What is a pattern-avoiding permutation?
Enumeration
Motivational Interlude
Variations of Pattern Avoidance
Open Problems

Counting Pattern-Avoiding Permutations

Lara Pudwell

Valparaiso University

Trinity University Mathematics Majors' Seminar November 19, 2009

Outline

- What is a pattern-avoiding permutation?
- 2 Enumeration
- Motivational Interlude
- Variations of Pattern Avoidance
- Open Problems

Permutations

A permutation of length n is a string of numbers using each of $1, \ldots, n$ exactly once.

Permutations

A permutation of length n is a string of numbers using each of $1, \ldots, n$ exactly once.

Write S_n for the set of permutations of length n. For example:

•
$$S_1 = \{1\}$$

•
$$S_2 = \{12, 21\}$$

•
$$S_3 = \{123, 132, 213, 231, 312, 321\}$$

Reduction

Given a string of numbers $q = q_1 \cdots q_m$, the reduction of q is the string obtained by replacing the i^{th} smallest number of q with i.

For example, the reduction of 26745 is 14523.

Pattern Avoidance/Containment

Given permutations $p = p_1 \cdots p_n$ and $q = q_1 \cdots q_m$,

- p contains q as a pattern if there is $1 \le i_1 < \cdots < i_m \le n$ so that $p_{i_1} \cdots p_{i_m}$ reduces to q;
- otherwise p avoids q.

For example,

- 4576213 contains 312 (4576213).
- 4576213 avoids 1234.

Permutations as Functions

We can also think of a permutation as a function from $\{1, ..., n\}$ to $\{1, ..., n\}$.

Permutations as Functions

We can also think of a permutation as a function from $\{1, ..., n\}$ to $\{1, ..., n\}$.

Then, permutation p contains permutation q if the graph of p contains the graph of q.

4576213 contains 312.

Easier Question: Fix p. What patterns are contained in p? For example, p = 1423

Easier Question: Fix p. What patterns are contained in p? For example, p = 1423

Easier Question: Fix p. What patterns are contained in p? For example, p = 1423

Easier Question: Fix p. What patterns are contained in p? For example, p = 1423

Easier Question: Fix p. What patterns are contained in p? For example, p = 1423

Easier Question: Fix p. What patterns are contained in p? For example, p = 1423

Easier Question: Fix p. What patterns are contained in p? For example, p = 1423

Easier Question: Fix p. What patterns are contained in p? For example, p = 1423

Easier Question: Fix p. What patterns are contained in p? For example, p = 1423

1423 contains the patterns 1, 12, 21.

Easier Question: Fix p. What patterns are contained in p? For example, p = 1423

1423 contains the patterns 1, 12, 21.

Easier Question: Fix p. What patterns are contained in p? For example, p = 1423

1423 contains the patterns 1, 12, 21.

Easier Question: Fix p. What patterns are contained in p? For example, p = 1423

1423 contains the patterns 1, 12, 21, 132.

Easier Question: Fix p. What patterns are contained in p? For example, p = 1423

1423 contains the patterns 1, 12, 21, 132.

Easier Question: Fix p. What patterns are contained in p? For example, p = 1423

1423 contains the patterns 1, 12, 21, 132, 123.

Easier Question: Fix p. What patterns are contained in p? For example, p = 1423

1423 contains the patterns 1, 12, 21, 132, 123, 312.

Easier Question: Fix p. What patterns are contained in p? For example, p = 1423

1423 contains the patterns 1, 12, 21, 132, 123, 312, and 1423, and avoids all other patterns.

Harder Question: Fix a pattern *q*.

Enumerate $S_n(q) := \{ p \in S_n \mid p \text{ avoids } q \}.$

There is one pattern of length 1: 1.

There is one pattern of length 1: 1.

There is one pattern of length 1: 1.

There is one pattern of length 1: 1.

$$|S_n(1)| =$$

$$\begin{cases} 1 & n=0 \\ 0 & n \geq 1. \end{cases}$$

There are two patterns of length 2: 12, 21.

There are two patterns of length 2: 12, 21.

There are two patterns of length 2: 12, 21.

There are two patterns of length 2: 12, 21.

$$|S_n(12)| = 1$$
 (for $n \ge 0$).

