An Introduction to Enumeration Schemes

Lara Pudwell

Valparaiso University

Trinity University Mathematics Colloquium November 18, 2009

Outline

- Pattern-Avoiding Permutations
 - Definitions
 - Counting Results
 - Motivation
- Enumeration Schemes
 - Divide
 - Conquer
 - Putting It All Together...
- Summary

Reduction

Given a string of numbers $q = q_1 \cdots q_m$, the reduction of q is the string obtained by replacing the i^{th} smallest number of q with i.

For example, the reduction of 26745 is 14523.

Pattern Avoidance/Containment

Given permutations $\pi = \pi_1 \cdots \pi_n$ and $q = q_1 \cdots q_m$,

- π contains q as a pattern if there is $1 \le i_1 < \cdots < i_m \le n$ so that $\pi_{i_1} \cdots \pi_{i_m}$ reduces to q;
- otherwise π avoids q.

For example,

- 4576213 contains 312 (4576213).
- 4576213 avoids 1234.

Permutations as Functions

We can also think of a permutation as a function from $\{1, ..., n\}$ to $\{1, ..., n\}$.

Permutations as Functions

We can also think of a permutation as a function from $\{1, ..., n\}$ to $\{1, ..., n\}$.

Then, permutation π contains permutation q if the graph of π contains the graph of q.

4576213 contains 312.

Two Questions

Easy: Given $\pi \in S_n$, what patterns does π contain?

Hard: Given $q \in S_m$,

- Let $S_n(q) = \{ \pi \in S_n \mid \pi \text{ avoids } q \}.$
- Find an expression for $|S_n(q)|$.

There are two patterns of length 2: 12, 21.

There are two patterns of length 2: 12, 21.

There are two patterns of length 2: 12, 21.

There are two patterns of length 2: 12, 21.

$$|S_n(12)| = 1 \text{ (for } n \ge 0).$$

There are two patterns of length 2: 12, 21.

$$|S_n(12)| = 1 \text{ (for } n \ge 0).$$

There are two patterns of length 2: 12, 21.

$$|S_n(12)| = 1 \text{ (for } n \ge 0).$$

There are two patterns of length 2: 12, 21.

$$|S_n(12)| = 1 \text{ (for } n \ge 0).$$

There are two patterns of length 2: 12, 21.

$$|S_n(12)| = |S_n(21)| = 1 \text{ (for } n \ge 0).$$

Useful Observation (Wilf Equivalence)

For any pattern q, we have:

$$|S_n(q)| = |S_n(q^r)| = |S_n(q^c)| = |S_n(q^{-1})|$$

There are six patterns of length 3: 123, 132, 213, 231, 312, 321.

Using Wilf equivalence, we have

$$|S_n(123)| = |S_n(321)|$$
 and

$$|S_n(132)| = |S_n(231)| = |S_n(213)| = |S_n(312)|.$$

There are six patterns of length 3: 123, 132, 213, 231, 312, 321.

Using Wilf equivalence, we have

$$|S_n(123)| = |S_n(321)|$$
 and

$$|S_n(132)| = |S_n(231)| = |S_n(213)| = |S_n(312)|.$$

$$|S_n(123)| = |S_n(132)|$$
 (Simion and Schmidt, 1985).

$$|S_n(132)| = \sum_{i=1}^n |S_{i-1}(132)| \cdot |S_{n-i}(132)|$$
 (for $n > 0$)

$$|S_n(132)| = \sum_{i=1}^n |S_{i-1}(132)| \cdot |S_{n-i}(132)|$$
 (for $n > 0$)

$$|S_n(132)| = \frac{\binom{2n}{n}}{n+1} = n$$
th Catalan number

There are 24 patterns of length 4.

Using Wilf equivalence and similar bijections, we can narrow our work to 3 cases:

 $S_n(1342), S_n(1234), \text{ and } S_n(1324).$

There are 24 patterns of length 4.

Using Wilf equivalence and similar bijections, we can narrow our work to 3 cases:

 $S_n(1342), S_n(1234), \text{ and } S_n(1324).$

	1	2	3	4	5	6	7	8	
$ S_n(1342) $	1	2	6	23	103	512	2740	15485	$\sim 8^n$
$ S_n(1234) $	1	2	6	23	103	513	2761	15767	$\sim 9^n$
$ S_n(1324) $	1	2	6	23	103	513	2762	15793	$\sim 9.3^n$

Pattern-Avoidance Sightings

Pattern-avoiding permutations appear in the context of...

- sorting algorithms
- Schubert varieties
- experimental mathematics

Algorithms for Pattern-Avoiding Permutations

- Most techniques studying $|S_n(q)|$ find formulas for a specific q.
- 1998: Zeilberger's prefix enumeration schemes,
 i.e. a system of recurrences to compute |S_n(q)|.
- 2005: Vatter's modified schemes automate the computation of $|S_n(q)|$ for even more patterns q.

