Introduction/History Prefix Schemes for Words Other Schemes for Words Summary

# Schemes for Pattern-Avoiding Words

Lara Pudwell

**Rutgers University** 

Permutation Patterns 2007



### **Outline**

- Introduction/History
  - Pattern Avoidance in Words
  - Previous Work
- Prefix Schemes for Words
  - Definitions
  - Examples
  - Success Rate
- Other Schemes for Words
  - Schemes for Monotone Patterns



## Outline

- Introduction/History
  - Pattern Avoidance in Words
  - Previous Work
- Prefix Schemes for Words
  - Definitions
  - Examples
  - Success Rate
- Other Schemes for Words
  - Schemes for Monotone Patterns



 Given a string of letters p = p<sub>1</sub>...p<sub>n</sub>, the reduction of p is the string obtained by replacing the i<sup>th</sup> smallest letter(s) of p with i.

- Given a string of letters p = p<sub>1</sub>...p<sub>n</sub>, the reduction of p is the string obtained by replacing the i<sup>th</sup> smallest letter(s) of p with i.
- For example, the reduction of 2674425 is

- Given a string of letters p = p<sub>1</sub>...p<sub>n</sub>, the reduction of p is the string obtained by replacing the i<sup>th</sup> smallest letter(s) of p with i.
- For example, the reduction of 2674425 is 1 • • 1 •.

- Given a string of letters p = p<sub>1</sub>...p<sub>n</sub>, the reduction of p is the string obtained by replacing the i<sup>th</sup> smallest letter(s) of p with i.
- For example, the reduction of 2674425 is 1 • 221 •.

- Given a string of letters p = p<sub>1</sub>...p<sub>n</sub>, the reduction of p is the string obtained by replacing the i<sup>th</sup> smallest letter(s) of p with i.
- For example, the reduction of 2674425 is 1 • 2213.

- Given a string of letters p = p<sub>1</sub>...p<sub>n</sub>, the reduction of p is the string obtained by replacing the i<sup>th</sup> smallest letter(s) of p with i.
- For example, the reduction of 2674425 is 14•2213.

- Given a string of letters p = p<sub>1</sub>...p<sub>n</sub>, the reduction of p is the string obtained by replacing the i<sup>th</sup> smallest letter(s) of p with i.
- For example, the reduction of 2674425 is 1452213.

## Pattern Avoidance in Words

- Given  $w \in [k]^n$ , and  $p = p_1 \dots p_m$ , w contains p if there is  $1 \le i_1 < \dots < i_m \le n$  so that  $w_{i_1} \dots w_{i_m}$  reduces to p.
- Otherwise w avoids p.

## Pattern Avoidance in Words

- Given  $w \in [k]^n$ , and  $p = p_1 \dots p_m$ , w contains p if there is  $1 \le i_1 < \dots < i_m \le n$  so that  $w_{i_1} \dots w_{i_m}$  reduces to p.
- Otherwise w avoids p.
- e.g. 1452213 contains 312 (1452213) 1452213 avoids 212.

## Pattern Avoidance in Words

- Given  $w \in [k]^n$ , and  $p = p_1 \dots p_m$ , w contains p if there is  $1 \le i_1 < \dots < i_m \le n$  so that  $w_{i_1} \dots w_{i_m}$  reduces to p.
- Otherwise w avoids p.
- e.g. 1452213 contains 312 (1452213) 1452213 avoids 212.
- Want to count  $A_{[a_1,...,a_k]}(\{Q\}) := \{w \in [k]^{\sum a_i} \mid w \text{ has } a_i \text{ } i\text{'s}, w \text{ avoids } q \text{ for every } q \in Q\}$

### Outline

- Introduction/History
  - Pattern Avoidance in Words
  - Previous Work
- Prefix Schemes for Words
  - Definitions
  - Examples
  - Success Rate
- Other Schemes for Words
  - Schemes for Monotone Patterns

- Results by...
  - Burstein: initial results, generating functions

- Results by...
  - Burstein: initial results, generating functions
  - Albert, Aldred, Atkinson, Handley, Holton: results for specific 3-letter patterns

