How to Cleverly Count Pattern-Avoiding Words

Lara Pudwell

Rutgers University

San Diego Joint Math Meetings January 8, 2008

イロト イポト イヨト イヨト

æ

Outline

Background

- Pattern Avoidance in Words
- Previous Work

Prefix Schemes for Words

- Definitions
- Examples
- Success Rate

∃ > < ∃ >

ъ

Reduction

• Given a string of letters $q = q_1 \cdots q_n$, the reduction of q is the string obtained by replacing the *i*th smallest letter(s) of q with *i*.

くロト (過) (目) (日)

э

Reduction

- Given a string of letters $q = q_1 \cdots q_n$, the reduction of q is the string obtained by replacing the *i*th smallest letter(s) of q with *i*.
- For example, the reduction of 2674425 is

イロト イポト イヨト イヨト

Reduction

- Given a string of letters q = q₁ ··· q_n, the reduction of q is the string obtained by replacing the *ith* smallest letter(s) of q with *i*.
- For example, the reduction of 2674425 is 1••••1•.

イロト イポト イヨト イヨト

Reduction

- Given a string of letters q = q₁ · · · q_n, the reduction of q is the string obtained by replacing the *ith* smallest letter(s) of q with *i*.
- For example, the reduction of 2674425 is 1••221•.

イロト イポト イヨト イヨト

Reduction

- Given a string of letters q = q₁ ··· q_n, the reduction of q is the string obtained by replacing the *ith* smallest letter(s) of q with *i*.
- For example, the reduction of 2674425 is 1••2213.

イロト イポト イヨト イヨト

Reduction

- Given a string of letters $q = q_1 \cdots q_n$, the reduction of q is the string obtained by replacing the *i*th smallest letter(s) of q with *i*.
- For example, the reduction of 2674425 is 14•2213.

イロト イポト イヨト イヨト

Reduction

- Given a string of letters $q = q_1 \cdots q_n$, the reduction of q is the string obtained by replacing the *i*th smallest letter(s) of q with *i*.
- For example, the reduction of 2674425 is 1452213.

(本間) (本語) (本語)

Pattern Avoidance in Words Previous Work

Pattern Avoidance in Words

• Given strings $w = w_1 \cdots w_n$ and $q = q_1 \cdots q_m$, w contains q as a pattern if there is $1 \le i_1 < \cdots < i_m \le n$ so that $w_{i_1} \cdots w_{i_m}$ reduces to q.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Pattern Avoidance in Words Previous Work

Pattern Avoidance in Words

- Given strings $w = w_1 \cdots w_n$ and $q = q_1 \cdots q_m$, w contains q as a pattern if there is $1 \le i_1 < \cdots < i_m \le n$ so that $w_{i_1} \cdots w_{i_m}$ reduces to q.
- Otherwise *w* avoids *q*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Pattern Avoidance in Words Previous Work

Pattern Avoidance in Words

- Given strings $w = w_1 \cdots w_n$ and $q = q_1 \cdots q_m$, w contains q as a pattern if there is $1 \le i_1 < \cdots < i_m \le n$ so that $w_{i_1} \cdots w_{i_m}$ reduces to q.
- Otherwise *w* avoids *q*.
- 1452213 contains 312 (1452213)

ヘロン 人間 とくほ とくほ とう

э.

Pattern Avoidance in Words Previous Work

Pattern Avoidance in Words

- Given strings $w = w_1 \cdots w_n$ and $q = q_1 \cdots q_m$, w contains q as a pattern if there is $1 \le i_1 < \cdots < i_m \le n$ so that $w_{i_1} \cdots w_{i_m}$ reduces to q.
- Otherwise *w* avoids *q*.
- 1452213 contains 312 (1452213) 1452213 avoids 212.

ヘロン 人間 とくほ とくほ とう

э.

Pattern Avoidance in Words Previous Work

Pattern Avoidance in Words

• Easy Question: Fix w. What patterns are contained in w?

イロト イポト イヨト イヨト

3

Pattern Avoidance in Words Previous Work

Pattern Avoidance in Words

Easy Question: Fix *w*. What patterns are contained in *w*?
 w = 14522 contains 1, 12, 11, 21, 122, 123, 132, 211, 231, 1322, 1342, 2311, and 13422 as patterns.

