Pattern avoidance in rook monoids

Definitions

Rook Monoids
Avoidance
1d Avoidance
All 0 No 0
patterns
Other patterns
2d Avoidance

> Dan Daly (Southeast Missouri State University) Lara Pudwell (Valparaiso University)

Special Session on Patterns in Permutations and Words Joint Mathematics Meetings 2013

San Diego, California
January 12, 2013

Valparaiso University

Pattern

Definitions

Rook Monoids Avoidance

1d Avoidance
All $0 /$ No 0 patterns
Other patterns
2d Avoidance
Connections to other objects

Conclusion

Rook Monoids

Definition

Let $n \in \mathbb{N}$. The rook monoid \mathcal{R}_{n} is the set of all $n \times n$ $\{0,1\}$-matrices such that each row and each column contains at most one 1.

Example members of \mathcal{R}_{7} :

$$
\left[\begin{array}{lllllll}
0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} \\
0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 \\
0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\
\mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} \\
0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Notice: $n \times n$ permutation matrices are a submonoid of \mathcal{R}_{n}.

Rook Placements

Pattern

- Have an $n \times n$ grid.
- Place k rooks $(0 \leq k \leq n)$ in non-attacking position. (No more than one rook in each row, no more than one rook in each column).

Valparaiso
University

Pattern avoidance in rook monoids

Lara Pudwell

Definitions

Rook Monoids
Avoidance
1d Avoidance
All $0 /$ No 0
patterns
Other patterns
2d Avoidance
Connections
to other
objects
Conclusion

Rook Polynomials

$R_{n}(x)=\sum_{k=0}^{n} r_{n, k} x^{k}$ where $r_{n, k}$ is the number of placements of k rooks on an $n \times n$ board.

Valparaiso
University

Pattern avoidance in rook monoids

Lara Pudwell

Definitions

Rook Monoids
Avoidance
1d Avoidance
All $0 /$ No 0
patterns
Other patterns
2d Avoidance
Connections to other objects

Conclusion

Rook Polynomials

$R_{n}(x)=\sum_{k=0}^{n} r_{n, k} x^{k}$ where $r_{n, k}$ is the number of placements of k rooks on an $n \times n$ board.

$$
R_{1}(x)=x+1
$$

$$
R_{2}(x)=2 x^{2}+4 x+1
$$

$$
R_{3}(x)=6 x^{3}+18 x^{2}+9 x+1
$$

Valparaiso
University

Pattern avoidance in rook monoids

Lara Pudwell

Definitions

Rook Monoids
Avoidance
1d Avoidance
All $0 /$ No 0
patterns
Other patterns
2d Avoidance
Connections
to other
objects
Conclusion

Rook Polynomials

$R_{n}(x)=\sum_{k=0}^{n} r_{n, k} x^{k}$ where $r_{n, k}$ is the number of placements of k rooks on an $n \times n$ board.
$R_{1}(x)=x+1$

$R_{2}(x)=2 x^{2}+4 x+1$

$R_{3}(x)=6 x^{3}+18 x^{2}+9 x+1$

In general $r_{n, k}=\binom{n}{k}^{2} k!$.

Pattern

Lara Pudwell

Definitions

Rook Monoids
Avoidance
1d Avoidance
All $0 /$ No 0
patterns
Other patterns
2d Avoidance
Connections
to other
objects
Conclusion

A new enumeration problem

Known: How many ways can we place k rooks on an $n \times n$ grid?

- $r_{n, k}=\binom{n}{k}^{2} k$!
- $\sum_{n=0}^{\infty} R_{n}(1) \frac{x^{n}}{n!}=\frac{e^{\left(\frac{x}{1-x}\right)}}{1-x}$ Sequence: 2, 7, 34, 209, 1546, 13327, ... (OEIS A002720)

New question: How many ways can we place k rooks on an $n \times n$ grid so they avoid a given smaller rook placement pattern?

Rook Strings

Pattern

Definitions

Rook Monoids
Avoidance
1d Avoidance
All $0 /$ No 0 patterns
Other patterns
2d Avoidance
Connections to other objects

Conclusion
Given an $n \times n$ rook placement, associate a string $r_{1} \cdots r_{n}$ such that:

- If there is a rook in column i, row j, then $r_{i}=j$.
- If column i is empty, then $r_{i}=0$.