- Results by...
  - Burstein: initial results, generating functions
  - Albert, Aldred, Atkinson, Handley, Holton: results for specific 3-letter patterns
  - Brändén, Mansour: automata for enumeration, for specific k

- Results by...
  - Burstein: initial results, generating functions
  - Albert, Aldred, Atkinson, Handley, Holton: results for specific 3-letter patterns
  - Brändén, Mansour: automata for enumeration, for specific k
- Note: most work is for specific patterns, would like a universal technique that works well regardless of pattern or alphabet size

- Results by...
  - Burstein: initial results, generating functions
  - Albert, Aldred, Atkinson, Handley, Holton: results for specific 3-letter patterns
  - Brändén, Mansour: automata for enumeration, for specific k
- Note: most work is for specific patterns, would like a universal technique that works well regardless of pattern or alphabet size
- For permutations, one universal technique is Zeilberger and Vatter's Enumeration Schemes.



## Outline

- Introduction/History
  - Pattern Avoidance in Words
  - Previous Work
- Prefix Schemes for Words
  - Definitions
  - Examples
  - Success Rate
- Other Schemes for Words
  - Schemes for Monotone Patterns

### Refinement

#### Main Idea:

- Can't always directly find a recurrence to count  $A_{[a_1,...,a_k]}(\{Q\})$
- Instead, divide and conquer according to pattern formed by first i letters
- Look for recurrences between these subsets of A<sub>[a<sub>1</sub>,...,a<sub>k</sub>]</sub>({Q})

## **Notation**

When Q is understood,

$$A_{[a_1,\ldots,a_k]}\left(p_1\ldots p_l
ight):=\ \{w\in [k]^{\sum a_l}\mid w \ {\sf has \ prefix}\ p_1\ldots p_l\}$$

## **Notation**

When Q is understood,

$$A_{[a_1,\ldots,a_k]}\left(p_1\ldots p_l\right):=\{w\in [k]^{\sum a_i}\mid w \text{ has prefix } p_1\ldots p_l\}$$

and, for 
$$1 \le i_1 \le \cdots \le i_l \le k$$
,

$$A_{[a_1,\ldots,a_k]} inom{p_1\ldots p_l}{i_1\ldots i_l} := \{w\in [k]^{\sum a_i}\mid w \text{ has prefix } p_1\ldots p_l \text{ and } i_1,\ldots i_l \text{ are the first } l \text{ letters of } w\}$$

## Refinement Example

We have, 
$$A_{[a_1,...,a_k]}() = A_{[a_1,...,a_k]}(1)$$
  
=  $A_{[a_1,...,a_k]}(12) \cup A_{[a_1,...,a_k]}(11) \cup A_{[a_1,...,a_k]}(21)$ 

## Refinement Example

We have, 
$$A_{[a_1,...,a_k]}() = A_{[a_1,...,a_k]}(1)$$
  
=  $A_{[a_1,...,a_k]}(12) \cup A_{[a_1,...,a_k]}(11) \cup A_{[a_1,...,a_k]}(21)$   
or graphically:



## Refinement

#### Main consideration:

for permutations, only permutations appear as prefixes
 e.g. refinements of 1 are 12 and 21

### Refinement

#### Main consideration:

- for permutations, only permutations appear as prefixes
   e.g. refinements of 1 are 12 and 21
- for words, there are many more prefixes
   e.g. refinements of 1 are 12, 21, and 11

• Given a prefix  $p = p_1...p_t$ , position r is reversibly deletable if every possible bad pattern involving  $p_r$  implies another bad pattern without  $p_r$ .

- Given a prefix  $p = p_1...p_t$ , position r is reversibly deletable if every possible bad pattern involving  $p_r$  implies another bad pattern without  $p_r$ .
- For example, avoid q = 123, and let p = 21...

- Given a prefix  $p = p_1...p_t$ , position r is reversibly deletable if every possible bad pattern involving  $p_r$  implies another bad pattern without  $p_r$ .
- For example, avoid q = 123, and let p = 21...

- Given a prefix  $p = p_1...p_t$ , position r is reversibly deletable if every possible bad pattern involving  $p_r$  implies another bad pattern without  $p_r$ .
- For example, avoid q = 123, and let p = 21...