イロト イ押ト イヨト イヨトー

Pattern Avoidance in Words Previous Work

Pattern Avoidance in Words

- Easy Question: Fix *w*. What patterns are contained in *w*?
 w = 14522 contains 1, 12, 11, 21, 122, 123, 132, 211, 231, 1322, 1342, 2311, and 13422 as patterns.
- Hard Question: Fix q.

Enumerate $A_{[a_1,...,a_k],Q} := \{w \in [k]^{\sum a_i} \mid w \text{ has } a_i \text{ i's, } w \text{ avoids } q \text{ for every } q \in Q\}$

ヘロン 人間 とくほ とくほ とう

Pattern Avoidance in Words Previous Work

Previous Work for Words

- For words, results by...
 - Burstein: initial results, generating functions

ヘロト 人間 ト ヘヨト ヘヨト

3

Pattern Avoidance in Words Previous Work

Previous Work for Words

For words, results by...

- Burstein: initial results, generating functions
- Albert, Aldred, Atkinson, Handley, Holton: results for specific 3-letter patterns

くロト (過) (目) (日)

æ

Pattern Avoidance in Words Previous Work

Previous Work for Words

For words, results by...

- Burstein: initial results, generating functions
- Albert, Aldred, Atkinson, Handley, Holton: results for specific 3-letter patterns
- Brändén, Mansour: automata for enumeration, for specific k

イロト イポト イヨト イヨト

Pattern Avoidance in Words Previous Work

Previous Work for Words

For words, results by...

- Burstein: initial results, generating functions
- Albert, Aldred, Atkinson, Handley, Holton: results for specific 3-letter patterns
- Brändén, Mansour: automata for enumeration, for specific k
- Note: most work is for *specific* patterns; would like a universal technique that works well regardless of pattern or alphabet size

イロト イポト イヨト イヨト

Pattern Avoidance in Words Previous Work

Previous Work for Words

- For words, results by...
 - Burstein: initial results, generating functions
 - Albert, Aldred, Atkinson, Handley, Holton: results for specific 3-letter patterns
 - Brändén, Mansour: automata for enumeration, for specific k
- Note: most work is for *specific* patterns; would like a universal technique that works well regardless of pattern or alphabet size
- For permutations, one *universal* technique is Zeilberger and Vatter's enumeration schemes.

ヘロト ヘ戸ト ヘヨト ヘヨト

Refinement

Main Idea:

Can't always directly find a recurrence to count A_{[a1,...,ak],Q}

Definitions

- Instead, divide and conquer according to pattern formed by first *i* letters
- Look for recurrences between these subsets of A_{[a1,...,ak],Q}

イロト イポト イヨト イヨト

 Background Prefix Schemes for Words Summary
 Definitions Examples Success Rate

 Notation

When *Q* is understood, $A_{[a_1,...,a_k]}(p_1 \cdots p_l) := \{ w \in [k]^{\sum a_i} \mid w \text{ has prefix } p_1 \cdots p_l \}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Background Definitions Prefix Schemes for Words Examples Summary Success Rate

Notation

When *Q* is understood, $A_{[a_1,...,a_k]}(p_1 \cdots p_l) := \{ w \in [k]^{\sum a_i} \mid w \text{ has prefix } p_1 \cdots p_l \}$

and, for
$$1 \le i_1 \le \dots \le i_l \le k$$
,
 $A_{[a_1,\dots,a_k]}\begin{pmatrix} p_1 \dots p_l \\ i_1 \dots i_l \end{pmatrix} := \{w \in [k]^{\sum a_i} \mid w \text{ has prefix } p_1 \dots p_l \text{ and} i_1,\dots,i_l \text{ are the first } l \text{ letters of } w\}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

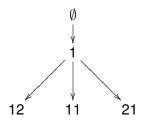
Definitions Examples Success Rate

Refinement Example

We have,
$$A_{[a_1,...,a_k]}() = A_{[a_1,...,a_k]}(1)$$

= $A_{[a_1,...,a_k]}(12) \cup A_{[a_1,...,a_k]}(11) \cup A_{[a_1,...,a_k]}(21)$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○


Ξ.