Pattern

Rook string avoidance

Definition

Given a rook pattern $q \in \mathcal{R}_{m}$ and any element $r \in \mathcal{R}_{n}, r$ contains q if there exist $1 \leq i_{1}<\cdots<i_{m} \leq n$ such that:

- $q_{j}=0$ if any only if $r_{i_{j}}=0$
- The nonzero members of $r_{i_{1}} \cdots r_{i_{n}}$ are order-isomorphic to the non-zero enties of q.

Otherwise r avoids q.

Example: $3402 \in \mathcal{R}_{4}$

- contains $0,1,01,10,12,21,201$.
- avoids 102 .

Notation

Pattern
avoidance in rook monoids

Lara Pudwell

Definitions

Rook Monoids
Avoidance
1d Avoidance
All $0 /$ No 0
patterns
Other patterns
2d Avoidance
Connections
to other
objects
Conclusion

- $\mathcal{R}_{n}(q)=\left\{r \in \mathcal{R}_{n} \mid r\right.$ avoids $\left.q\right\}$
- $\mathcal{R}_{n, k}(q)=\left\{r \in \mathcal{R}_{n} \mid r\right.$ avoids q, r has k nonzero entries $\}$
- $r_{n}(q)=\left|\mathcal{R}_{n}(q)\right|$
- $r_{n, k}(q)=\left|\mathcal{R}_{n, k}(q)\right|$

For example:

- $\mathcal{R}_{2}(01)=\{00,10,20,12,21\}$
- $\mathcal{R}_{2,0}(01)=\{00\}$
- $\mathcal{R}_{2,1}(01)=\{10,20\}$
- $\mathcal{R}_{2,2}(01)=\{12,21\}$
- $r_{2}(01)=5, r_{2,0}(01)=1, r_{2,1}(01)=2, r_{2,2}(01)=2$

Pattern
avoidance in
rook monoids
Lara Pudwell

Definitions

Rook Monoids
Avoidance
1d Avoidance
All $0 /$ No 0
patterns
Other patterns
2d Avoidance
Connections
to other
objects
Conclusion

r avoids $\underbrace{0 \cdots 0}_{j}$

$\Longleftrightarrow r$ has at most $j-10$ s.
$\Longleftrightarrow r$ has at least $n-j+1$ nonzero entries.
$r_{n, k}(\underbrace{0 \cdots 0}_{j})= \begin{cases}r_{n, k}=\binom{n}{k}^{2} k! & k \geq n-j+1 \\ 0 & k<n-j+1\end{cases}$

Pattern

avoidance in
rook monoids
Lara Pudwell

Definitions

Rook Monoids
Avoidance
1d Avoidance
All $0 /$ No 0
patterns
Other patterns
2d Avoidance
Connections
to other
objects
Conclusion

$$
r_{n}(\underbrace{0 \cdots 0}_{j})=\sum_{k=n-j+1}^{n}\binom{n}{k}^{2} k!
$$

In particular:

$$
\begin{aligned}
& r_{n}(0)=\sum_{k=n}^{n}\binom{n}{k}^{2} k!=n! \\
& r_{n}(00)=\sum_{k=n-1}^{n}\binom{n}{k}^{2} k!=(n+1)!
\end{aligned}
$$

Valparaiso University

Pattern

avoidance in
rook monoids
Lara Pudwell

Definitions

Rook Monoids
Avoidance
1d Avoidance
All $0 /$ No 0
patterns
Other patterns
2d Avoidance
Connections to other objects

Conclusion

The pattern $0 \cdots 0$

$$
r_{n}(\underbrace{0 \cdots 0}_{j})=\sum_{k=n-j+1}^{n}\binom{n}{k}^{2} k!
$$

In particular:

$$
\begin{aligned}
& r_{n}(0)=\sum_{k=n}^{n}\binom{n}{k}^{2} k!=n! \\
& r_{n}(00)=\sum_{k=n-1}^{n}\binom{n}{k}^{2} k!=(n+1)!
\end{aligned}
$$

In general for fixed j

$$
\sum_{n=0}^{\infty} r_{n}(\underbrace{0 \cdots 0}_{j}) \frac{x^{n}}{n!}=\sum_{i=1}^{j} \frac{x^{i-1}}{(i-1)!(1-x)^{i}}
$$

Pattern avoidance in rook monoids

Lara Pudwell

Definitions

Rook Monoids
Avoidance
1d Avoidance
All $0 /$ No 0
patterns
Other patterns
2d Avoidance
Connections
to other
objects
Conclusion

Consider $\rho \in \mathcal{S}_{j}$.
Then $r_{n, k}(\rho)=\binom{n}{k}^{2} s_{k}(\rho)$ and $r_{n}(\rho)=\sum_{k=0}^{n}\binom{n}{k}^{2} s_{k}(\rho)$

Permutation patterns

Valparaiso
University

Pattern

Definitions

Rook Monoids Avoidance

1d Avoidance
Consider $\rho \in \mathcal{S}_{j}$.
Then $r_{n, k}(\rho)=\binom{n}{k}^{2} s_{k}(\rho)$ and $r_{n}(\rho)=\sum_{k=0}^{n}\binom{n}{k}^{2} s_{k}(\rho)$

We have:
$r_{n}(1)=\sum_{k=0}^{n}\binom{n}{k}^{2} s_{k}(1)=\binom{n}{0} s_{0}(1)=1$
$r_{n}(12)=r_{n}(21)=\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$ (OEIS A000984)
For $\rho \in \mathcal{S}_{3}$,
$r_{n}(\rho)=\sum_{k=0}^{n}\binom{n}{k}^{2} C_{k}$ where $C_{k}=\frac{\binom{2 k}{k}}{(k+1)}$ (OEIS A086618)

Small patterns

Pattern avoidance in rook monoids

Lara Pudwell

Definitions

Rook Monoids
Avoidance
1d Avoidance
All $0 /$ No 0
patterns
Other patterns
2d Avoidance
Connections
to other
objects
Conclusion

Rook patterns of length 3 or less include:

- 0,1
- 00, 01, 10, 12, 21
- 000, 001, 010, 100, 012, 102, 120, 021, 201, 210, 123, 132, 213, 231, 312, 321

Small patterns

Pattern avoidance in rook monoids

Lara Pudwell

Definitions

Rook Monoids
Avoidance
1d Avoidance
All $0 /$ No 0
patterns
Other patterns
2d Avoidance
Connections
to other
objects
Conclusion

Rook patterns of length 3 or less include:

- 0,1
- 00, 01, 10, 12, 21
- 000, 001, 010, 100, 012, 102, 120, 021, 201, 210, 123, 132, 213, 231, 312, 321

We have seen how to enumerate patterns with all 0 s and patterns with no zeros.

Pattern

Small patterns

Rook patterns of length 3 or less include:

- 0,1
- 00, 01, 10, 12, 21
- 000, 001, 010, 100, 012, 102, 120, 021, 201, 210, 123, 132, 213, 231, 312, 321

We have seen how to enumerate patterns with all 0 s and patterns with no zeros.
$r_{n}(p)=r_{n}(q)$ if rook placement p can be obtained from q by the action of the dihedral group on the $n \times n$ square (then reducing non-zero entries).

Pattern

Small patterns

Rook patterns of length 3 or less include:

- 0,1
- 00, 01, 10, 12, 21
- 000, 001, 010, 100, 012, 102, 120, 021, 201, 210, 123, 132, 213, 231, 312, 321

We have seen how to enumerate patterns with all 0 s and patterns with no zeros.
$r_{n}(p)=r_{n}(q)$ if rook placement p can be obtained from q by the action of the dihedral group on the $n \times n$ square (then reducing non-zero entries).
$r_{n}(001)=r_{n}(010)=r_{n}(100)$.

The pattern 01

Valparaiso
University

Pattern

 avoidance in rook monoidsLara Pudwell

Definitions

Rook Monoids

Avoidance

1d Avoidance
All $0 /$ No 0
patterns
Other patterns
2d Avoidance
Connections
to other
objects
Conclusion

$\mathrm{n} \backslash \mathrm{k}$	0	1	2	3	4	5	6	total
1	1	1						2
2	1	2	2					5
3	1	3	6	6				16
4	1	4	12	24	24			65
5	1	5	20	60	120	120		326
6	1	6	30	120	360	720	720	1957

$$
r_{n, k}(01)=\binom{n}{k} k!=\frac{n!}{(n-k)!}
$$

$$
\sum_{n=0}^{\infty} r_{n}(01) \frac{x^{n}}{n!}=\frac{e^{x}}{1-x}(\text { OEIS A000522) }
$$

The pattern 001

Valparaiso
University

Pattern

 avoidance in rook monoidsLara Pudwell

Definitions
Rook Monoids

Avoidance

1d Avoidance
All $0 /$ No 0
patterns
Other patterns
2d Avoidance
Connections to other objects

Conclusion

$\mathrm{n} \backslash \mathrm{k}$	0	1	2	3	4	5	6	total
1	1	1						2
2	1	4	2					7
3	1	6	18	6				31
4	1	8	36	96	24			165
5	1	10	60	240	600	120		1031
6	1	12	90	480	1800	4320	720	7423

$$
r_{n, k}(001)= \begin{cases}\binom{n}{k}^{2} k! & k \geq n-1 \\ \binom{n}{k}(k+1)! & k \leq n-2\end{cases}
$$

$$
\sum_{n=0}^{\infty} r_{n}(001) \frac{x^{n}}{n!}=\frac{e^{x}-x}{(1-x)^{2}}(\text { OEIS A193657) }
$$

The pattern 012

Valparaiso
University

Pattern

 avoidance in rook monoidsLara Pudwell

Definitions
Rook Monoids

Avoidance

1d Avoidance
All $0 /$ No 0
patterns
Other patterns
2d Avoidance
Connections
to other
objects
Conclusion

$\mathrm{n} \backslash \mathrm{k}$	0	1	2	3	4	5	6	total
1	1	1						2
2	1	4	2					7
3	1	9	15	6				31
4	1	16	54	64	24			159
5	1	25	140	310	325	120		921
6	1	36	300	1040	1935	1956	720	5988

$$
r_{n, k}(012)= \begin{cases}n! & k=n \\ \sum_{j=1}^{k+1}\binom{n-j}{n-k-1}\binom{n}{k}\binom{k}{j-1}(j-1)! & k \leq n-1\end{cases}
$$

The pattern 102

Valparaiso
University

Pattern avoidance in rook monoids

Lara Pudwell

Definitions
Rook Monoids

Avoidance

1d Avoidance
All $0 /$ No 0
patterns
Other patterns
2d Avoidance
Connections
to other
objects
Conclusion

$\mathrm{n} \backslash \mathrm{k}$	0	1	2	3	4	5	6	total
1	1	1						2
2	1	4	2					7
3	1	9	15	6				31
4	1	16	54	64	24			159
5	1	25	140	310	320	120		916
6	1	36	300	1040	1890	1872	720	5859

$r_{n, k}(102)= \begin{cases}n! & k=n \\ \sum_{P}\binom{n}{k}(\Delta P)! & k \leq n-1\end{cases}$
where the sum is over sets $P=\left\{p_{1}, \ldots, p_{n-k}\right\} \subset\{1, \ldots, n\}$ where $1 \leq p_{1}<p_{2}<\cdots<p_{n-k} \leq n$.
$(\Delta P)!:=$
$\left(p_{1}-1\right)!\left(p_{2}-p_{1}-1\right)!\cdots\left(p_{n-k}-p_{n-k-1}-1\right)!\left(n-p_{n-k}\right)!$

Length 4 and beyond

Pattern avoidance in rook monoids

Lara Pudwell

Definitions

Rook Monoids Avoidance

1d Avoidance
All $0 /$ No 0
patterns
Other patterns
2d Avoidance
Connections
to other
objects
Conclusion

- Have enumeration scheme algorithm programmed in Maple
- Input: set of rook patterns
- Output: encoding for system of recurrences enumerating rook placements avoiding those patterns
- Recurrence determined completely algorithmically
- Once a scheme is found, can compute $r_{n}(p)$ and $r_{n, k}(p)$ for n as large as 30 or 40.
- Using scheme data, have determined closed form for

$$
\sum_{n=0}^{\infty} r_{n}(0 \cdots 0) \frac{x^{n}}{n!} \text { and } \sum_{n=0}^{\infty} r_{n}(0 \cdots 01) \frac{x^{n}}{n!}
$$

Pattern

Definition

Rook placement R (on an $n \times n$ board) contains rook placement r (on a $m \times m$ board) if there exist m rows and m columns of R such that

- If R is restricted to those m columns, the empty columns equal the empty columns of r.
- If R is restricted to those m rows, the empty rows equal the empty rows of r.
- R restricted to those m rows and m columns is equal to r.
Cata (ary

Alternate rook pattern definition

Example:

and

2d enumeration data

Pattern

Lara Pudwell

Definitions

Rook Monoids Avoidance

1d Avoidance
All 0/No 0 patterns
Other patterns
2d Avoidance
Connections
to other
objects
Conclusion

Notation

$r_{n}^{*}(p)$ is the number of $n \times n$ rook placements avoiding pattern p in the 2-dimensional sense.

Note: $r_{n}^{*}(p)=r_{n}(p)$ if p has all 0 s or p has no 0 s .
$r_{n}^{*}(p)$ for small 2-dimensional rook patterns

$\mathrm{p} \backslash \mathrm{n}$	1	2	3	4	5	6	OEIS
01	2	6	23	108	605	3956	A093345
001	2	7	33	191	1299	10119	new
012	2	7	31	159	921	5988	new
102	2	7	31	159	916	5859	new

rc-invariant avoidance

Pattern

Definitions

Rook Monoids
Avoidance
1d Avoidance
All $0 /$ No 0
patterns
Other patterns
2d Avoidance
Connections to other objects

- $r_{n}(321)=r_{n}^{*}(321)=\sum_{k=0}^{n}\binom{n}{k}^{2} C_{k}$ (OEIS A086618)
- Is equal to the number of permutations of length $2 n$ which avoid the pattern 4321 and are invariant under the reverse-complement map (Egge, 2010).
- Have bijective proof.

Signed pattern avoidance

Pattern avoidance in rook monoids Lara Pudwell

Definitions

Rook Monoids
Avoidance
1d Avoidance
All $0 /$ No 0
patterns
Other patterns
2d Avoidance
Connections to other objects

Conclusion
$r_{n}^{*}(\square)$ is the number of $\{12, \overline{2} 1\}$-avoiding signed permutations (studied by Mansour and West in 2002).

Example: $r_{2}^{*}(\square \bullet)=6$

The six $\{12, \overline{2} 1\}$-avoiding signed permutations are:

$$
\overline{1} 2, \quad 1 \overline{2}, \quad \overline{12}, \quad 21, \quad 2 \overline{1}, \quad \overline{21}
$$

Another B_{n} sighting

Pattern

Definitions

Rook Monoids
Avoidance
1d Avoidance
All $0 /$ No 0
patterns
Other patterns
2d Avoidance
Connections to other objects

Conclusion

- $r_{n}(000)=r_{n}^{*}(000)=\frac{(n+2)!}{4}+\frac{n!}{2}$ (OEIS A006595)
- OEIS: this is number of A-reducible ($\overline{12}$ and $1 \overline{32}$ avoiding) elements of B_{n} (Stembridge, 1997).
- Have bijective proof.
- Rook monoids provide a natural generalization of permutations.
- The enumeration of rook placements is well-known, but pattern-avoiding rook placements provide a plethora of new enumeration questions.
- Rook placements avoiding one-dimensional patterns can be enumerated via automated enumeration schemes.
- Less is known about two-dimensional avoidance.
- Connections exist to special cases of other pattern-avoidance problems.

Definitions

Rook Monoids
Avoidance
1d Avoidance
All $0 /$ No 0
patterns
Other patterns

Thank You!

2d Avoidance
Connections
to other
objects
Conclusion

References

Pattern

Definitions

Rook Monoids
Avoidance
1d Avoidance
All $0 /$ No 0
patterns
Other patterns
2d Avoidance
Connections to other objects

Conclusion

- E. Egge, Enumerating rc-Invariant Permutations with No Long Decreasing Subsequences, Annals of Combinatorics, vol. 14, pp. 85-101, 2010.
- T. Mansour and J. West, Avoiding 2-letter signed patterns, Séminaire Lotharingien de Combinatoire 49 (2002), Article B49a.
- J. R. Stembridge, Some combinatorial aspects of reduced words in finite Coxeter groups. Trans. Amer. Math. Soc. 349 (1997), no. 4, 1285-1332.

