Ascent sequences avoiding pairs of patterns

Lara Pudwell

Valparaiso University
faculty.valpo.edu/lpudwell

joint work with
Andrew Baxter

Permutation Patterns 2014
East Tennessee State University
July 7, 2014

Ascents

Definition

An ascent in the string $x_{1} \cdots x_{n}$ is a position i such that $x_{i}<x_{i+1}$.

Example:

Introduction \&
History
Pairs of Length 3
Patterns
Unbalanced equivalences
An Erdös-Szekeres-like
Theorem
Other sequences
Dyck paths
Generating trees

Ascents

Definition

Introduction \&
History

An ascent in the string $x_{1} \cdots x_{n}$ is a position i such that

Example:

Other sequences
Dyck paths
Generating trees

Definition

$\operatorname{asc}\left(x_{1} \cdots x_{n}\right)$ is the number of ascents of $x_{1} \cdots x_{n}$.
Example: $\operatorname{asc}(01024)=3$

Ascent Sequences

Definition

An ascent sequence is a string $x_{1} \cdots x_{n}$ of non-negative integers such that:

- $x_{1}=0$
- $x_{n} \leq 1+\operatorname{asc}\left(x_{1} \cdots x_{n-1}\right)$ for $n \geq 2$
\mathcal{A}_{n} is the set of ascent sequences of length n

$$
\begin{gathered}
\mathcal{A}_{2}=\{00,01\} \\
\mathcal{A}_{3}=\{000,001,010,011,012\}
\end{gathered}
$$

More examples: 01234, 01013
Non-example: 01024

Introduction \&
History
Pairs of Length 3
Patterns
Unbalanced equivalences
An Erdös-Szekeres-like
Theorem
Other sequences
Dyck paths
Generating trees
Onward.

Ascent Sequences

Definition

An ascent sequence is a string $x_{1} \cdots x_{n}$ of non-negative integers such that:

- $x_{1}=0$
- $x_{n} \leq 1+\operatorname{asc}\left(x_{1} \cdots x_{n-1}\right)$ for $n \geq 2$
\mathcal{A}_{n} is the set of ascent sequences of length n

$$
\mathcal{A}_{2}=\{00,01\}
$$

$\mathcal{A}_{3}=\{000,001,010,011,012\}$

Introduction \&
History
Pairs of Length 3
Patterns
Unbalanced equivalences
An Erdös-Szekeres-like
Theorem
Other sequences
Dyck paths
Generating trees

Theorem

(Bousquet-Mélou, Claesson, Dukes, \& Kitaev, 2010)
$\left|\mathcal{A}_{n}\right|$ is the nth Fishburn number (OEIS A022493).

$$
\sum_{n \geq 0}\left|\mathcal{A}_{n}\right| x^{n}=\sum_{n \geq 0} \prod_{i=1}^{n}\left(1-(1-x)^{i}\right)
$$

Patterns

Definition

The reduction of $x=x_{1} \cdots x_{n}, \operatorname{red}(x)$, is the string obtained by replacing the i th smallest digits of x with $i-1$.

Example: $\operatorname{red}(273772)=021220$

Introduction \&
History
Pairs of Length 3 Patterns

Unbalanced equivalences
An Erdös-Szekeres-like
Theorem
Other sequences
Dyck paths
Generating trees
Onward.

Patterns

Valparaiso

University

Definition

The reduction of $x=x_{1} \cdots x_{n}, \operatorname{red}(x)$, is the string obtained by replacing the i th smallest digits of x with $i-1$.

Example: $\operatorname{red}(273772)=021220$

Pattern containment/avoidance

Introduction \&
History
Pairs of Length 3
Patterns
Unbalanced equivalences
An Erdös-Szekeres-like
Theorem
Other sequences
Dyck paths
Generating trees
$a=a_{1} \cdots a_{n}$ contains $\sigma=\sigma_{1} \cdots \sigma_{m}$ iff there exist
$1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n$ such that $\operatorname{red}\left(a_{i_{1}} a_{i_{2}} \cdots a_{i_{m}}\right)=\sigma$.
$a_{B}(n)=\mid\left\{a \in \mathcal{A}_{n} \mid a\right.$ avoids $\left.B\right\} \mid$
001010345 contains $012,000,1102$; avoids 210.

Patterns

Valparaiso
University

Definition

The reduction of $x=x_{1} \cdots x_{n}, \operatorname{red}(x)$, is the string obtained by replacing the i th smallest digits of x with $i-1$.