Refinement Notation

Goal: Divide $S_n(q)$ into disjoint subsets.

$$S_nig(q; p_1\cdots p_lig) := \left\{\pi \in S_n \ \middle| egin{array}{l} \pi \ ext{avoids} \ q \ \pi \ ext{has prefix} \ p_1\cdots p_l \end{array}
ight\}$$

For example,
$$S_3(123) = \{132, 213, 231, 312, 321\}$$
, so $S_3(123; 12) = \{132, 231\}$, and $S_3(123, 21) = \{213, 312, 321\}$.

Refinement Notation

Goal: Divide $S_n(q)$ into subsets.

$$S_nigg(q; egin{array}{c} p_1\cdots p_l \ i_1\cdots i_l \ \end{pmatrix} := \left\{\pi \in S_n \left| egin{array}{c} \pi ext{ avoids } q \ \pi ext{ has prefix } p_1\cdots p_l \ \pi = i_1\cdots i_l\pi_{l+1}\cdots\pi_n \ \end{array}
ight.
ight\}$$

We have seen
$$S_3(123; 12) = \{132, 231\}$$
, so

$$S_3\left(123, \frac{12}{13}\right) = \{132\},$$

$$S_3\left(123, \frac{12}{23}\right) = \{231\}, \text{ and }$$

$$S_3\left(123, \frac{12}{12}\right) = \{\}.$$

Refinement

Given a prefix p of length l, the refinements of p (Ref(p)) are the permutations of length l+1 whose first l letters reduce to p.

For example, $Ref(231) = \{3421, 3412, 2413, 2314\}.$

We have

$$S_n(q; p) = \bigcup_{r \in Ref(p)} S_n(q; r)$$

Refinement

Given a prefix p of length l, the refinements of p (Ref(p)) are the permutations of length l+1 whose first l letters reduce to p.

For example, $Ref(231) = \{3421, 3412, 2413, 2314\}.$

We have

$$S_n(q; p) = \bigcup_{r \in Ref(p)} S_n(q; r)$$

Refinement

Given a prefix p of length l, the refinements of p (Ref(p)) are the permutations of length l+1 whose first l letters reduce to p.

For example, $Ref(231) = \{3421, 3412, 2413, 2314\}.$

We have

$$S_n(q; p) = \bigcup_{r \in Ref(p)} S_n(q; r)$$

Refinement

Given a prefix p of length l, the refinements of p (Ref(p)) are the permutations of length l+1 whose first l letters reduce to p.

For example, $Ref(231) = \{3421, 3412, 2413, 2314\}.$

We have

$$S_n(q; p) = \bigcup_{r \in Ref(p)} S_n(q; r)$$

Refinement

Given a prefix p of length l, the refinements of p (Ref(p)) are the permutations of length l+1 whose first l letters reduce to p.

For example, $Ref(231) = \{3421, 3412, 2413, 2314\}.$

We have

$$S_n(q; p) = \bigcup_{r \in Ref(p)} S_n(q; r)$$

Refinement Example

For any pattern q,

$$S_n(q) = S_n(q; 1) = S_n(q; 12) \cup S_n(q; 21) = \dots$$

or graphically:

Reversibly Deletable Positions

Given a pattern q and a prefix p, p_r is reversibly deletable if

- Deleting p_r from $\pi \in S_n(q; p_1 \cdots p_l)$ produces a q-avoiding permutation of length n-1, and
- Inserting p_r into $\pi \in S_{n-1}(q; p_1 \cdots p_{r-1} p_{r+1} \cdots p_l)$ produces a q-avoiding permutation of length n.

If p_r is reversibly deletable then,

$$|S_n(q; p_1 \cdots p_l)| = |S_{n-1}(q; p_1 \cdots p_{r-1}p_{r+1} \cdots p_l)|.$$

For 123-avoiding permutations that begin with p=21, p_1 is reversibly deletable

For 123-avoiding permutations that begin with p = 21, p_1 is reversibly deletable

$$\left| S_n \left(123; \frac{21}{ij} \right) \right| = \left| S_{n-1} \left(123; \frac{1}{j} \right) \right|$$

For 123-avoiding permutations that begin with p=21, p_2 is not reversibly deletable.

For 123-avoiding permutations that begin with p = 21, p_2 is not reversibly deletable.

While deleting p_2 gives a smaller 123-avoiding permutation, inserting p_2 into a member of $S_{n-1}(123)$ doesn't always give a 123-avoiding permutation.

Algorithm to find Reversibly Deletable Elements

Brute force:

- List all scenarios in which p_r can participate in a forbidden q-pattern.
- Delete p_r from each scenario. If every resulting permutation contains q, then p_r is reversibly deletable.

