

Markov chains for coins

In the land of simplicity there are 25 -cent and 50 -cent coins.
All prices end in $0,25,50$, or 75 cents.

Possible wallet states?

charged	0	25	50	75
start				
empty	empty	$\{25,50\}$	$\{50\}$	$\{25\}$
$\{25\}$	$\{25\}$	empty	$\{25,50\}$	$\{25,25\}$
$\{50\}$	$\{50\}$	$\{25\}$	empty	$\{25,50\}$
$\{25,25\}$	$\{25,25\}$	$\{25\}$	empty	$\{25,25,25\}$
$\{25,50\}$	$\{25,50\}$	$\{50\}$	$\{25\}$	empty

Markov chains for coins

In the land of simplicity there are 25 -cent and 50 -cent coins.
All prices end in $0,25,50$, or 75 cents.

Possible wallet states?

charged start	0	25	50	75
empty	empty	\{25,50\}	\{50\}	\{25\}
\{25\}	\{25\}	empty	\{25,50\}	\{25,25\}
\{50\}	\{50\}	\{25\}	empty	\{25,50\}
\{25,25\}	\{25,25\}	\{25\}	empty	\{25,25,25\}
\{25,50\}	\{25,50\}	\{50\}	\{25\}	empty

Markov chains for coins

In the land of simplicity there are 25 -cent and 50 -cent coins.
All prices end in $0,25,50$, or 75 cents.

Possible wallet states?

```charged start```	0	25	50	75
empty	empty	\{25,50\}	\{50\}	\{25\}
\{25\}	\{25\}	empty	\{25,50\}	\{25,25\}
\{50\}	\{50\}	\{25\}	empty	\{25,50\}
\{25,25\}	\{25,25\}	\{25\}	empty	\{25,25,25\}
\{25,50\}	\{25,50\}	\{50\}	\{25\}	empty
\{25,25,25\}	\{25,25,25\}	\{25,25\}	\{25\}	empty

## Markov chains for coins

In the land of simplicity there are 25 -cent and 50 -cent coins.
All prices end in $0,25,50$, or 75 cents.

Possible wallet states?

```charged start```	0	25	50	75
empty	empty	\{25,50\}	\{50\}	\{25\}
\{25\}	\{25\}	empty	\{25,50\}	\{25,25\}
\{50\}	\{50\}	\{25\}	empty	\{25,50\}
\{25,25\}	\{25,25\}	\{25\}	empty	\{25,25,25\}
\{25,50\}	\{25,50\}	\{50\}	\{25\}	empty
\{25,25,25\}	\{25,25,25\}	\{25,25\}	\{25\}	empty

Simplicity wallet states

(empty), (25), (50), (25, 25), (50, 25), (25, 25, 25)

$$
P=\left(\begin{array}{cccccc}
1 / 4 & 1 / 4 & 1 / 4 & 0 & 1 / 4 & 0 \\
1 / 4 & 1 / 4 & 0 & 1 / 4 & 1 / 4 & 0 \\
1 / 4 & 1 / 4 & 1 / 4 & 0 & 1 / 4 & 0 \\
1 / 4 & 1 / 4 & 0 & 1 / 4 & 0 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 0 & 1 / 4 & 0 \\
1 / 4 & 1 / 4 & 0 & 1 / 4 & 0 & 1 / 4
\end{array}\right)
$$

Simplicity in the long run

We want: $L=\left[\begin{array}{llllll}p_{(\text {empty })} & p_{(25)} & p_{(50)} & p_{(25,25)} & p_{(50,25)} & p_{(25,25,25)}\end{array}\right]$ Setup: $L P=L$

Simplicity in the long run

We want: $L=\left[\begin{array}{llllll}p_{(\text {empty })} & p_{(25)} & p_{(50)} & p_{(25,25)} & p_{(50,25)} & p_{(25,25,25)}\end{array}\right]$ Setup: $L P=L$

$$
\begin{array}{llll}
\frac{p_{(\text {empty })}}{4}+\frac{p_{(25)}}{4} & +\frac{p_{(50)}}{4}+\frac{p_{(25,25)}}{4} & +\frac{p_{(50,25)}}{4}+\frac{p_{(25,25,25)}}{4} & =p_{(\text {empty })} \\
\frac{p_{(\text {empty })}}{4}+\frac{p_{(25)}}{4} & +\frac{p_{(50)}}{4}+\frac{p_{(25,25)}}{4} & +\frac{p_{(50,25)}}{4}+\frac{p_{(25,25,25)}}{4} & =p_{(25)} \\
\frac{p_{(\text {empty })}}{4} & +\frac{p_{(50)}}{4} & =\frac{p_{(50,25)}}{4} & =p_{(50)} \\
\frac{p_{(25)}}{4} & +\frac{p_{(25,25)}}{4} & +\frac{p_{(50,25)}}{4} & =p_{(25,25)} \\
\frac{p_{(\text {empty })}}{4}+\frac{p_{(25)}}{4} & +\frac{p_{(50)}}{4} & =p_{(50,25)} \\
p_{(\text {empty })}+p_{(25)} & +p_{(50)}+p_{(25,25)} & +p_{(50,25)}+p_{(25,25,25)} & =p_{(25,25,25)} \\
\hline
\end{array}
$$

