An Introduction to Enumeration Schemes

Lara Pudwell
Valparaiso University

Trinity University Mathematics Colloquium
November 18, 2009
Outline

1 Pattern-Avoiding Permutations
 - Definitions
 - Counting Results
 - Motivation

2 Enumeration Schemes
 - Divide
 - Conquer
 - Putting It All Together...

3 Summary
Given a string of numbers \(q = q_1 \cdots q_m \), the reduction of \(q \) is the string obtained by replacing the \(i^{th} \) smallest number of \(q \) with \(i \).

For example, the reduction of 26745 is 14523.
Given permutations $\pi = \pi_1 \cdots \pi_n$ and $q = q_1 \cdots q_m$,

- π contains q as a pattern if there is $1 \leq i_1 < \cdots < i_m \leq n$ so that $\pi_{i_1} \cdots \pi_{i_m}$ reduces to q;
- otherwise π avoids q.

For example,

- 4576213 contains 312 (4576213).
- 4576213 avoids 1234.
We can also think of a permutation as a function from \(\{1, \ldots, n\} \) to \(\{1, \ldots, n\} \).

\[\pi = 4576213 \]
Permutations as Functions

We can also think of a permutation as a function from \(\{1, \ldots, n\}\) to \(\{1, \ldots, n\}\).

\[
\pi = 4576213
\]

Then, permutation \(\pi\) contains permutation \(q\) if the graph of \(\pi\) contains the graph of \(q\).

4576213 contains 312.
Two Questions

Easy: Given $\pi \in S_n$, what patterns does π contain?

Hard: Given $q \in S_m$,
- Let $S_n(q) = \{ \pi \in S_n \mid \pi \text{ avoids } q \}$.
- Find an expression for $|S_n(q)|$.

Lara Pudwell
An Introduction to Enumeration Schemes
Avoiding a Pattern of Length 2

There are two patterns of length 2: 12, 21.

What is $|S_n(12)|$?
There are two patterns of length 2: 12, 21.

What is $|S_n(12)|$?
Avoiding a Pattern of Length 2

There are two patterns of length 2: 12, 21.

What is $|S_n(12)|$?
Avoiding a Pattern of Length 2

There are two patterns of length 2: 12, 21.

What is $|S_n(12)|$?

$|S_n(12)| = 1$ (for $n \geq 0$).
Avoiding a Pattern of Length 2

There are two patterns of length 2: 12, 21.

What is $|S_n(12)|$? What is $|S_n(21)|$?

$|S_n(12)| = 1$ (for $n \geq 0$).
There are two patterns of length 2: 12, 21.

What is $|S_n(12)|$? What is $|S_n(21)|$?

$|S_n(12)| = 1$ (for $n \geq 0$).
Avoiding a Pattern of Length 2

There are two patterns of length 2: 12, 21.

What is $|S_n(12)|$? What is $|S_n(21)|$?

$|S_n(12)| = 1$ (for $n \geq 0$).
Avoiding a Pattern of Length 2

There are two patterns of length 2: 12, 21.

What is $|S_n(12)|$? What is $|S_n(21)|$?

$|S_n(12)| = |S_n(21)| = 1$ (for $n \geq 0$).
For any pattern \(q \), we have:

\[
|S_n(q)| = |S_n(q^r)| = |S_n(q^c)| = |S_n(q^{-1})|
\]
There are six patterns of length 3: 123, 132, 213, 231, 312, 321.

Using Wilf equivalence, we have
\[|S_n(123)| = |S_n(321)| \quad \text{and} \]
\[|S_n(132)| = |S_n(231)| = |S_n(213)| = |S_n(312)|. \]
Avoiding a Pattern of Length 3

There are six patterns of length 3: 123, 132, 213, 231, 312, 321.

Using Wilf equivalence, we have
\[|S_n(123)| = |S_n(321)| \] and
\[|S_n(132)| = |S_n(231)| = |S_n(213)| = |S_n(312)|. \]

\[|S_n(123)| = |S_n(132)| \] (Simion and Schmidt, 1985).
Avoiding the pattern 132

What is $|S_n(132)|$?
What is $|S_n(132)|$?

$$|S_n(132)| = \binom{2n}{n} = \frac{n}{n+1}$$
Avoiding the pattern 132

What is $|S_n(132)|$?

$$|S_n(132)| = \sum_{i=1}^{n} |S_{i-1}(132)| \cdot |S_{n-i}(132)| \text{ (for } n > 0)$$
Avoiding the pattern 132

What is $|S_n(132)|$?

\[|S_n(132)| = \sum_{i=1}^{n} |S_{i-1}(132)| \cdot |S_{n-i}(132)| \text{ (for } n > 0) \]

\[|S_n(132)| = \frac{(2n)}{n + 1} = n \text{th Catalan number} \]
Avoiding a Pattern of Length 4

There are 24 patterns of length 4.