Definitions Examples Success Rate

Refinement Example

We have,
$$A_{[a_1,...,a_k]}() = A_{[a_1,...,a_k]}(1)$$

= $A_{[a_1,...,a_k]}(12) \cup A_{[a_1,...,a_k]}(11) \cup A_{[a_1,...,a_k]}(21)$

or graphically:

문어 세 문어

< 🗇 ▶

æ

Definitions Examples Success Rate

Reversibly Deletable

• Given a prefix $p = p_1 \cdots p_t$, position *r* is reversibly deletable if every possible bad pattern involving p_r implies another bad pattern without p_r .

イロト イポト イヨト イヨト

Definitions Examples Success Rate

Reversibly Deletable

- Given a prefix $p = p_1 \cdots p_t$, position *r* is reversibly deletable if every possible bad pattern involving p_r implies another bad pattern without p_r .
- For example, avoid q = 123, and let p = 21.

21 · · · *a* · · · *b*

くロト (過) (目) (日)

Definitions Examples Success Rate

Reversibly Deletable

- Given a prefix $p = p_1 \cdots p_t$, position *r* is reversibly deletable if every possible bad pattern involving p_r implies another bad pattern without p_r .
- For example, avoid q = 123, and let p = 21.

21 ··· *a*··· *b* 21 ··· *a*··· *b*

くロト (過) (目) (日)

Definitions Examples Success Rate

Reversibly Deletable

- Given a prefix $p = p_1 \cdots p_t$, position *r* is reversibly deletable if every possible bad pattern involving p_r implies another bad pattern without p_r .
- For example, avoid q = 123, and let p = 21.

21 ··· *a*··· *b* 21 ··· *a*··· *b*

 $p_1 = 2$ is reversibly deletable for q = 123, p = 21.

ヘロト 人間 ト ヘヨト ヘヨト

Definitions Examples Success Rate

Reversibly Deletable

• There is always a natural embedding

$$A_{[a_1,\ldots,a_n]}\begin{pmatrix}p_1\cdots p_l\\i_1\cdots i_l\end{pmatrix} \to A_{[a_1,\ldots,a_j-1,\ldots,a_n]}\begin{pmatrix}p_1\cdots \hat{p_r}\cdots p_l\\i_1\cdots \hat{j}\cdots i_l\end{pmatrix}$$

ヘロト ヘワト ヘビト ヘビト

э

Definitions Examples Success Rate

Reversibly Deletable

• There is always a natural embedding

$$A_{[a_1,\ldots,a_n]}\begin{pmatrix}p_1\cdots p_l\\i_1\cdots i_l\end{pmatrix} \to A_{[a_1,\ldots,a_j-1,\ldots,a_n]}\begin{pmatrix}p_1\cdots \hat{p_r}\cdots p_l\\i_1\cdots \hat{j}\cdots i_l\end{pmatrix}$$

• If *p_r* is reversibly deletable, and the role of *p_r* is played by letter *j*, then

$$A_{[a_1,\ldots,a_n]}\begin{pmatrix}p_1\cdots p_l\\i_1\cdots i_l\end{pmatrix}\Big|=\Big|A_{[a_1,\ldots,a_j-1,\ldots,a_n]}\begin{pmatrix}p_1\cdots \hat{p_r}\cdots p_l\\i_1\cdots \hat{j}\cdots i_l\end{pmatrix}\Big|.$$

イロト イポト イヨト イヨト

э

Background Definitions
Prefix Schemes for Words
Summary Success R

Reversibly Deletable Example

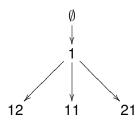
For $Q = \{123\}$, we have,

$$\begin{vmatrix} A_{[a_1,\dots,a_k]} \begin{pmatrix} 21\\ ij \end{pmatrix} \end{vmatrix} = \begin{vmatrix} A_{[a_1,\dots,a_j-1,\dots,a_k]} \begin{pmatrix} 1\\ i \end{pmatrix} \end{vmatrix}$$
$$\begin{vmatrix} A_{[a_1,\dots,a_k]} \begin{pmatrix} 11\\ ij \end{pmatrix} \end{vmatrix} = \begin{vmatrix} A_{[a_1,\dots,a_j-1,\dots,a_k]} \begin{pmatrix} 1\\ j \end{pmatrix} \end{vmatrix}$$