Simplicity in the long run

We want: $L=\left[\begin{array}{llllll}p_{(\text {empty })} & p_{(25)} & p_{(50)} & p_{(25,25)} & p_{(50,25)} & p_{(25,25,25)}\end{array}\right]$ Setup: $L P=L$

$$
\begin{array}{llll}
\frac{p_{(\text {empty })}}{4}+\frac{p_{(25)}}{4} & +\frac{p_{(50)}}{4}+\frac{p_{(25,25)}}{4} & +\frac{p_{(50,25)}}{4}+\frac{p_{(25,25,25)}}{4} & =p_{(\text {empty })} \\
\frac{p_{(\text {empty })}}{4}+\frac{p_{(25)}}{4} & +\frac{p_{(50)}}{4}+\frac{p_{(25,25)}}{4} & +\frac{p_{(50,25)}}{4}+\frac{p_{(25,25,25)}}{4} & =p_{(25)} \\
\frac{p_{(\text {empty })}}{4} & +\frac{p_{(50)}}{4} & +\frac{p_{(50,25)}}{4} & =p_{(50)} \\
\frac{p_{(25)}}{4} & +\frac{p_{(25,25)}}{4} & +\frac{p_{(25,25,25)}}{4} & =p_{(25,25)} \\
\frac{p_{(\text {empty })}}{4}+\frac{p_{(25)}}{4} & +\frac{p_{(50)}}{4} & +\frac{p_{(50,25)}}{4} & =p_{(50,25)} \\
p_{(\text {empty })}+p_{(25)} & +p_{(50)}+p_{(25,25)} & +p_{(50,25)}+p_{(25,25,25)} & =1
\end{array}
$$

Solve to get: $\left[\begin{array}{llllll}\frac{1}{4} & \frac{1}{4} & \frac{5}{32} & \frac{3}{32} & \frac{7}{32} & \frac{1}{32}\end{array}\right]$
or
0.25
0.25
0.15625
0.09375
0.21875
$0.03125]$

(1) The Coin Keeper

(2) The Simple Spender
(3) The Gamblers

4 The Small Spender
(5) The Whole Shebang

6 ...and More Fun

More assumptions

(1) The fractional parts of prices are distributed uniformly between 0 and 99 cents.
(2) Cashiers return change using the greedy algorithm.

More assumptions

(1) The fractional parts of prices are distributed uniformly between 0 and 99 cents.
(2) Cashiers return change using the greedy algorithm.
(3) If a spender does not have sufficient change to pay for their purchase, they spend no coins (and receive change from the cashier).

More assumptions

(1) The fractional parts of prices are distributed uniformly between 0 and 99 cents.
(2) Cashiers return change using the greedy algorithm.
(3) If a spender does not have sufficient change to pay for their purchase, they spend no coins (and receive change from the cashier).
(9) If a spender has sufficient change, they make their purchase by over-paying as little as possible (and receive change if necessary).

More assumptions

(1) The fractional parts of prices are distributed uniformly between 0 and 99 cents.
(2) Cashiers return change using the greedy algorithm.
(3) If a spender does not have sufficient change to pay for their purchase, they spend no coins (and receive change from the cashier).
(9) If a spender has sufficient change, they make their purchase by over-paying as little as possible (and receive change if necessary).
(3) If there are multiple ways to overpay as little as possible, the spender favors spending a bigger coin over a smaller coin.

What's (the most) in your wallet?

- If you have at most 99 cents before a transaction, you'll have at most 99 cents after.
- Case 1: (price \leq wallet): You pay, and have less money in your wallet.

What's (the most) in your wallet?

- If you have at most 99 cents before a transaction, you'll have at most 99 cents after.
- Case 1: (price \leq wallet): You pay, and have less money in your wallet.
- Case 2: (price > wallet): You get $(100-p)$ in change, and end up with $(100-p)+w=100-(p-w)<100$.

Is this Markov chain regular?

Is this Markov chain regular?

Yes!

Is this Markov chain regular?

Yes!

To get from any wallet to the empty wallet, imagine you have exact change.

Is this Markov chain regular?

Yes!