Using Wilf equivalence and similar bijections, we can narrow our work to 3 cases:
\(S_n(1342), S_n(1234), \text{ and } S_n(1324)\).
There are 24 patterns of length 4.

Using Wilf equivalence and similar bijections, we can narrow our work to 3 cases:
$S_n(1342)$, $S_n(1234)$, and $S_n(1324)$.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_n(1342)$</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
<td>103</td>
<td>512</td>
<td>2740</td>
<td>15485</td>
</tr>
<tr>
<td>$S_n(1234)$</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
<td>103</td>
<td>513</td>
<td>2761</td>
<td>15767</td>
</tr>
<tr>
<td>$S_n(1324)$</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
<td>103</td>
<td>513</td>
<td>2762</td>
<td>15793</td>
</tr>
</tbody>
</table>
Pattern-Avoidance Sightings

Pattern-avoiding permutations appear in the context of...

- sorting algorithms
- Schubert varieties
- experimental mathematics
Most techniques studying $|S_n(q)|$ find formulas for a specific q.

1998: Zeilberger’s *prefix enumeration schemes*, i.e. a system of recurrences to compute $|S_n(q)|$.

2005: Vatter’s modified schemes automate the computation of $|S_n(q)|$ for even more patterns q.
Refinement Notation

Goal: Divide $S_n(q)$ into disjoint subsets.

$$S_n(q; p_1 \cdots p_l) := \left\{ \pi \in S_n \mid \pi \text{ avoids } q \right. \quad \left. \pi \text{ has prefix } p_1 \cdots p_l \right\}$$

For example, $S_3(123) = \{132, 213, 231, 312, 321\}$, so
$S_3(123; 12) = \{132, 231\}$, and
$S_3(123, 21) = \{213, 312, 321\}$.
Refinement Notation

Goal: Divide $S_n(q)$ into subsets.

$$S_n\left(q; p_1 \cdots p_l \mid i_1 \cdots i_l\right) := \left\{ \pi \in S_n \mid \begin{array}{l}
\pi \text{ avoids } q \\
\pi \text{ has prefix } p_1 \cdots p_l \\
\pi = i_1 \cdots i_l \pi_{l+1} \cdots \pi_n
\end{array} \right\}$$

We have seen $S_3(123; 12) = \{132, 231\}$, so

$S_3(123, \begin{pmatrix} 12 \\ 13 \end{pmatrix}) = \{132\}$,

$S_3(123, \begin{pmatrix} 12 \\ 23 \end{pmatrix}) = \{231\}$, and

$S_3(123, \begin{pmatrix} 12 \\ 12 \end{pmatrix}) = \{\}$.
Refinement

Given a prefix p of length l, the refinements of p (Ref(p)) are the permutations of length $l + 1$ whose first l letters reduce to p.

For example, $\text{Ref}(231) = \{3421, 3412, 2413, 2314\}$.

We have

$$S_n(q; p) = \bigcup_{r \in \text{Ref}(p)} S_n(q; r)$$
Refinement

Given a prefix p of length l, the refinements of p ($\text{Ref}(p)$) are the permutations of length $l + 1$ whose first l letters reduce to p.

For example, $\text{Ref}(231) = \{3421, 3412, 2413, 2314\}$.

We have

$$S_n(q; p) = \bigcup_{r \in \text{Ref}(p)} S_n(q; r)$$
Given a prefix \(p \) of length \(l \), the refinements of \(p \) (\(\text{Ref}(p) \)) are the permutations of length \(l + 1 \) whose first \(l \) letters reduce to \(p \).

For example, \(\text{Ref}(231) = \{3421, 3412, 2413, 2314\} \).

We have

\[
S_n(q; p) = \bigcup_{r \in \text{Ref}(p)} S_n(q; r)
\]
Given a prefix p of length l, the refinements of p ($\text{Ref}(p)$) are the permutations of length $l + 1$ whose first l letters reduce to p.

For example, $\text{Ref}(231) = \{3421, 3412, 2413, 2314\}$.

We have

$$S_n(q; p) = \bigcup_{r \in \text{Ref}(p)} S_n(q; r)$$
Refinement

Given a prefix p of length l, the refinements of p ($\text{Ref}(p)$) are the permutations of length $l + 1$ whose first l letters reduce to p.