Lara Pudwell How to Cleverly Count Pattern-Avoiding Words

イロト 不得 とくほ とくほとう

3


Background Definitions
Prefix Schemes for Words
Summary Success R

Reversibly Deletable Example

For $Q = \{123\}$, we have,

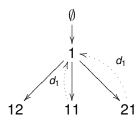
$$\begin{vmatrix} A_{[a_1,\dots,a_k]} \begin{pmatrix} 21\\ ij \end{pmatrix} \end{vmatrix} = \begin{vmatrix} A_{[a_1,\dots,a_j-1,\dots,a_k]} \begin{pmatrix} 1\\ i \end{pmatrix} \end{vmatrix}$$
$$\begin{vmatrix} A_{[a_1,\dots,a_k]} \begin{pmatrix} 11\\ ij \end{pmatrix} \end{vmatrix} = \begin{vmatrix} A_{[a_1,\dots,a_i-1,\dots,a_k]} \begin{pmatrix} 1\\ j \end{pmatrix} \end{vmatrix}$$

or graphically:

(A) (E) (A) (E)

< 🗇

э


Background Definitions
Prefix Schemes for Words
Summary Success R

Reversibly Deletable Example

For $Q = \{123\}$, we have,

$$\begin{vmatrix} A_{[a_1,\dots,a_k]} \begin{pmatrix} 21\\ ij \end{pmatrix} \end{vmatrix} = \begin{vmatrix} A_{[a_1,\dots,a_j-1,\dots,a_k]} \begin{pmatrix} 1\\ i \end{pmatrix} \end{vmatrix}$$
$$\begin{vmatrix} A_{[a_1,\dots,a_k]} \begin{pmatrix} 11\\ ij \end{pmatrix} \end{vmatrix} = \begin{vmatrix} A_{[a_1,\dots,a_j-1,\dots,a_k]} \begin{pmatrix} 1\\ j \end{pmatrix} \end{vmatrix}$$

or graphically:

코 에 제 코 어

э

Background Definitions Prefix Schemes for Words Examples Summary Success Rate

Consider words that avoid q = 123 and begin with prefix p = 12

sorted prefix:1 2letters involved in prefix:i jvector: $\langle a, b, c \rangle$

イロト イポト イヨト イヨト

3

Background Definitions Prefix Schemes for Words Summary Success Rate

Gap Vectors

Consider words that avoid q = 123 and begin with prefix p = 12

sorted prefix:1 2letters involved in prefix:i jvector: $\langle a, b, c \rangle$

sorted word: $\underbrace{\cdots}_{\geq a} i \underbrace{\cdots}_{\geq b-1} j \underbrace{\cdots}_{\geq c} (b = 0 \text{ denotes a repeated letter})$

イロト イポト イヨト イヨト

1

Background Definitions Prefix Schemes for Words Examples Summary Success Rate

Consider words that avoid q = 123 and begin with prefix p = 12

sorted prefix:1 2letters involved in prefix:i jvector: $\langle a, b, c \rangle$

sorted word: $\underbrace{\cdots}_{\geq a} i \underbrace{\cdots}_{\geq b-1} j \underbrace{\cdots}_{\geq c} (b = 0 \text{ denotes a repeated letter})$

v is a gap vector for p if there are no words avoiding q with prefix p and spacing v.

ヘロト 人間 ト ヘヨト ヘヨト

Background Definitions Prefix Schemes for Words Examples Summary Success Rate

Gap Vectors

Consider words that avoid q = 123 and begin with prefix p = 12

sorted prefix:1 2letters involved in prefix:i jvector: $\langle a, b, c \rangle$

sorted word: $\underbrace{\cdots}_{\geq a} i \underbrace{\cdots}_{\geq b-1} j \underbrace{\cdots}_{\geq c} (b = 0 \text{ denotes a repeated letter})$

v is a gap vector for p if there are no words avoiding q with prefix p and spacing v.

e.g. $v = \langle 0, 1, 1 \rangle$ is a gap vector for q = 123, p = 12.