 $p_1 = 2$  is reversibly deletable for q = 123, p = 21.

There is always a natural embedding

$$A_{[a_1,\ldots,a_n]}\begin{pmatrix} p_1\ldots p_l\\ i_1\ldots i_l\end{pmatrix}\to A_{[a_1,\ldots a_j-1,\ldots a_n]}\begin{pmatrix} p_1\ldots \hat{p_r}\ldots p_l\\ i_1\ldots \hat{j}\ldots i_l\end{pmatrix}$$

There is always a natural embedding

$$A_{[a_1,\ldots,a_n]}\begin{pmatrix} p_1\ldots p_l\\ i_1\ldots i_l\end{pmatrix}\to A_{[a_1,\ldots a_j-1,\ldots a_n]}\begin{pmatrix} p_1\ldots \hat{p_r}\ldots p_l\\ i_1\ldots \hat{j}\ldots i_l\end{pmatrix}$$

• If  $p_r$  is reversibly deletable, and the role of  $p_r$  is played by letter j, then

$$|A_{[a_1,\ldots,a_n]}\begin{pmatrix}p_1\ldots p_l\\i_1\ldots i_l\end{pmatrix}|=|A_{[a_1,\ldots a_j-1,\ldots a_n]}\begin{pmatrix}p_1\ldots \hat{p_r}\ldots p_l\\i_1\ldots \hat{j}\ldots i_l\end{pmatrix}|.$$

## Reversibly Deletable Example

For  $Q = \{123\}$ , we have,

$$A_{[a_1,\ldots,a_k]}\begin{pmatrix}21\\ij\end{pmatrix}=A_{[a_1,\ldots,a_j-1,\ldots,a_k]}\begin{pmatrix}1\\i\end{pmatrix}$$

$$A_{[a_1,\ldots,a_k]}\begin{pmatrix}11\\ij\end{pmatrix}=A_{[a_1,\ldots,a_{i-1},\ldots,a_k]}\begin{pmatrix}1\\j\end{pmatrix}$$

## Reversibly Deletable Example

For  $Q = \{123\}$ , we have,

$$A_{[a_1,\ldots,a_k]}\begin{pmatrix}21\\ij\end{pmatrix}=A_{[a_1,\ldots,a_j-1,\ldots,a_k]}\begin{pmatrix}1\\i\end{pmatrix}$$

$$A_{[a_1,\ldots,a_k]}\begin{pmatrix}11\\ij\end{pmatrix}=A_{[a_1,\ldots,a_i-1,\ldots,a_k]}\begin{pmatrix}1\\j\end{pmatrix}$$

or graphically:



#### Main consideration:

 for permutations, reversibly deletable letters can always be removed together

# Reversibly Deletable

#### Main consideration:

- for permutations, reversibly deletable letters can always be removed together
- for words, two letters can be reversibly deletable separately but not together

e.g. 
$$q = 123$$
,  $p = 11$ 

Consider words that avoid q = 123 and begin with prefix p = 12

```
sorted prefix: 1 2 letters involved in prefix: i j vector: <a, b, c>
```

Consider words that avoid q = 123 and begin with prefix p = 12

```
sorted prefix: 1 2
letters involved in prefix: i j
vector: <a, b, c>
```

sorted word: 
$$\underbrace{\cdots}_{\geq a} \underbrace{j \underbrace{\cdots}_{\geq b}}_{\geq c} \underbrace{j \underbrace{\cdots}_{\geq c}}$$

Consider words that avoid q = 123 and begin with prefix p = 12

sorted word: 
$$\underbrace{\cdots}_{\geq a} \underbrace{j \underbrace{\cdots}_{\geq b}}_{\geq c} \underbrace{j \underbrace{\cdots}_{\geq c}}$$

v is a gap vector for p if there are no words avoiding q with prefix p and spacing v.