To get from any wallet to the empty wallet, imagine you have exact change.

To get from empty wallet to $\{p$ pennies,n nickels,d dimes,q quarters $\}$, imagine:

- q 75 cent charges
- d 90 cent charges
- n 95 cent charges
- p 99 cent charges

Counting states

Known: Must have at most 99 cents. In other words, at most...

- 99 pennies
- 19 nickels
- 9 dimes
- 3 quarters

$$
100 \times 20 \times 10 \times 4=80,000 \text { possible states } .
$$

... but that's overkill.
There are $\mathbf{6 7 2 0}$ combinations of coins with at most 99 cents.

That's one big matrix...

Goal: Find L where $L P=L$.

25 CPU hours later...

Wallet state	$p_{\text {state }}$	Wallet state	$p_{\text {state }}$
0 pennies	.01000	$\{25,1,1,1\}$.00453
1 penny	.01000	$\{5,1,1,1\}$.00448
2 pennies	.01000	$\{10,5,1,1,1,1\}$.00439
3 pennies	.01000	$\{25,1,1\}$.00429
4 pennies	.01000	$\{10,1,1,1\}$.00420
5 pennies	.00813	$\{10,1,1,1,1,1\}$.00414
6 pennies	.00732	$\{25,1\}$.00405
7 pennies	.00644	$\{10,1,1,1,1,1,1\}$.00391
8 pennies	.00551	$\{25\}$.00379
$\{5,1,1,1,1\}$.00543	$\{10,5,1,1,1,1,1,1\}$.00377
$\{25,1,1,1,1\}$.00475	$\{25,1,1,1,1,1\}$.00376
$\{10,1,1,1,1\}$.00467	$\{10,5,1,1,1,1,1\}$.00375
9 pennies	.00456	$\{5,1,1,1,1,1\}$.00374

In case you were wondering...

- Expected number of coins in your wallet: 10.04
- Expected number of quarters: 1.06 (10.6\%)
- Expected number of dimes: 1.15 (11.4\%)
- Expected number of nickels: 0.91 (9.1\%)
- Expected number of pennies: 6.92 (68.9\%)

In case you were wondering...

- Expected number of coins in your wallet: 10.04
- Expected number of quarters: 1.06 (10.6\%)
- Expected number of dimes: 1.15 (11.4\%)
- Expected number of nickels: 0.91 (9.1\%)
- Expected number of pennies: 6.92 (68.9\%)
- Probability of empty wallet: 0.01
- Probability of having at least one nickel: 0.58085
- Probability of having at least one penny: 0.95975
- Probability of having only pennies (and a non-empty wallet): 0.08430
- Probability of being able to pay any price with exact change: 0.00831

(1) The Coin Keeper

(2) The Simple Spender
(3) The Gamblers

4 The Small Spender
(5) The Whole Shebang
(6) ... and More Fun

And that's not all!

Some (common?) variations

- The pennyless purchaser
- The quarter hoarder
- The pennies-first spender
- The Shallit currency

And that's not all!

Some (common?) variations

- The pennyless purchaser (5, 10, and 25-cent pieces)
- The quarter hoarder (1,5 , and 10 -cent pieces)
- The pennies-first spender ($1,5,10$, and 25 -cent pieces)
- The Shallit currency ($1,5,18$, and 25 -cent pieces)

And that's not all!

Some (common?) variations

- The pennyless purchaser (5, 10, and 25-cent pieces)
- The quarter hoarder (1,5, and 10-cent pieces) Go
- The pennies-first spender ($1,5,10$, and 25 -cent pieces)
- The Shallit currency (1, 5, 18, and 25-cent pieces) ©

Jeffrey Shallit, What this country needs is an 18¢ piece, The Mathematical Intelligencer 25 (2003) 20-23.

Pennyless purchaser

213 states

Pennyless purchaser results

Wallet state	p_{pp}	Wallet state	p_{pp}
$\}$.05000	14 nickels	1.29×10^{-11}
$\{5\}$.05000	2 dimes and 15 nickels	3.37×10^{-12}
$\{10,5\}$.03916	1 dime and 15 nickels	2.28×10^{-12}
$\{25,10,5\}$.03093	15 nickels	9.90×10^{-13}
$\{25,5\}$.02847	1 dime and 16 nickels	1.76×10^{-13}
$\{10,5,5\}$.02731	16 nickels	6.23×10^{-14}
$\{25,25,10,5\}$.02625	1 dime and 17 nickels	1.27×10^{-14}
$\{5,5\}$.02536	17 nickels	3.96×10^{-15}
$\{10\}$.02463	18 nickels	2.09×10^{-16}
$\{25,10,5,5\}$.02417	19 nickels	1.10×10^{-17}