For example, $\text{Ref}(231) = \{3421, 3412, 2413, 2314\}$.

We have

$$S_n(q; p) = \bigcup_{r \in \text{Ref}(p)} S_n(q; r)$$
For any pattern q,

$$S_n(q) = S_n(q; 1) = S_n(q; 12) \cup S_n(q; 21) = \ldots.$$

or graphically:
Reversibly Deletable Positions

Given a pattern q and a prefix p, p_r is reversibly deletable if

- Deleting p_r from $\pi \in S_n(q; p_1 \cdots p_l)$ produces a q-avoiding permutation of length $n - 1$, and
- Inserting p_r into $\pi \in S_{n-1}(q; p_1 \cdots p_{r-1} p_{r+1} \cdots p_l)$ produces a q-avoiding permutation of length n.

If p_r is reversibly deletable then,

$$|S_n(q; p_1 \cdots p_l)| = |S_{n-1}(q; p_1 \cdots p_{r-1} p_{r+1} \cdots p_l)|.$$
For 123-avoiding permutations that begin with $p = 21$, p_1 is reversibly deletable.
For 123-avoiding permutations that begin with \(p = 21 \), \(p_1 \) is reversibly deletable.

\[
\left| S_n \left(123; \frac{21}{ij} \right) \right| = \left| S_{n-1} \left(123; \frac{1}{j} \right) \right|
\]
For 123-avoiding permutations that begin with $p = 21$, p_2 is not reversibly deletable.
For 123-avoiding permutations that begin with $p = 21$, p_2 is not reversibly deletable.

While deleting p_2 gives a smaller 123-avoiding permutation, inserting p_2 into a member of $S_{n-1}(123)$ doesn’t always give a 123-avoiding permutation.
Algorithm to find Reversibly Deletable Elements

Brute force:
- List all scenarios in which p_r can participate in a forbidden q-pattern.
- Delete p_r from each scenario. If every resulting permutation contains q, then p_r is reversibly deletable.

In practice:

Theorem (Vatter, 2005)

If $|S_n(q; p_1 \cdots p_l)| = |S_{n-1}(q; p_1 \cdots p_{r-1} p_{r+1} \cdots p_l)|$ for all $n \leq |p| + |q| - 1$ then p_r is reversibly deletable.
Graphically, for $q = 123$, we have:
Graphically, for $q = 123$, we have:
Gap vectors give a condition for which choices of i_1, \ldots, i_l yield

$$\left| S_n \left(q; \frac{p_1}{i_1} \ldots \frac{p_r}{i_r} \ldots \frac{p_l}{i_l} \right) \right| = 0.$$
Gap vectors give a condition for which choices of i_1, \ldots, i_l yield

$$\left| S_n \left(q; p_1 \cdots p_r \cdots p_l \right) \right| = 0.$$
Gap vectors give a condition for which choices of i_1, \ldots, i_l yield

$$\left| S_n \left(q; \frac{p_1 \cdots p_r \cdots p_l}{i_1 \cdots i_r \cdots i_l} \right) \right| = 0.$$

Since there are no members of $S_n(123; 12)$ where $v_3 = 1$, we say $(0, 0, 1)$ is a gap vector for $p = 12$.
Gap Vectors

Knowing that \((0, 0, 1)\) is a gap vector for \(q = 123\) and \(p = 12\) can help us determine more reversibly deletable positions.

\[S_n(123; 12) = 0 \text{ if } j < n \]

\[S_n(123; 12) = S_{n-1}(123; 1) \]

Lara Pudwell

An Introduction to Enumeration Schemes
Knowing that $(0, 0, 1)$ is a gap vector for $q = 123$ and $p = 12$ can help us determine more reversibly deletable positions.
Knowing that $(0, 0, 1)$ is a gap vector for $q = 123$ and $p = 12$ can help us determine more reversibly deletable positions.

\[
\left| S_n \left(123; \frac{12}{ij} \right) \right| = 0 \text{ if } j < n
\]

\[
\left| S_n \left(123; \frac{12}{in} \right) \right| = \left| S_{n-1} \left(123; \frac{1}{i} \right) \right|
\]
Algorithm to find Gap Vectors

Brute force:
- List all permutations \(\pi \) that begin with prefix \(p \) and obey vector \(v \).
- If every element of this set contains \(q \), then \(v \) is a gap vector.