In practice:

Theorem (Vatter, 2005)

If
$$|S_n(q; p_1 \cdots p_l)| = |S_{n-1}(q; p_1 \cdots p_{r-1}p_{r+1} \cdots p_l)|$$
 for all $n \le |p| + |q| - 1$ then p_r is reversibly deletable.

Reversibly Deletable Example

Reversibly Deletable Example

Gap vectors give a condition for which choices of i_1, \ldots, i_l yield

$$\left|S_n\left(q;\frac{p_1\cdots p_r\cdots p_l}{i_1\cdots i_r\cdots i_l}\right)\right|=0.$$

Gap vectors give a condition for which choices of i_1, \ldots, i_l yield

$$\left|S_n\left(q;\frac{p_1\cdots p_r\cdots p_l}{i_1\cdots i_r\cdots i_l}\right)\right|=0.$$

Gap vectors give a condition for which choices of i_1, \ldots, i_l yield

$$\left|S_n\left(q;\frac{p_1\cdots p_r\cdots p_l}{i_1\cdots i_r\cdots i_l}\right)\right|=0.$$

Since there are no members of $S_n(123; 12)$ where $v_3 = 1$, we say (0,0,1) is a gap vector for p = 12

Knowing that (0,0,1) is a gap vector for q=123 and p=12 can help us determine more reversibly deletable positions.

Knowing that (0,0,1) is a gap vector for q=123 and p=12 can help us determine more reversibly deletable positions.

Knowing that (0,0,1) is a gap vector for q = 123 and p = 12 can help us determine more reversibly deletable positions.

$$\left| S_n \left(123; \frac{12}{ij} \right) \right| = 0 \text{ if } j < n$$

$$\left| S_n \left(123; \frac{12}{in} \right) \right| = \left| S_{n-1} \left(123; \frac{1}{i} \right) \right|$$

Algorithm to find Gap Vectors

Brute force:

- List all permutations π that begin with prefix p and obey vector v.
- If every element of this set contains q, then v is a gap vector.

In practice:

Theorem (Vatter, 2005)

- If v is a gap vector for (q; p), and $u \ge v$ componentwise, then u is a gap vector for (q; p).
- ② Minimal gap vectors for (q; p) have $||v|| \le |q| 1$.

Enumeration Scheme Definition

An enumeration scheme is a set of triples $[p_i, G_i, R_i]$ such that for each triple

- p_i is a reduced prefix of length n
- G_i is a set of vectors of length n + 1
- R_i a subset of {1,...,n}
 and
- either R_i is non-empty or all refinements of p_i are also in the scheme.

Enumeration Scheme Definition

An enumeration scheme is a set of triples $[p_i, G_i, R_i]$ such that for each triple

- p_i is a reduced prefix of length n (prefix)
- G_i is a set of vectors of length n + 1 (gap vectors)
- R_i a subset of {1,..., n} (reversibly deletable positions) and
- either R_i is non-empty or all refinements of p_i are also in the scheme.

For the pattern q = 123, we have constructed the following scheme:

$$\mathcal{S} = \{ \llbracket \emptyset, \emptyset, \emptyset \rrbracket \}$$

 \emptyset

$$\mathcal{S} = \{ [\emptyset, \emptyset, \emptyset], \textcolor{red}{[1, \emptyset, \emptyset]} \}$$

$$S = \{ [\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, G_{12}, R_{12}], [21, G_{21}, R_{21}] \}$$

$$S = \{ [\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, G_{12}, R_{12}], [21, \emptyset, \{1\}] \}$$

$$\mathcal{S} = \{ [\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, \{(0, 0, 1)\}, R_{12}], [21, \emptyset, \{1\}] \}$$

$$\mathcal{S} = \{ [\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, \{(0, 0, 1)\}, \{2\}], [21, \emptyset, \{1\}] \}$$

$$\mathcal{S} = \{[\emptyset,\emptyset,\emptyset], [1,\emptyset,\emptyset], [12,\{(0,0,1)\},\{2\}], [21,\emptyset,\{1\}]\}$$

$$S = \{ [\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, \{(0, 0, 1)\}, \{2\}], [21, \emptyset, \{1\}] \}$$
 can be seen as a recurrence to count the elements of $S_n(123)$.

$$|S_n(123)| = \sum_{i=1}^n |S_n(123, \frac{1}{i})|$$

$$S = \{ [\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, \{(0, 0, 1)\}, \{2\}], [21, \emptyset, \{1\}] \}$$
 can be seen as a recurrence to count the elements of $S_n(123)$.

$$|S_n(123)| = \sum_{i=1}^n \left| S_n \left(123, \frac{1}{i} \right) \right|$$

= $\sum_{i=1}^n \sum_{j=i+1}^n \left| S_n \left(123; \frac{12}{ij} \right) \right| + \sum_{i=1}^n \sum_{h=1}^{i-1} \left| S_n \left(123; \frac{21}{ih} \right) \right|$

$$S = \{ [\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, \{(0, 0, 1)\}, \{2\}], [21, \emptyset, \{1\}] \}$$
 can be seen as a recurrence to count the elements of $S_n(123)$.