Consider words that avoid q = 123 and begin with prefix p = 12

sorted word: 
$$\underbrace{\cdots}_{\geq a} \underbrace{j \cdots}_{> b} \underbrace{j \cdots}_{\geq c}$$

v is a gap vector for p if there are no words avoiding q with prefix p and spacing v.

e.g. 
$$v = <0,0,1 >$$
is a gap vector for  $q = 123, p = 12.$ 



## Gap Vector Example

For 
$$Q = \{123\}$$
, we have,  $A_{[a_1,\ldots,a_k]} \begin{pmatrix} 12\\ ij \end{pmatrix} = A_{[a_1,\ldots,a_k]} \begin{pmatrix} 12\\ ik \end{pmatrix} = A_{[a_1,\ldots,a_k-1]} \begin{pmatrix} 1\\ i \end{pmatrix}$ 

## Gap Vector Example

For 
$$Q = \{123\}$$
, we have,  
 $A_{[a_1,...,a_k]} \binom{12}{ij} = A_{[a_1,...,a_k]} \binom{12}{ik} = A_{[a_1,...,a_k-1]} \binom{1}{i}$ 
or graphically:



#### Main consideration:

• for permutations,  means 
$$\underbrace{\cdots}_{>a} \underbrace{i \underbrace{\cdots}_{>b}}_{>c} \underbrace{j \underbrace{\cdots}_{>c}}_{>c}$$

#### Main consideration:

• for permutations, <a,b,c> means  $\underbrace{\cdots}_{\geq a} \underbrace{i \underbrace{\cdots}_{> b}} \underbrace{j \underbrace{\cdots}_{\geq c}}$ 

• for words, 
$$\langle a,b+1,c \rangle$$
 means  $\underbrace{\cdots}_{\geq a} \underbrace{i \underbrace{\cdots}_{\geq b} \underbrace{j \underbrace{\cdots}_{\geq c}}_{\geq c}$ 

#### **Enumeration Schemes**

- Refinements
- Reversibly Deletable Elements
- Gap vectors

can all be found completely automatically, so we have an algorithm to compute an enumeration schemes for words.

## **Implementation**

Maple package mVATTER has the following functions

 SchemeF: input: set of patterns, maximum scheme depth (also faster version with maximum gap weight as input) output: scheme

## **Implementation**

#### Maple package mVATTER has the following functions

- SchemeF: input: set of patterns, maximum scheme depth (also faster version with maximum gap weight as input) output: scheme
- MiklosA, MiklosTot: input: scheme, alphabet output: number of words obeying input

## **Implementation**

#### Maple package mVATTER has the following functions

- SchemeF: input: set of patterns, maximum scheme depth (also faster version with maximum gap weight as input) output: scheme
- MiklosA, MiklosTot: input: scheme, alphabet output: number of words obeying input
- SipurF: input: list of pattern lengths, max scheme depth output: scheme and statistics for every equivalence class of patterns with lengths in list

#### Outline

- Introduction/History
  - Pattern Avoidance in Words
  - Previous Work
- Prefix Schemes for Words
  - Definitions
  - Examples
  - Success Rate
- Other Schemes for Words
  - Schemes for Monotone Patterns

## The Simplest Examples





## **Isomorphic Prefix Schemes**





## **Another Example**



## **Another Example**



#### **Outline**

- Introduction/History
  - Pattern Avoidance in Words
  - Previous Work
- Prefix Schemes for Words
  - Definitions
  - Examples
  - Success Rate
- Other Schemes for Words
  - Schemes for Monotone Patterns



#### **Statistics**

 success rate is bounded above by success rate for permutation schemes

#### **Statistics**

 success rate is bounded above by success rate for permutation schemes

| Pattern Lengths | Permutations | Words      |
|-----------------|--------------|------------|
| [2]             | 1/1 (100%)   | 1/1 (100%) |
| [2,3]           | 1/1 (100%)   | 1/1 (100%) |
| [2,4]           | 1/1 (100%)   | 1/1 (100%) |
| [3]             | 2/2 (100%)   | 2/2 (100%) |
| [3,3]           | 5/5 (100%)   | 6/6 (100%) |
| [3,3,3]         | 5/5 (100%)   | 6/6 (100%) |
| [3,3,3,3]       | 5/5 (100%)   | 6/6 (100%) |
| [3,3,3,3,3]     | 2/2 (100%)   | 2/2 (100%) |