There are two patterns of length 2: 12, 21.

What is $|S_n(12)|$? What is $|S_n(21)|$?

$$|S_n(12)| = 1$$
 (for $n \ge 0$).

There are two patterns of length 2: 12, 21.

What is $|S_n(12)|$? What is $|S_n(21)|$?

$$|S_n(12)| = 1$$
 (for $n \ge 0$).

There are two patterns of length 2: 12, 21.

What is $|S_n(12)|$? What is $|S_n(21)|$?

$$|S_n(12)| = 1$$
 (for $n \ge 0$).

Avoiding a Pattern of Length 2

There are two patterns of length 2: 12, 21.

What is $|S_n(12)|$? What is $|S_n(21)|$?

$$|S_n(12)| = |S_n(21)| = 1$$
 (for $n \ge 0$).

Useful Observation (Wilf Equivalence)

For any pattern q, we have:

$$|S_n(q)| = |S_n(q^r)| = |S_n(q^c)| = |S_n(q^{-1})|$$

Avoiding a Pattern of Length 3

There are six patterns of length 3: 123, 132, 213, 231, 312, 321.

Using the useful observation, we have

$$|S_n(123)| = |S_n(321)|$$
 and

$$|S_n(132)| = |S_n(231)| = |S_n(213)| = |S_n(312)|.$$

Avoiding a Pattern of Length 3

There are six patterns of length 3: 123, 132, 213, 231, 312, 321.

Using the useful observation, we have

$$|S_n(123)| = |S_n(321)|$$
 and

$$|S_n(132)| = |S_n(231)| = |S_n(213)| = |S_n(312)|.$$

$$|S_n(123)| = |S_n(132)|$$
 (Simion and Schmidt, 1985).

$$|S_n(132)| = \sum_{i=1}^n |S_{i-1}(132)| \cdot |S_{n-i}(132)| \text{ (for } n > 0)$$

$$|S_n(132)| = \sum_{i=1}^n |S_{i-1}(132)| \cdot |S_{n-i}(132)| \text{ (for } n > 0)$$

$$|S_n(132)| = \frac{\binom{2n}{n}}{n+1} = n$$
th Catalan number

Avoiding a Pattern of Length 4

There are 24 patterns of length 4.

Using the useful observation and similar bijections, we can narrow our work to 3 cases:

 $S_n(1342), S_n(1234), \text{ and } S_n(1324).$

Avoiding a Pattern of Length 4

There are 24 patterns of length 4.

Using the useful observation and similar bijections, we can narrow our work to 3 cases:

 $S_n(1342), S_n(1234), \text{ and } S_n(1324).$

	1	2	3	4	5	6	7	8	
$ S_n(1342) $	1	2	6	23	103	512	2740	15485	$\sim 8^n$
$ S_n(1234) $	1	2	6	23	103	513	2761	15767	$\sim 9^n$
$ S_n(1324) $	1	2	6	23	103	513	2762	15793	$\sim 9.3^n$

Stack Sorting

A stack is a last in, first out data structure.

Question: What permutations can be sorted by passing them through the stack exactly one time?

Stack Sorting

A stack is a last in, first out data structure.

Question: What permutations can be sorted by passing them through the stack exactly one time?

Answer: (Knuth, 1973) Exactly the permutations that avoid 231.

Schubert Varieties

- 1900: Hilbert's 15th problem is to find a "rigorous foundation of Schubert's enumerative calculus".
- 1900s: In algebraic geometry, Schubert varieties are the most commonly studied type of singular variety.

Question: Which Schubert varieties are smooth?

Schubert Varieties

- 1900: Hilbert's 15th problem is to find a "rigorous foundation of Schubert's enumerative calculus".
- 1900s: In algebraic geometry, Schubert varieties are the most commonly studied type of singular variety.

Question: Which Schubert varieties are smooth?

Answer: (Lakshmibai and Sandhya, 1990): Exactly the varieties whose indexing permutation avoids 4231 and 3412.

Experimental Mathematics

- The techniques to count |S_n(q)| usually depend on q.
- Goal: Find an algorithm to count |S_n(q)| that works well regardless of what q is.