Example: $\operatorname{red}(273772)=021220$

Pattern containment/avoidance

Introduction \&
History
Pairs of Length 3
Patterns
Unbalanced equivalences
An Erdös-Szekeres-like
Theorem
Other sequences
Dyck paths
Generating trees
$a=a_{1} \cdots a_{n}$ contains $\sigma=\sigma_{1} \cdots \sigma_{m}$ iff there exist
$1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n$ such that $\operatorname{red}\left(a_{i_{1}} a_{i_{2}} \cdots a_{i_{m}}\right)=\sigma$.
$a_{B}(n)=\mid\left\{a \in \mathcal{A}_{n} \mid a\right.$ avoids $\left.B\right\} \mid$
001010345 contains $012,000,1102$; avoids 210.

Goal

Determine $a_{B}(n)$ for many of choices of B.

Previous Work

- Duncan \& Steingrímsson (2011)

Pattern σ	$\left\{\mathrm{a}_{\sigma}(n)\right\}_{n \geq 1}$	OEIS
001,010 011,012	2^{n-1}	A000079
102 0102,0112	$\left(3^{n-1}+1\right) / 2$	A007051
101,021 0101	$\frac{1}{n+1}\binom{2 n}{n}$	A000108

Introduction \&
History
Pairs of Length 3
Patterns
Unbalanced equivalences
An Erdös-Szekeres-like
Theorem
Other sequences
Dyck paths
Generating trees

- Mansour and Shattuck (2014)

Callan, Mansour and Shattuck (2014)

Pattern σ	$\left\{\mathrm{a}_{\sigma}(n)\right\}_{n \geq 1}$	OEIS
1012	$\sum_{k=0}^{n-1}\binom{n-1}{k} C_{k}$	A007317
0123	ogf: $\frac{1-4 x+3 x^{2}}{1-5 x+6 x^{2}-x^{3}}$	A 080937
8 pairs of length 4 patterns	$\frac{1}{n+1}\binom{2 n}{n}$	A 000108

Overview

- 13 length 3 patterns 6 permutations, 000, 001, 010, 100, 011, 101, 110
- $\binom{13}{2}=78$ pairs
- at least 35 different sequences $a_{\sigma, \tau}(n)$ 16 sequences in OEIS
- 3 sequences from Duncan/Steingrímsson
- 1 eventually zero
- 1 from pattern-avoiding set partitions
- 3 from pattern-avoiding permutations
- 1 sequence from Mansour/Shattuck (Duncan/Steingrímsson conjecture)

Introduction \&
History
Pairs of Length 3
Patterns
Unbalanced equivalences
An Erdös-Szekeres-like Theorem
Other sequences
Dyck paths
Generating trees
Onward.

Unbalanced equivalences

Theorem

$a_{010,021}(n)=a_{010}(n)=a_{10}(n)=2^{n-1}$

Lara Pudwell

Introduction \&
History
Pairs of Length 3
Patterns
Unbalanced equivalences
An Erdös-Szekeres-like Theorem

Other sequences
Dyck paths
Generating trees
Onward

Unbalanced equivalences

Theorem

Lara Pudwell

$$
a_{010,021}(n)=a_{010}(n)=a_{10}(n)=2^{n-1}
$$

Introduction \&
History

- If σ contains 10 , then $a_{010, \sigma}=2^{n-1}$.

Pairs of Length 3 Patterns

Unbalanced equivalences
An Erdős-Szekeres-like Theorem
Other sequences
Dyck paths
Generating trees
Onward.

Unbalanced equivalences

Theorem

$$
a_{010,021}(n)=a_{010}(n)=a_{10}(n)=2^{n-1}
$$

Introduction \&
History

- If σ contains 10 , then $a_{010, \sigma}=2^{n-1}$.

Theorem

$$
a_{101,201}(n)=a_{101}(n)=C_{n}
$$

Pairs of Length 3 Patterns

Unbalanced equivalences
An Erdős-Szekeres-like
Theorem
Other sequences
Dyck paths
Generating trees
Onward.

Unbalanced equivalences

Theorem

$$
a_{010,021}(n)=a_{010}(n)=a_{10}(n)=2^{n-1}
$$

Introduction \&
History

- If σ contains 10 , then $a_{010, \sigma}=2^{n-1}$.

Theorem

$$
a_{101,201}(n)=a_{101}(n)=C_{n}
$$

- 101-avoiders are restricted growth functions.