ヘロン 人間 とくほ とくほ とう

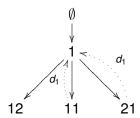
1

Definitions Examples Success Rate

Gap Vector Example

For
$$Q = \{123\}$$
, we have,
 $\left|A_{[a_1,...,a_k]}\begin{pmatrix}12\\ij\end{pmatrix}\right| = \left|A_{[a_1,...,a_k]}\begin{pmatrix}12\\ik\end{pmatrix}\right| = \left|A_{[a_1,...,a_k-1]}\begin{pmatrix}1\\i\end{pmatrix}\right|$

<ロト <回 > < 注 > < 注 > 、

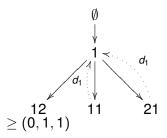

∃ 𝒫𝔄𝔅

Definitions Examples Success Rate

Gap Vector Example

For
$$Q = \{123\}$$
, we have,
 $\left|A_{[a_1,\dots,a_k]}\begin{pmatrix}12\\ij\end{pmatrix}\right| = \left|A_{[a_1,\dots,a_k]}\begin{pmatrix}12\\ik\end{pmatrix}\right| = \left|A_{[a_1,\dots,a_k-1]}\begin{pmatrix}1\\i\end{pmatrix}\right|$

or graphically:


A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(신문) (신문)

Definitions Examples Success Rate

Gap Vector Example

For
$$Q = \{123\}$$
, we have,
 $\left|A_{[a_1,...,a_k]}\begin{pmatrix}12\\ij\end{pmatrix}\right| = \left|A_{[a_1,...,a_k]}\begin{pmatrix}12\\ik\end{pmatrix}\right| = \left|A_{[a_1,...,a_{k-1}]}\begin{pmatrix}1\\i\end{pmatrix}\right|$ or graphically:

ヨト くヨト

< 🗇 >

Definitions Examples Success Rate

Gap Vector Example

For
$$Q = \{123\}$$
, we have,
 $\left|A_{[a_1,...,a_k]}\begin{pmatrix}12\\ij\end{pmatrix}\right| = \left|A_{[a_1,...,a_k]}\begin{pmatrix}12\\ik\end{pmatrix}\right| = \left|A_{[a_1,...,a_{k-1}]}\begin{pmatrix}1\\i\end{pmatrix}\right|$ or graphically:

ヨト くヨト

< 🗇

Definitions Examples Success Rate

Enumeration Scheme

An *enumeration scheme* is a set of triples $[p_i, R_i, G_i]$ such that for each triple

- *p_i* is a reduced word of length *n*
- *R_i* a subset of {1,...,*n*}
- G_i is a set of vectors of length n + 1 and
- either *R_i* is non-empty or all refinements of *p_i* are also in the scheme.

くロト (過) (目) (日)

Definitions Examples Success Rate

Enumeration Scheme

An *enumeration scheme* is a set of triples $[p_i, R_i, G_i]$ such that for each triple

- *p_i* is a reduced word of length *n* (prefix)
- *R_i* a subset of {1,..., *n*} (reversibly deletable positions)
- G_i is a set of vectors of length n + 1 (gap vectors) and
- either *R_i* is non-empty or all refinements of *p_i* are also in the scheme.

ヘロト ヘアト ヘビト ヘビト

Background Definitions Prefix Schemes for Words Examples Summary Success F

Enumeration Scheme Example

For the pattern q = 123, we have constructed the following scheme:

 $\boldsymbol{\mathcal{S}} = \{ [\emptyset, \emptyset, \emptyset] \}$

イロン イボン イヨン イヨン

э

Background Definitions Prefix Schemes for Words Examples Summary Success F

Enumeration Scheme Example

For the pattern q = 123, we have constructed the following scheme:

 $\boldsymbol{\mathcal{S}} = \{[\emptyset, \emptyset, \emptyset], [\boldsymbol{1}, \emptyset, \emptyset]\}$

ヘロト 人間 ト ヘヨト ヘヨト

Background Definitions Prefix Schemes for Words Summary Success F

Enumeration Scheme Example

For the pattern q = 123, we have constructed the following scheme: $S = \{ [\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, R_{12}, G_{12}], [11, R_{11}, G_{11}], [21, R_{21}, G_{21}] \}$

ヘロト ヘアト ヘビト ヘビト

Background Defini Prefix Schemes for Words Summary Succe

Definitions Examples Success Rate

Enumeration Scheme Example

For the pattern q = 123, we have constructed the following scheme:

 $S = \{ [\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, R_{12}, G_{12}], [11, \{1\}, \emptyset], [21, \{1\}, \emptyset] \}$

くロト (過) (目) (日)

Definitions Examples Success Rate

Enumeration Scheme Example

For the pattern q = 123, we have constructed the following scheme: $S = \{[\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, R_{12}, \{<0, 1, 1>\}], [11, \{1\}, \emptyset], [21, \{1\}, \emptyset]\}$

ヘロト ヘアト ヘビト ヘビト

Background De Prefix Schemes for Words Ex. Summary Su

Definitions Examples Success Rate

Enumeration Scheme Example

For the pattern q = 123, we have constructed the following scheme: $S = \{[\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, \{2\}, \{<0, 1, 1>\}], [11, \{1\}, \emptyset], [21, \{1\}, \emptyset]\}$

ヘロト 人間 ト ヘヨト ヘヨト

Definitions Examples Success Rate

Enumeration Scheme Example

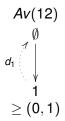
For the pattern q = 123, we have constructed the following scheme: $S = \{[\emptyset, \emptyset, \emptyset], [1, \emptyset, \emptyset], [12, \{2\}, \{<0, 1, 1>\}], [11, \{1\}, \emptyset], [21, \{1\}, \emptyset]\}$

ヘロト 人間 ト ヘヨト ヘヨト

Definitions Examples Success Rate

Enumeration Schemes

- Refinements
- Reversibly deletable elements
- Gap vectors

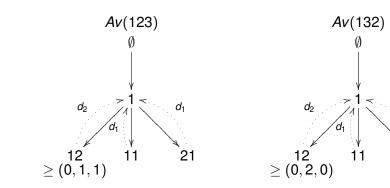

can all be found completely automatically, so we have an algorithm to compute an enumeration schemes for words.

イロト イポト イヨト イヨト

Definitions Examples Success Rate

The Simplest Examples

▲ 臣 ▶ ▲ 臣 ▶

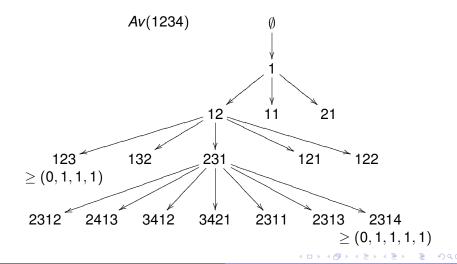

æ

Lara Pudwell How to Cleverly Count Pattern-Avoiding Words

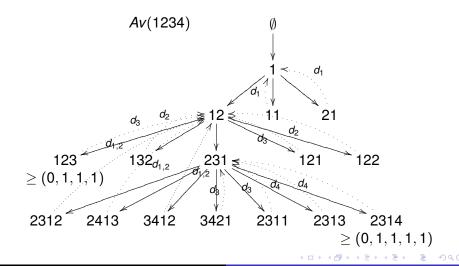
A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definitions Examples Success Rate

Isomorphic Prefix Schemes


 d_1

21


æ

▶ ★ 臣 ▶

Background Prefix Schemes for Words Summary Success Rate

Given
$$w \in [k]^n$$
, $w = w_1 \cdots w_n$, let

•
$$w^r = w_n \cdots w_1$$
 (reverse)

•
$$w^c = y_1 \cdots y_n$$
 such that $y_i = k + 1 - w_i$ (complement)

イロン イロン イヨン イヨン

∃ 𝒫𝔄𝔅

 Background Prefix Schemes for Words Summary
 Definitions Examples Success Rate

 Wilf Equivalence

Given
$$w \in [k]^n$$
, $w = w_1 \cdots w_n$, let
• $w^r = w_n \cdots w_1$ (reverse)
• $w^c = y_1 \cdots y_n$ such that $y_i = k + 1 - w_i$ (complement)
Then
• $|A_{[a_1,...,a_k],q}| = |A_{[a_1,...,a_k],q^c}|$
• $|A_{[a_1,...,a_k],q}| = |A_{[a_1,...,a_k],q^c}|$

ヘロア 人間 アメヨア 人口 ア

Background Definitions Prefix Schemes for Words Examples Summary Success Rate

Wilf Equivalence

Given
$$w \in [k]^n$$
, $w = w_1 \cdots w_n$, let

•
$$w^r = w_n \cdots w_1$$
 (reverse)

•
$$w^c = y_1 \cdots y_n$$
 such that $y_i = k + 1 - w_i$ (complement)

Then

•
$$|A_{[a_1,...,a_k],q}| = |A_{[a_1,...,a_k],q^r}|$$

• $|A_{[a_1,...,a_k],q}| = |A_{[a_1,...,a_k],q^c}|$

It is only necessary to find an enumeration scheme for one member of each Wilf equivalence class of patterns.

< 🗇 🕨

→ Ξ → < Ξ →</p>

Background Definitions Prefix Schemes for Words Examples Summary Success Rate

Statistics

Success rate for words avoiding *permutation* patterns:

Pattern Lengths	Number of Wilf Classes
	with an Enumeration Scheme
[2]	1/1 (100%)
[2,3]	1/1 (100%)
[2,4]	1/1 (100%)
[3]	2/2 (100%)
[3,3]	6/6 (100%)
[3,3,3]	6/6 (100%)
[3,3,3,3]	6/6 (100%)
[3,3,3,3,3]	2/2 (100%)

イロト 不得 とくほ とくほとう

3

Success Rate

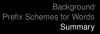
Statistics

Success rate for words avoiding permutation patterns:

Pattern Lengths	Number of Wilf Classes with an Enumeration Scheme
[4]	2/8 (25%)
[3,4]	9/24 (37.5%)
[3,3,4]	27/31 (87.1%)
[3,3,3,4]	20/20 (100%)
[3,3,3,3,4]	6/6 (100%)
[3,3,3,3,3,4]	1/1 (100%)
[4,4]	?/84 (in process)
[3,4,4]	38/146 (26%)
[3,3,4,4]	89/103 (86.4%)
[3,3,3,4,4]	29/29 (100%)
[3,3,3,3,4,4]	3/3 (100%)

イロト イポト イヨト イヨト

 There are few techniques to count many classes of pattern-avoiding words.


ヘロト ヘワト ヘビト ヘビト

э

- There are few techniques to count many classes of pattern-avoiding words.
- Extending Zeilberger's and Vatter's schemes gives a good success rate for words avoiding permutations.

→ E > < E >

- There are few techniques to count many classes of pattern-avoiding words.
- Extending Zeilberger's and Vatter's schemes gives a good success rate for words avoiding permutations.
- Future work
 - Find other general techniques for enumerating classes of pattern-avoiding words.

イロト イポト イヨト イヨト

- There are few techniques to count many classes of pattern-avoiding words.
- Extending Zeilberger's and Vatter's schemes gives a good success rate for words avoiding permutations.
- Future work
 - Find other general techniques for enumerating classes of pattern-avoiding words.
 - Convert enumeration schemes to generating functions or closed forms.

イロト イポト イヨト イヨト

- There are few techniques to count many classes of pattern-avoiding words.
- Extending Zeilberger's and Vatter's schemes gives a good success rate for words avoiding permutations.
- Future work
 - Find other general techniques for enumerating classes of pattern-avoiding words.
 - Convert enumeration schemes to generating functions or closed forms.
 - Extend enumeration schemes to count other pattern-avoiding objects.

ヘロト ヘ戸ト ヘヨト ヘヨト