Avoiding Sets of Patterns

We may consider permutations which simultaneously avoid more than one pattern:

$$S_n(Q) := \{ p \in S_n \mid p \text{ avoids } q \text{ for every } q \in Q \}.$$

Some particularly nice results include:

- $S_n(\{123, 132\}) = 2^{n-1}$
- $S_n(\{132,213,321\}) = n$
- $S_n(\{123, 132, 213\}) = F_n$ (Fibonacci numbers)

Pattern-Avoiding Words

Instead of pattern-avoiding permutations, we may consider strings with repeated letters:

$$A_{[a_1,...,a_k]}(Q) := \left\{ w \in [k]^{\sum a_i} \, \middle| egin{array}{c} w ext{ has } a_i ext{ } i^* ext{s}, \ w ext{ avoids } q ext{ for every } q \in Q
ight\}
ight.$$

Notice
$$A_{[1,...,1]}(Q) = S_n(Q)$$
.

$$A_{[2,...,2]}(\{132,231,2134\}) = 2n^2 + 6n - 2$$

Generalized and Distanced Patterns

Consider patterns where there may or may not be a dash between each pair of numbers.

E.g. 3 – 12

A dash indicates those two numbers can be arbitrarily far apart, no dash indicates they must be adjacent.

E.g. 241653 contains 12 - 3 (241653), but not 1 - 23

Further, we can specify *exact* distances between numbers of a pattern.

A barred permutation pattern is a permutation where each number may or may not have a bar over it. E.g. $q = \overline{31542}$ is a barred pattern.

,

A barred permutation pattern is a permutation where each number may or may not have a bar over it. E.g. $q = \overline{31542}$ is a barred pattern.

A barred pattern *q* encodes two permutation patterns,

- The smaller pattern q_s formed by the unbarred numbers of q.
 (in this case, 542 forms a 321 pattern.)
- ② The larger pattern q_{ℓ} formed by all numbers of q. (in this case, 31542.)

We say that permutation p avoids the barred pattern q iff every copy of q_s in p is part of a copy of q_ℓ in p.

Example: $q = \overline{31}542$

We say that permutation p avoids the barred pattern q iff every copy of q_s in p is part of a copy of q_ℓ in p.

Example: $q = \overline{31}542$

We say that permutation p avoids the barred pattern q iff every copy of q_s in p is part of a copy of q_ℓ in p.

Example: $q = \overline{31}542$

Avoiding Sets of Patterns
Pattern-Avoiding Words
Generalized and Distanced Patterns
Barred Pattern Avoidance

Barred Pattern Avoidance

Two friendly examples:

•
$$S_n(\overline{1}32) = (n-1)!$$

•
$$S_n(1\overline{4}23) = B_n$$
 (Bell numbers)

Barred Pattern Avoidance

Two friendly examples:

- $S_n(\overline{1}32) = (n-1)!$
- $S_n(1\overline{4}23) = B_n$ (Bell numbers)

Two Nice Theorems:

- West, 1990: A permutation is 2-stack sortable if and only if it avoids 2341 and 35241.
- Woo and Yong, 2006: A Schubert variety X_w is locally factorial if and only if w avoids the patterns 1324 and 21354.

Open Problems

- Enumeration
 - What is $S_n(1324)$?, $S_n(q)$, where $|q| \ge 5$?
 - What can you say about permutations avoiding generalized or barred patterns of length ≥ 5?

Open Problems 2

- Algebra
 - There are Wilf equivalences other than the symmetries of the square. What other equivalences can you find?
 - What Wilf equivalences carry over to subsets or subgroups of S_n?
- Asymptotics
 - Given any pattern q, there exists a constant c_q such that

$$\lim_{n\to\infty} |\mathcal{S}_n(q)| \to c_q^n.$$

What values of c_q are possible?

Open Problems 3

- Applications
 - (Stack Sorting) What is a characterization for 3-stack-sortable permutations?
 - (Schubert calculus, etc.) S_n is an example of a Coxeter group (a group generated by reflections). What can you say about pattern avoidance in other Coxeter groups?
 - (Experimental Mathematics) Can you find a single method that efficiently counts $|S_n(Q)|$ for many different examples of Q?

What is a pattern-avoiding permutation?
Enumeration
Motivational Interlude
Variations of Pattern Avoidance
Open Problems

Thank You!