Pairs of Length 3 Patterns

Unbalanced equivalences
An Erdös-Szekeres-like
Theorem
Other sequences
Dyck paths
Generating trees

- If σ contains 201, then $a_{101, \sigma}=C_{n}$.

Unbalanced equivalences

 patterns
Theorem

$$
a_{010,021}(n)=a_{010}(n)=a_{10}(n)=2^{n-1}
$$

Introduction \&

History

- If σ contains 10 , then $a_{010, \sigma}=2^{n-1}$.

Theorem

$$
a_{101,201}(n)=a_{101}(n)=C_{n}
$$

- 101-avoiders are restricted growth functions.
- If σ contains 201, then $a_{101, \sigma}=C_{n}$.

Theorem

$$
a_{101,210}(n)=\frac{3^{n-1}+1}{2}
$$

Unbalanced equivalences

Theorem

$a_{010,021}(n)=a_{010}(n)=a_{10}(n)=2^{n-1}$
Introduction \&
History

- If σ contains 10 , then $a_{010, \sigma}=2^{n-1}$.

Theorem

$$
a_{101,201}(n)=a_{101}(n)=C_{n}
$$

- 101-avoiders are restricted growth functions.
- If σ contains 201 , then $a_{101, \sigma}=C_{n}$.

Theorem

$a_{101,210}(n)=\frac{3^{n-1}+1}{2}$

- Proof sketch: bijection with ternary strings with even number of 2 s
- (Duncan/Steingrímsson proof that $a_{102}(n)=\frac{3^{n-1}+1}{2}$ uses bijection with same strings.)

An Erdős-Szekeres-like Theorem

Pairs of Length 3
$\mathcal{A}_{1}(000,012)=\{0\}$
$\mathcal{A}_{2}(000,012)=\{00,01\}$
$\mathcal{A}_{3}(000,012)=\{001,010,011\}$
$\mathcal{A}_{4}(000,012)=\{0011,0101,0110\}$

An Erdős-Szekeres-like Theorem

Theorem

Lara Pudwell

$a_{0^{a}, 012 \cdots b}(n)=0$ for $n \geq(a-1)((a-1)(b-2)+2)+1$
Proof:

- largest letter preceeded by at most $b-1$ smaller values
- at most $a-1$ copies of each value
- How to maximize number of ascents:

Introduction \& History

Pairs of Length 3 Patterns
Unbalanced equivalences
An Erdős-Szekeres-like Theorem
Other sequences
Dyck paths
Generating trees

- $(a-1)(b-2)$ ascents before largest letter \Rightarrow largest possible digit is $(a-1)(b-2)+1$
- Use all digits in $\{0, \ldots,(a-1)(b-2)+1\}$ each $a-1$ times.

An Erdős-Szekeres-like Theorem

Theorem

$a_{0^{a}, 012 \cdots b}(n)=0$ for $n \geq(a-1)((a-1)(b-2)+2)+1$
Proof:

- largest letter preceeded by at most $b-1$ smaller values
- at most $a-1$ copies of each value
- How to maximize number of ascents:

Introduction \& History

Pairs of Length 3 Patterns
Unbalanced equivalences
An Erdős-Szekeres-like Theorem
Other sequences
Dyck paths
Generating trees

- $(a-1)(b-2)$ ascents before largest letter \Rightarrow largest possible digit is $(a-1)(b-2)+1$
- Use all digits in $\{0, \ldots,(a-1)(b-2)+1\}$ each $a-1$ times.
- Maximum avoider example: $(a=3, b=5)$ 0123012377665544

Other sequences

Patterns	OEIS	Formula
000,011	A000027	n
000,001	A000045	F_{n+1}
011,100	A000124	$\binom{n}{2}+1$
001,100	A000071	$F_{n+2}-1$
001,210	A000125	$\binom{n}{3}+n$
000,101	A001006	M_{n}
100,101	A025242	$\left(\begin{array}{c}\text { Generalized Catalan }) \\ \hline 021,102\end{array}\right.$ A116702
102,120	A005183	$\left\|\mathcal{S}_{n}(123,3241)\right\|$
101,120	A116703	$\left\|\mathcal{S}_{n}(132,4312)\right\|$
101,110	A001519	$F_{2 n-1}(231,4123) \mid$
201,210	A007317	$\sum_{k=0}^{n-1}\binom{n-1}{k} C_{k}$