Quarter hoarder
 4125 states

Quarter hoarder results

Wallet state	p_{qh}	Wallet state	p_{qh}
$\{1,1,1,1\}$.01164	10 pennies	.00713
$\{1,1,1\}$.01129	$\{10,5,1,1,1,1,1,1,1,1\}$.00651
$\{1,1\}$.01095	$\{10,5,1,1,1,1,1,1,1\}$.00642
5 pennies	.01084	11 pennies	.00638
$\{1\}$.01062	$\{10,5,1,1,1,1,1,1,1,1,1\}$.00637
6 pennies	.01039	$\{10,5,1,1,1,1,1,1\}$.00614
$\}$.01030	$\{10,5,1,1,1,1,1\}$.00569
7 pennies	.00984	12 pennies	.00564
8 pennies	.00919	$\{10,5,1,1,1,1\}$.00549
9 pennies	.00844	$\{10,1,1,1,1,1,1\}$.00523

Pennies-first spender

1065 states

Pennies-first results

Expected pennies-first coins in your wallet: 5.74

- Expected quarters: 1.12
- Expected dimes: 1.27
- Expected nickels: 1.35
- Expected pennies: 2.00

Expected number of coins in your wallet: 10.04

- Expected quarters: 1.06
- Expected dimes: 1.15
- Expected nickels: 0.91
- Expected pennies: 6.92

The Shallit currency

Idea: replacing a dime with an 18-cent coin minimizes coins used per transaction

Two catches:

- Greedy algorithm isn't always best!

Example: 28 cents
Greedy: $25+1+1+1$
Efficient: $18+5+5$

The Shallit currency

Idea: replacing a dime with an 18-cent coin minimizes coins used per transaction
Two catches:

- Greedy algorithm isn't always best!

Example: 28 cents
Greedy: $25+1+1+1$
Efficient: 18+5+5

- There isn't always a unique way to give the fewest possible coins!

Example: 77 cents
$25+25+25+1+1=77$
$18+18+18+18+5=77$

The Shallit currency

Idea: replacing a dime with an 18-cent coin minimizes coins used per transaction
Two catches:

- Greedy algorithm isn't always best!

Example: 28 cents
Greedy: $25+1+1+1$
Efficient: $18+5+5$

- There isn't always a unique way to give the fewest possible coins!

Example: 77 cents

$$
\begin{aligned}
& 25+25+25+1+1=77 \\
& 18+18+18+18+5=77
\end{aligned}
$$

Assumptions:

- Spenders: still break ties by using bigger coins.
- Cashiers: break ties by using each "best" change equally often.

The Shallit currency
 4238 states

Shallit currency results

Expected Shallit coins in your wallet: Expected number of coins in your 8.63

- Expected quarters: 0.66
- Expected 18-cents: 0.98
- Expected nickels: 2.10
- Expected pennies: 4.89 wallet: 10.04
- Expected quarters: 1.06
- Expected dimes: 1.15
- Expected nickels: 0.91
- Expected pennies: 6.92

Cashing in...

I sometimes think that the best way to change the public attitude to math would be to stick a red label on everything that uses mathematics. "Math inside." There would be a label on every computer, of course, and I suppose if we were to take the idea literally, we ought to slap one on every math teacher. But we should also place a red math sticker on every airline ticket, every telephone, every car, every airplane, every traffic light, every vegetable...
(lan Stewart, Letters to a Young Mathematician)

Cashing in...

I sometimes think that the best way to change the public attitude to math would be to stick a red label on everything that uses mathematics. "Math inside." There would be a label on every computer, of course, and I suppose if we were to take the idea literally, we ought to slap one on every math teacher. But we should also place a red math sticker on every airline ticket, every telephone, every car, every airplane, every traffic light, every vegetable... every wallet...
(Ian Stewart, Letters to a Young Mathematician)

More details at...

- L. Pudwell and E. Rowland, What's in your wallet?, The Mathematical Intelligencer 37.4 (2015), 54-60.
- E. Lamb, Mathematicians Predict What's in Your Wallet, Roots of Unity Blog, 20 June 2013, https://blogs.scientificamerican.com/roots-of-unity/ mathematicians-predict-whats-in-your-wallet/.
- slides at faculty.valpo.edu/lpudwell

More details at...

- L. Pudwell and E. Rowland, What's in your wallet?, The Mathematical Intelligencer 37.4 (2015), 54-60.
- E. Lamb, Mathematicians Predict What's in Your Wallet, Roots of Unity Blog, 20 June 2013, https://blogs.scientificamerican.com/roots-of-unity/ mathematicians-predict-whats-in-your-wallet/.
- slides at faculty.valpo.edu/lpudwell

Thanks for listening!