#### **Statistics**

| Pattern Lengths | Permutations  | Words             |
|-----------------|---------------|-------------------|
| [4]             | 2/7 (28.6%)   | 2/8 (25%)         |
| [3,4]           | 17/18 (94.4%) | 9/24 (37.5%)      |
| [3,3,4]         | 23/23 (100%)  | 27/31 (87.1%)     |
| [3,3,3,4]       | 16/16 (100%)  | 20/20 (100%)      |
| [3,3,3,3,4]     | 6/6 (100%)    | 6/6 (100%)        |
| [3,3,3,3,3,4]   | 1/1 (100%)    | 1/1 (100%)        |
| [4,4]           | 29/56 (51.8%) | ?/84 (in process) |
| [3,4,4]         | 92/92 (100%)  | 38/146 (26%)      |
| [3,3,4,4]       | 68/68 (100%)  | 89/103 (86.4%)    |
| [3,3,3,4,4]     | 23/23 (100%)  | 29/29 (100%)      |
| [3,3,3,3,4,4]   | 3/3 (100%)    | 3/3 (100%)        |

#### Avoiding a Pattern With Repeated Letters

- only works to avoid permutation patterns
- Let  $q = q_1 / q_2 / q_3$ , where l is the first repeated letter in q.

## Avoiding a Pattern With Repeated Letters

- only works to avoid permutation patterns
- Let  $q = q_1 / q_2 / q_3$ , where l is the first repeated letter in q.



## Avoiding a Pattern With Repeated Letters

- only works to avoid permutation patterns
- Let  $q = q_1 | q_2 | q_3$ , where l is the first repeated letter in q.





#### **Another Direction**

 Zeilberger's schemes: patterns formed by the first i letters of words

```
(refinement by adding one letter at a time) drawback: only works for permutation-avoiding words
```

#### **Another Direction**

- Zeilberger's schemes: patterns formed by the first i letters of words
   (refinement by adding one letter at a time)
   drawback: only works for permutation-avoiding words
- Vatter's schemes: patterns formed by the smallest i letters of words

```
drawback: 1 \rightarrow 11 \rightarrow 111 \rightarrow \dots is a problem
```

#### **Another Direction**

- Zeilberger's schemes: patterns formed by the first i letters of words (refinement by adding one letter at a time) drawback: only works for permutation-avoiding words
- Vatter's schemes: patterns formed by the smallest i letters of words
  - drawback:  $1 \rightarrow 11 \rightarrow 111 \rightarrow \dots$  is a problem
- Solution: following Vatter, consider the patterns formed by the smallest letters of words
  - BUT refine by adding all copies of a letter simultaneously

#### Outline

- Introduction/History
  - Pattern Avoidance in Words
  - Previous Work
- Prefix Schemes for Words
  - Definitions
  - Examples
  - Success Rate
- Other Schemes for Words
  - Schemes for Monotone Patterns

*Av*(112)

















#### Let

• 
$$A_{[a_1,...,a_k]} := |\{w \in [k]^{\sum a_i} | w \text{ has } a_i \text{ is, } w \text{ avoids } 112\}|$$

#### Let

• 
$$A_{[a_1,...,a_k]} := |\{w \in [k]^{\sum a_i} | w \text{ has } a_i \text{ is, } w \text{ avoids } 112\}|$$

• 
$$B_{[a_1,...,a_k]}^{(i)}:=|\{w\in A_{[a_1,...,a_k]}|$$
 w's first repeated letter is in position  $i\}|$ 

We now have:

$$A_{[a_1,...,a_k]} = \begin{cases} 1 & k = 1 \\ {a_2 + \cdots + a_k + 1 \choose 1} A_{[a_2,...,a_k]} & k > 1, a_1 = 1 \\ B_{[a_2,...,a_k]}^{(2)} & k > 1, a_1 > 1 \end{cases}$$

We now have:

$$A_{[a_1,\dots,a_k]} = \begin{cases} 1 & k = 1 \\ {a_2 + \dots + a_k + 1 \choose 1} A_{[a_2,\dots,a_k]} & k > 1, a_1 = 1 \\ B_{[a_2,\dots,a_k]}^{(2)} & k > 1, a_1 > 1 \end{cases}$$

$$B_{[a_1,\dots,a_k]}^{(i)} = \begin{cases} {i-1+a_1 \choose a_1} & k = 1 \\ i*B_{[a_2,\dots,a_k]}^{(i+1)} & a_1 = 1 \\ \sum_{k=2}^{i+1} (k-1) {i-1-(k-2)+(a_1-2) \choose a_1-2} B_{[a_2,\dots,a_k]}^{(k)} & a_1 > 1 \end{cases}$$

We now have:

$$A_{[a_{1},...,a_{k}]} = \begin{cases} 1 & k = 1 \\ {a_{2} + \cdots + a_{k} + 1 \choose 1} A_{[a_{2},...,a_{k}]} & k > 1, a_{1} = 1 \\ B_{[a_{2},...,a_{k}]}^{(2)} & k > 1, a_{1} > 1 \end{cases}$$

$$B_{[a_{1},...,a_{k}]}^{(i)} = \begin{cases} {i-1+a_{1} \choose a_{1}} & k = 1 \\ {i*B_{[a_{2},...,a_{k}]}^{(i+1)}} & a_{1} = 1 \\ \sum_{k=2}^{i+1} (k-1) {i-1-(k-2)+(a_{1}-2) \choose a_{1}-2} B_{[a_{2},...,a_{k}]}^{(k)} & a_{1} > 1 \end{cases}$$

$$A_{[a_1,...,a_k]} = \prod_{j=2}^k (a_j + \cdots + a_k + 1)$$

# Non-prefix schemes

 This example can be generalized to find a scheme for words avoiding any monotone pattern.

# Non-prefix schemes

- This example can be generalized to find a scheme for words avoiding any monotone pattern.
- Currently exploring extensions to other types of patterns.

 There are few techniques to count large classes of pattern-avoiding words.

- There are few techniques to count large classes of pattern-avoiding words.
- Extending Zeilberger's and Vatter's schemes gives a good success rate for words avoiding permutations and for words avoiding monotone patterns.

- There are few techniques to count large classes of pattern-avoiding words.
- Extending Zeilberger's and Vatter's schemes gives a good success rate for words avoiding permutations and for words avoiding monotone patterns.
- Future work
  - Find other general techniques for enumerating classes of permutation-avoiding words.

- There are few techniques to count large classes of pattern-avoiding words.
- Extending Zeilberger's and Vatter's schemes gives a good success rate for words avoiding permutations and for words avoiding monotone patterns.
- Future work
  - Find other general techniques for enumerating classes of permutation-avoiding words.
  - Simplify schemes to compute more data more quickly.



- There are few techniques to count large classes of pattern-avoiding words.
- Extending Zeilberger's and Vatter's schemes gives a good success rate for words avoiding permutations and for words avoiding monotone patterns.
- Future work
  - Find other general techniques for enumerating classes of permutation-avoiding words.
  - Simplify schemes to compute more data more quickly.
  - Convert concrete enumeration schemes to closed forms.



#### References

- M. Albert, R. Aldred, M.D. Atkinson, C. Handley, D. Holton, Permutations of a multiset avoiding permutations of length 3, Europ. J. Combin. 22, 1021-1031 (2001).
- P. Branden, T. Mansour, Finite automata and pattern avoidance in words, Joural Combinatorial Theory Series A 110:1, 127-145 (2005).
- Alexander Burstein, Enumeration of Words with Forbidden Patterns, Ph.D. Thesis, University of Pennsylvania, 1998.
- Vince Vatter, Enumeration Schemes for Restricted Permutations, Combinatorics, Probability, and Computing, to appear.
- Doron Zeilberger, Enumeration Schemes, and More Importantly, Their Automatic Generation, Annals of Combinatorics 2, 185-195 (1998).
- Doron Zeilberger, On Vince Vatter's Brilliant Extension of Doron Zeilberger's Enumeration Schemes for Herb Wilf's Classes, The Personal Journal of Ekhad and Zeilberger, 2006.
  - http://www.math.rutgers.edu/~zeilberg/pj.html.