Introduction \& History

Pairs of Length 3
Patterns
Unbalanced equivalences
An Erdös-Szekeres-like Theorem
Other sequences
Dyck paths
Generating trees

Avoiding 100 and 101

Theorem

$a_{100,101}(n)=G C_{n}$, the nth generalized Catalan number

- $a_{100,101}(n)=a_{0100,0101}(n)$
- ascent sequences avoiding a subpattern of 01012 are restricted growth functions
- Mansour \& Shattuck (2011): 1211, 1212-avoiding set partitions are counted by $G C_{n}$
- used algebraic techniques
- known: $G C_{n}$ counts DDUU-avoiding Dyck paths

New: bijective proof

Avoiding 100 and 101

Bijection from $D D U U$-avoiding Dyck paths to ascent sequences:

| |
| :--- |
| |
| |
| |
| |
| |

Heights of left sides of up steps:
012112112001

Avoiding 100 and 101

Bijection from $D D U U$-avoiding Dyck paths to ascent sequences:

Heights of left sides of up steps:

012112112001

Avoiding 100 and 101

Bijection from $D D U U$-avoiding Dyck paths to ascent sequences:

Heights of left sides of up steps:
012112112001

Avoiding 100 and 101

Bijection from $D D U U$-avoiding Dyck paths to ascent sequences:

Heights of left sides of up steps:
012112112001
$0121 \underline{34334001}$

Avoiding 100 and 101

Bijection from $D D U U$-avoiding Dyck paths to ascent sequences:

Heights of left sides of up steps:
012112112001
012134334001

Avoiding 100 and 101

Bijection from $D D U U$-avoiding Dyck paths to ascent sequences:

| |
| :--- |
| |
| |
| |
| |
| |
| |

Heights of left sides of up steps:
012112112001
012134334001 012134356001

Avoiding 100 and 101

Bijection from $D D U U$-avoiding Dyck paths to ascent sequences:

Heights of left sides of up steps:
012112112001
012134334001
012134356001

Avoiding 100 and 101

Bijection from $D D U U$-avoiding Dyck paths to ascent sequences:

Heights of left sides of up steps:
012112112001 012134334001
012134356001
012134356078

Generating trees

$\mathcal{A}_{n}:$
Lara Pudwell

Introduction \&
History

Pairs of Length 3
Patterns
Unbalanced equivalences
An Erdös-Szekeres-like
Theorem
Other sequences
Dyck paths
Generating trees
Onward.

Generating trees

$\mathcal{A}_{n}(10):$

Lara Pudwell

Introduction \&
History
Pairs of Length 3
Patterns
Unbalanced equivalences
An Erdös-Szekeres-like
Theorem
Other sequences
Dyck paths
Generating trees
Onward.

Generating trees

$\mathcal{A}_{n}(10):$

Introduction \& History

Pairs of Length 3
Patterns
Unbalanced equivalences
An Erdös-Szekeres-like
Theorem
Other sequences
Dyck paths
Generating trees

Root: (2)
Rule: $(2) \rightsquigarrow(2)(2)$
$\left|\mathcal{A}_{10}(n)\right|=2^{n-1}$

Permutations

Theorem

$a_{102,120}(n)=\left|\mathcal{S}_{n}(132,4312)\right|$
Proof: Isomorphic generating tree

Introduction \&
History
Pairs of Length 3 Patterns

Unbalanced equivalences
An Erdös-Szekeres-like Theorem
Other sequences
Dyck paths
Generating trees
Onward.

Permutations

Theorem
$a_{102,120}(n)=\left|\mathcal{S}_{n}(132,4312)\right|$
Proof: Isomorphic generating tree

Theorem

$a_{101,120}(n)=\left|\mathcal{S}_{n}(231,4123)\right|$
Proof: Isomorphic generating tree

Introduction \&
History
Pairs of Length 3 Patterns

Unbalanced equivalences
An Erdös-Szekeres-like
Theorem
Other sequences
Dyck paths
Generating trees
Onward.

Permutations

Theorem

$a_{102,120}(n)=\left|\mathcal{S}_{n}(132,4312)\right|$
Proof: Isomorphic generating tree

Theorem

$a_{101,120}(n)=\left|\mathcal{S}_{n}(231,4123)\right|$
Proof: Isomorphic generating tree

Introduction \& History

Pairs of Length 3 Patterns

Unbalanced equivalences
An Erdös-Szekeres-like Theorem
Other sequences
Dyck paths
Generating trees

Theorem

$a_{021,102}(n)=\left|\mathcal{S}_{n}(123,3241)\right|$
Proof: Generating trees...
Ascent sequences $\rightarrow 5$ labels.
Permutations $\rightarrow 8$ labels. (Vatter, FINLABEL, 2006)
Transfer matrix method gives same enumeration, bijective proof open.

Avoiding 201 and 210

Theorem

$a_{201,210}(n)=\sum_{k=0}^{n-1}\binom{n-1}{k} C_{k}$
Proof scribble: generating tree \rightarrow recurrence \rightarrow system of functional equations \rightarrow experimental solution \rightarrow plug in for catalytic

Introduction \&
History
Pairs of Length 3 Patterns

Unbalanced equivalences
An Erdös-Szekeres-like
Theorem
Other sequences
Dyck paths
Generating trees
Onward. variables

Avoiding 201 and 210

Theorem

Introduction \&
History
$a_{201,210}(n)=\sum_{k=0}^{n-1}\binom{n-1}{k} C_{k}$
Proof scribble:
generating tree \rightarrow recurrence \rightarrow system of functional equations \rightarrow experimental solution \rightarrow plug in for catalytic

Pairs of Length 3
Patterns
Unbalanced equivalences
An Erdös-Szekeres-like Theorem
Other sequences
Dyck paths
Generating trees variables

Conjecture (Duncan \& Steingrímsson)
$a_{0021}(n)=a_{1012}(n)=\sum_{k=0}^{n-1}\binom{n-1}{k} C_{k}$
Note: Proving this would complete Wilf classification of 4 patterns.

A familiar sequence...

Conjecture (Duncan \& Steingrímsson)

Introduction \&
History
$a_{0021}(n)=a_{1012}(n)=\sum_{k=0}^{n-1}\binom{n-1}{k} C_{k}$
Theorem (Mansour \& Shattuck)
$a_{1012}(n)=\sum_{k=0}^{n-1}\binom{n-1}{k} C_{k}$

Pairs of Length 3 Patterns

Unbalanced equivalences
An Erdös-Szekeres-like Theorem
Other sequences
Dyck paths
Generating trees
Onward.

A familiar sequence...

Valparaiso
University

Conjecture (Duncan \& Steingrímsson)

Introduction \&
History
Pairs of Length 3 Patterns
Unbalanced equivalences
An Erdös.Szekeres-like Theorem
Other sequences
Dyck paths
Generating trees
$a_{1012}(n)=\sum_{k=0}^{n-1}\binom{n-1}{k} C_{k}$
Onward.

Theorem

$a_{0021}(n)=\sum_{k=0}^{n-1}\binom{n-1}{k} C_{k}$
Proof: Similar technique to $a_{201,210}(n)$.

Summary and Future work

- 16 pairs of 3-patterns appear in OEIS.
- Erdős-Szekeres analog for ascent sequences.
- New bijective proof connecting 100,101-avoiders to Dyck paths.
- Completed Wilf classification of 4-patterns.
- Open:
- 19 sequences from pairs of 3-patterns not in OEIS.
- Bijective explanation that $a_{021,102}(n)=\left|\mathcal{S}_{n}(123,3241)\right|$.

Summary and Future work

- 16 pairs of 3-patterns appear in OEIS.
- Erdős-Szekeres analog for ascent sequences.
- New bijective proof connecting 100,101-avoiders to Dyck paths.
- Completed Wilf classification of 4-patterns.
- Open:
- 19 sequences from pairs of 3 -patterns not in OEIS.
- Bijective explanation that $a_{021,102}(n)=\left|\mathcal{S}_{n}(123,3241)\right|$.

Forthcoming:

- Enumeration schemes for pattern-avoiding ascent sequences
- Details on $a_{201,210}(n)$ and $a_{0021}(n)$
- More bijections with other combinatorial objects?

Introduction \&
History
Pairs of Length 3
Patterns
Unbalanced equivalences
An Erdös-Szekeres-like Theorem
Other sequences
Dyck paths
Generating trees
Onward.

References

- A. Baxter and L. Pudwell, Ascent sequences avoiding pairs of patterns,

Introduction \& History

Pairs of Length 3 Patterns

Unbalanced equivalences
An Erdös-Szekeres-like Theorem
Other sequences
Dyck paths
Generating trees
Onward.

References

- A. Baxter and L. