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Rook Monoids

Definition

Let n ∈ N. The rook monoid Rn is the set of all n × n
{0, 1}-matrices such that each row and each column contains
at most one 1.

Example members of R7:



0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0





0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0



Notice: n × n permutation matrices are a submonoid of Rn.
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Rook Placements

Have an n × n grid.

Place k rooks (0 ≤ k ≤ n) in non-attacking position.
(No more than one rook in each row, no more than one
rook in each column).
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Rook Polynomials

Rn(x) =
∑n

k=0 rn,kx
k where rn,k is the number of placements

of k rooks on an n × n board.

R1(x) = x + 1

R2(x) = 2x2 + 4x + 1

R3(x) = 6x3 + 18x2 + 9x + 1

In general rn,k =
(n
k

)2
k!.
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A new enumeration problem

Known: How many ways can we place k rooks on an n × n
grid?

rn,k =
(n
k

)2
k!

∞∑
n=0

Rn(1)
xn

n!
=

e( x
1−x )

1− x

Sequence: 2, 7, 34, 209, 1546, 13327, . . . (OEIS A002720)

New question: How many ways can we place k rooks on an
n × n grid so they avoid a given smaller rook placement
pattern?
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Rook Strings

Given an n × n rook placement, associate a string r1 · · · rn such
that:

If there is a rook in column i , row j , then ri = j .

If column i is empty, then ri = 0.

2473156 0000000 3105006
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Rook string avoidance

Definition

Given a rook pattern q ∈ Rm and any element r ∈ Rn, r
contains q if there exist 1 ≤ i1 < · · · < im ≤ n such that:

qj = 0 if any only if rij = 0

The nonzero members of ri1 · · · rin are order-isomorphic to
the non-zero enties of q.

Otherwise r avoids q.

Example: 3402 ∈ R4

contains 0, 1, 01, 10, 12, 21, 201.

avoids 102.
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Notation

Rn(q) = {r ∈ Rn | r avoids q}
Rn,k(q) = {r ∈ Rn | r avoids q, r has k nonzero entries}
rn(q) = |Rn(q)|
rn,k(q) = |Rn,k(q)|

For example:

R2(01) = {00, 10, 20, 12, 21}

R2,0(01) = {00}
R2,1(01) = {10, 20}
R2,2(01) = {12, 21}

r2(01) = 5, r2,0(01) = 1, r2,1(01) = 2, r2,2(01) = 2
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The pattern 0 · · · 0

r avoids 0 · · · 0︸ ︷︷ ︸
j

⇐⇒ r has at most j − 1 0s.
⇐⇒ r has at least n − j + 1 nonzero entries.

rn,k(0 · · · 0︸ ︷︷ ︸
j

) =

{
rn,k =

(n
k

)2
k! k ≥ n − j + 1

0 k < n − j + 1
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The pattern 0 · · · 0

rn(0 · · · 0︸ ︷︷ ︸
j

) =
n∑

k=n−j+1

(
n

k

)2

k!

In particular:
rn(0) =

∑n
k=n

(n
k

)2
k! = n!

rn(00) =
∑n

k=n−1

(n
k

)2
k! = (n + 1)!

In general for fixed j

∞∑
n=0

rn(0 · · · 0︸ ︷︷ ︸
j

)
xn

n!
=

j∑
i=1

x i−1

(i − 1)!(1− x)i
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Permutation patterns

Consider ρ ∈ Sj .

Then rn,k(ρ) =
(n
k

)2
sk(ρ) and rn(ρ) =

n∑
k=0

(n
k

)2
sk(ρ)

We have:

rn(1) =
n∑

k=0

(n
k

)2
sk(1) =

(n
0

)
s0(1) = 1

rn(12) = rn(21) =
n∑

k=0

(n
k

)2
=
(2n
n

)
(OEIS A000984)

For ρ ∈ S3,

rn(ρ) =
n∑

k=0

(n
k

)2
Ck where Ck =

(2k
k

)
(k + 1)

(OEIS A086618)
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Small patterns

Rook patterns of length 3 or less include:

0,1

00, 01, 10, 12, 21

000, 001, 010, 100, 012, 102, 120, 021, 201, 210, 123,
132, 213, 231, 312, 321
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Small patterns

Rook patterns of length 3 or less include:

0,1

00, 01, 10, 12, 21

000, 001, 010, 100, 012, 102, 120, 021, 201, 210, 123,
132, 213, 231, 312, 321

We have seen how to enumerate patterns with all 0s and
patterns with no zeros.
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Small patterns

Rook patterns of length 3 or less include:

0,1

00, 01, 10, 12, 21

000, 001, 010, 100, 012, 102, 120, 021, 201, 210, 123,
132, 213, 231, 312, 321

We have seen how to enumerate patterns with all 0s and
patterns with no zeros.

rn(p) = rn(q) if rook placement p can be obtained from q by
the action of the dihedral group on the n × n square (then
reducing non-zero entries).
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Small patterns

Rook patterns of length 3 or less include:

0,1

00, 01, 10, 12, 21

000, 001, 010, 100, 012, 102, 120, 021, 201, 210, 123,
132, 213, 231, 312, 321

We have seen how to enumerate patterns with all 0s and
patterns with no zeros.

rn(p) = rn(q) if rook placement p can be obtained from q by
the action of the dihedral group on the n × n square (then
reducing non-zero entries).

rn(001) = rn(010) = rn(100).
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The pattern 01

n\ k 0 1 2 3 4 5 6 total

1 1 1 2
2 1 2 2 5
3 1 3 6 6 16
4 1 4 12 24 24 65
5 1 5 20 60 120 120 326
6 1 6 30 120 360 720 720 1957

rn,k(01) =
(n
k

)
k! =

n!

(n − k)!

∞∑
n=0

rn(01)
xn

n!
=

ex

1− x
(OEIS A000522)
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The pattern 001

n\ k 0 1 2 3 4 5 6 total

1 1 1 2
2 1 4 2 7
3 1 6 18 6 31
4 1 8 36 96 24 165
5 1 10 60 240 600 120 1031
6 1 12 90 480 1800 4320 720 7423

rn,k(001) =

{(n
k

)2
k! k ≥ n − 1(n

k

)
(k + 1)! k ≤ n − 2

∞∑
n=0

rn(001)
xn

n!
=

ex − x

(1− x)2
(OEIS A193657)
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The pattern 012

n\ k 0 1 2 3 4 5 6 total

1 1 1 2
2 1 4 2 7
3 1 9 15 6 31
4 1 16 54 64 24 159
5 1 25 140 310 325 120 921
6 1 36 300 1040 1935 1956 720 5988

rn,k(012) =


n! k = n
k+1∑
j=1

( n−j
n−k−1

)(n
k

)( k
j−1

)
(j − 1)! k ≤ n − 1
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The pattern 102

n\ k 0 1 2 3 4 5 6 total

1 1 1 2
2 1 4 2 7
3 1 9 15 6 31
4 1 16 54 64 24 159
5 1 25 140 310 320 120 916
6 1 36 300 1040 1890 1872 720 5859

rn,k(102) =

{
n! k = n∑

P

(n
k

)
(∆P)! k ≤ n − 1

where the sum is over sets P = {p1, . . . , pn−k} ⊂ {1, . . . , n}
where 1 ≤ p1 < p2 < · · · < pn−k ≤ n.
(∆P)! :=
(p1 − 1)!(p2 − p1 − 1)! · · · (pn−k − pn−k−1 − 1)!(n − pn−k)!
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Length 4 and beyond

Have enumeration scheme algorithm programmed in
Maple

Input: set of rook patterns
Output: encoding for system of recurrences enumerating
rook placements avoiding those patterns
Recurrence determined completely algorithmically
Once a scheme is found, can compute rn(p) and rn,k(p) for
n as large as 30 or 40.

Using scheme data, have determined closed form for
∞∑
n=0

rn(0 · · · 0)
xn

n!
and

∞∑
n=0

rn(0 · · · 01)
xn

n!
.
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Alternate rook pattern definition

Definition

Rook placement R (on an n × n board) contains rook
placement r (on a m ×m board) if there exist m rows and m
columns of R such that

If R is restricted to those m columns, the empty columns
equal the empty columns of r .

If R is restricted to those m rows, the empty rows equal
the empty rows of r .

R restricted to those m rows and m columns is equal to r .

Example:

contains and but avoids
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2d enumeration data

Notation

r∗n (p) is the number of n × n rook placements avoiding pattern
p in the 2-dimensional sense.

Note: r∗n (p) = rn(p) if p has all 0s or p has no 0s.

r∗n (p) for small 2-dimensional rook patterns

p \ n 1 2 3 4 5 6 OEIS

01 2 6 23 108 605 3956 A093345
001 2 7 33 191 1299 10119 new
012 2 7 31 159 921 5988 new
102 2 7 31 159 916 5859 new
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rc-invariant avoidance

rn(321) = r∗n (321) =
n∑

k=0

(
n

k

)2

Ck (OEIS A086618)

Is equal to the number of permutations of length 2n which
avoid the pattern 4321 and are invariant under the
reverse-complement map (Egge, 2010).
Have bijective proof.



Pattern
avoidance in
rook monoids

Lara Pudwell

Definitions

Rook Monoids

Avoidance

1d Avoidance

All 0/No 0
patterns

Other patterns

2d Avoidance

Connections
to other
objects

Conclusion

Signed pattern avoidance

r∗n

( )
is the number of {12, 21}-avoiding signed

permutations (studied by Mansour and West in 2002).

Example: r∗2

( )
= 6

The six {12, 21}-avoiding signed permutations are:

12, 12, 12, 21, 21, 21
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Another Bn sighting

rn(000) = r∗n (000) =
(n + 2)!

4
+

n!

2
(OEIS A006595)

OEIS: this is number of A-reducible (12 and 132 avoiding)
elements of Bn (Stembridge, 1997).
Have bijective proof.
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Summary

Rook monoids provide a natural generalization of
permutations.

The enumeration of rook placements is well-known, but
pattern-avoiding rook placements provide a plethora of
new enumeration questions.

Rook placements avoiding one-dimensional patterns can
be enumerated via automated enumeration schemes.

Less is known about two-dimensional avoidance.

Connections exist to special cases of other
pattern-avoidance problems.
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Thank You!
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