In practice:

Theorem (Vatter, 2005)
1. If \(v \) is a gap vector for \((q; p)\), and \(u \geq v \) componentwise, then \(u \) is a gap vector for \((q; p)\).
2. Minimal gap vectors for \((q; p)\) have \(\|v\| \leq \|q\| - 1 \).
Gap Vectors

Graphically, for $q = 123$, we have:

```
    0
   ↓
   1
  / \  \\
 12  21
```

Where d_1 represents the gap vector.
Graphically, for $q = 123$, we have:

\[
\begin{align*}
\emptyset & \quad \downarrow \\
1 & \quad \downarrow \\
12 & \quad \rightarrow d_1 \\
\geq (0, 0, 1) & \quad \rightarrow 21
\end{align*}
\]
Graphically, for $q = 123$, we have:
An enumeration scheme is a set of triples \([p_i, G_i, R_i]\) such that for each triple

- \(p_i\) is a reduced prefix of length \(n\)
- \(G_i\) is a set of vectors of length \(n + 1\)
- \(R_i\) a subset of \(\{1, \ldots, n\}\)

and

- either \(R_i\) is non-empty or all refinements of \(p_i\) are also in the scheme.
An enumeration scheme is a set of triples \([p_i, G_i, R_i]\) such that for each triple

- \(p_i\) is a reduced prefix of length \(n\) (prefix)
- \(G_i\) is a set of vectors of length \(n + 1\) (gap vectors)
- \(R_i\) a subset of \(\{1, \ldots, n\}\) (reversibly deletable positions)
 and
- either \(R_i\) is non-empty or all refinements of \(p_i\) are also in the scheme.
For the pattern $q = 123$, we have constructed the following scheme:

$S = \{[\emptyset, \emptyset, \emptyset]\}$
For the pattern $q = 123$, we have constructed the following scheme:
$$S = \{[\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset]\}$$
For the pattern $q = 123$, we have constructed the following scheme:

$$S = \{[\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, G_{12}, R_{12}], [21, G_{21}, R_{21}]\}$$
For the pattern $q = 123$, we have constructed the following scheme:

$$S = \{[\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, G_{12}, R_{12}], [21, \emptyset, \{1\}]\}$$
For the pattern $q = 123$, we have constructed the following scheme:

$$S = \{[\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, \{(0, 0, 1)\}, R_{12}], [21, \emptyset, \{1\}]\}$$
For the pattern $q = 123$, we have constructed the following scheme:
$S = \{[\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, \{(0, 0, 1)\}, \{2\}], [21, \emptyset, \{1\}]\}$
For the pattern \(q = 123 \), we have constructed the following scheme:
\[
S = \{ [\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, \{(0, 0, 1)\}, \{2\}], [21, \emptyset, \{1\}] \}
\]
The scheme can
\[S = \{[\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, \{(0, 0, 1)\}, \{2\}], [21, \emptyset, \{1\}]\} \]
can be seen as a recurrence to count the elements of \(S_n(123) \).

\[|S_n(123)| = \sum_{i=1}^{n} \left| S_n\left(123, \binom{1}{i}\right)\right| \]
The scheme can
\[S = \left\{[\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, \{(0, 0, 1)\}, \{2\}], [21, \emptyset, \{1\}] \right\} \]
can be seen as a recurrence to count the elements of \(S_n(123) \).

\[|S_n(123)| = \sum_{i=1}^{n} \left| S_n \left(123, \binom{1}{i} \right) \right| \]

\[= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \left| S_n \left(123, \binom{12}{ij} \right) \right| + \sum_{i=1}^{n} \sum_{h=1}^{i-1} \left| S_n \left(123, \binom{21}{ih} \right) \right| \]
The scheme can
\(S = \{[\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, \{(0, 0, 1)\}, \{2\}], [21, \emptyset, \{1\}]\} \)
can be seen as a recurrence to count the elements of \(S_n(123) \).

\[
|S_n(123)| = \sum_{i=1}^{n} \left| S_n \left(123, \frac{1}{i}\right) \right|
\]

\[
= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \left| S_n \left(123; \frac{12}{ij}\right) \right| + \sum_{i=1}^{n} \sum_{h=1}^{i-1} \left| S_n \left(123; \frac{21}{ih}\right) \right|
\]

\[
= \sum_{i=1}^{n} \left| S_n \left(123; \frac{12}{in}\right) \right| + \sum_{i=1}^{n} \sum_{h=1}^{i-1} \left| S_{n-1} \left(123; \frac{1}{h}\right) \right|
\]
Enumeration Scheme Example

The scheme can
\[S = \{[\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, \{(0, 0, 1)\}, \{2\}], [21, \emptyset, \{1\}]\} \]
can be seen as a recurrence to count the elements of \(S_n(123) \).

\[
|S_n(123)| = \sum_{i=1}^{n} S_n \left(123, \begin{array}{c} 1 \\ 1 \end{array} \right)
\]

\[
= \sum_{i=1}^{n} \sum_{j=i+1}^{n} S_n \left(123; \begin{array}{c} 12 \\ ij \end{array} \right) + \sum_{i=1}^{n} \sum_{h=1}^{i-1} S_n \left(123; \begin{array}{c} 21 \\ ih \end{array} \right)
\]

\[
= \sum_{i=1}^{n} S_n \left(123; \begin{array}{c} 12 \\ in \end{array} \right) + \sum_{i=1}^{n} \sum_{h=1}^{i-1} S_{n-1} \left(123; \begin{array}{c} 1 \\ h \end{array} \right)
\]

\[
= \sum_{i=1}^{n} \left(S_{n-1} \left(123; \begin{array}{c} 1 \\ i \end{array} \right) + \sum_{h=1}^{i-1} S_{n-1} \left(123; \begin{array}{c} 1 \\ h \end{array} \right) \right)
\]
The scheme can
\[S = \{[\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, \{(0, 0, 1)\}, \{2\}], [21, \emptyset, \{1\}]\} \]
can be seen as a recurrence to count the elements of \(S_n(123) \).

\[
|S_n(123)| = \sum_{i=1}^{n} |S_n\left(123, \frac{1}{i}\right)|
\]

\[
= \sum_{i=1}^{n} \sum_{j=i+1}^{n} |S_n\left(123; \frac{12}{ij}\right)| + \sum_{i=1}^{n} \sum_{h=1}^{i-1} |S_n\left(123; \frac{21}{ih}\right)|
\]

\[
= \sum_{i=1}^{n} |S_n\left(123; \frac{12}{in}\right)| + \sum_{i=1}^{n} \sum_{h=1}^{i-1} |S_{n-1}\left(123; \frac{1}{h}\right)|
\]

\[
= \sum_{i=1}^{n} \left(|S_{n-1}\left(123; \frac{1}{i}\right)| + \sum_{h=1}^{i-1} |S_{n-1}\left(123; \frac{1}{h}\right)|\right)
\]

\[
= \sum_{i=1}^{n} \sum_{h=1}^{i} |S_{n-1}\left(123; \frac{1}{h}\right)|
\]
Refinements
Reversibly deletable elements
Gap vectors
can all be found completely automatically, so we have an algorithm to compute enumeration schemes for pattern-avoiding permutations.
$S_n(\emptyset)$ and $S_n(12)$

$S_n(\emptyset)$

\emptyset

\downarrow

d_1

1

$\geq (0, 1)$
\[S_n(\emptyset) \text{ and } S_n(12) \]

\[
S_n(\emptyset) \quad \begin{array}{c} \emptyset \\ \downarrow \\ 1 \\ d_1 \\ \uparrow \\ 1 \quad S_n(12) \\ \begin{array}{c} \emptyset \\ \downarrow \\ 1 \\ \geq (0, 1) \end{array}
\]

\[
|S_n(\emptyset)| = \sum_{i=1}^{n} \left| S_n \left(\emptyset; \begin{array}{c} 1 \\ i \end{array} \right) \right| = \sum_{i=1}^{n} \left| S_{n-1} (\emptyset) \right| = n \left| S_{n-1}(\emptyset) \right|
\]
\[|S_n(\emptyset)| = \sum_{i=1}^{n} |S_n(12; \frac{1}{i})| = |S_n(12; \frac{1}{n})| = |S_{n-1}(12)| \]
$S_n(123)$ and $S_n(132)$

$S_n(123)$

\emptyset \quad 1 \quad 12 \quad \geq (0, 0, 1)

$S_n(132)$

\emptyset \quad 1 \quad 12 \quad \geq (0, 1, 0)$
Pattern-Avoiding Permutations
Enumeration Schemes
Summary

Divide
Conquer
Putting It All Together...

$S_n(1234)$

$S_n(1234)$

\emptyset

1

d_1

12

21

$d_1,2$

123

d_3

$\geq (0,0,0,1)$

132

d_2

231

$d_1,2$

$\geq (0,0,1,0)$

2314

d_4

3421

d_3

3412

$Lara Pudwell$

An Introduction to Enumeration Schemes
There are few techniques to count many classes of pattern-avoiding permutations. Zeilberger’s and Vatter’s schemes give a good success rate for counting the elements of $S_n(q)$.

Enumeration schemes have also been successfully used to count:
- pattern-avoiding words (strings with repeated letters)
- permutations avoiding barred patterns
Thank You!