$$|S_{n}(123)| = \sum_{i=1}^{n} \left| S_{n} \left(123, \frac{1}{i} \right) \right|$$

$$= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \left| S_{n} \left(123; \frac{12}{ij} \right) \right| + \sum_{i=1}^{n} \sum_{h=1}^{i-1} \left| S_{n} \left(123; \frac{21}{ih} \right) \right|$$

$$= \sum_{i=1}^{n} \left| S_{n} \left(123; \frac{12}{in} \right) \right| + \sum_{i=1}^{n} \sum_{h=1}^{i-1} \left| S_{n-1} \left(123; \frac{1}{h} \right) \right|$$

$$S = \{ [\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, \{(0, 0, 1)\}, \{2\}], [21, \emptyset, \{1\}] \}$$
 can be seen as a recurrence to count the elements of $S_n(123)$.

$$|S_{n}(123)| = \sum_{i=1}^{n} \left| S_{n} \left(123, \frac{1}{i} \right) \right|$$

$$= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \left| S_{n} \left(123; \frac{12}{ij} \right) \right| + \sum_{i=1}^{n} \sum_{h=1}^{i-1} \left| S_{n} \left(123; \frac{21}{ih} \right) \right|$$

$$= \sum_{i=1}^{n} \left| S_{n} \left(123; \frac{12}{in} \right) \right| + \sum_{i=1}^{n} \sum_{h=1}^{i-1} \left| S_{n-1} \left(123; \frac{1}{h} \right) \right|$$

$$= \sum_{i=1}^{n} \left(\left| S_{n-1} \left(123; \frac{1}{i} \right) \right| + \sum_{h=1}^{i-1} \left| S_{n-1} \left(123; \frac{1}{h} \right) \right| \right)$$

$$S = \{ [\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, \{(0, 0, 1)\}, \{2\}], [21, \emptyset, \{1\}] \}$$
 can be seen as a recurrence to count the elements of $S_n(123)$.

$$|S_{n}(123)| = \sum_{i=1}^{n} \left| S_{n} \left(123, \frac{1}{i} \right) \right|$$

$$= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \left| S_{n} \left(123; \frac{12}{ij} \right) \right| + \sum_{i=1}^{n} \sum_{h=1}^{i-1} \left| S_{n} \left(123; \frac{21}{ih} \right) \right|$$

$$= \sum_{i=1}^{n} \left| S_{n} \left(123; \frac{12}{in} \right) \right| + \sum_{i=1}^{n} \sum_{h=1}^{i-1} \left| S_{n-1} \left(123; \frac{1}{h} \right) \right|$$

$$= \sum_{i=1}^{n} \left(\left| S_{n-1} \left(123; \frac{1}{i} \right) \right| + \sum_{h=1}^{i-1} \left| S_{n-1} \left(123; \frac{1}{h} \right) \right|$$

$$= \sum_{i=1}^{n} \sum_{h=1}^{i} \left| S_{n-1} \left(123; \frac{1}{h} \right) \right|$$

Enumeration Schemes

- Refinements
- Reversibly deletable elements
- Gap vectors

can all be found completely automatically, so we have an algorithm to compute enumeration schemes for pattern-avoiding permutations.

$S_n(\emptyset)$ and $S_n(12)$

$S_n(\emptyset)$ and $S_n(12)$

$$S_n(12)$$

$$\downarrow \\ d_1 \downarrow \\ \downarrow \\ 1 \\ \geq (0,1)$$

$$|S_n(\emptyset)| = \sum_{i=1}^n \left| S_n\left(\emptyset; \frac{1}{i}\right) \right| = \sum_{i=1}^n |S_{n-1}\left(\emptyset\right)| = n |S_{n-1}(\emptyset)|$$

$S_n(\emptyset)$ and $S_n(12)$

$$S_n(12)$$

$$\downarrow \\ d_1 \qquad \downarrow \\ 1 \\ \geq (0,1)$$

$$|S_n(12)| = \sum_{i=1}^n \left| S_n \left(12; \frac{1}{i} \right) \right| = \left| S_n \left(12; \frac{1}{n} \right) \right| = |S_{n-1}(12)|$$

$S_n(123)$ and $S_n(132)$

Summary

- There are few techniques to count many classes of pattern-avoiding permutations.
- Zeilberger's and Vatter's schemes give a good success rate for counting the elements of $S_n(q)$.
- Enumeration schemes have also been successfully used to count:
 - pattern-avoiding words (strings with repeated letters)
 - permutations avoiding barred patterns

Thank You!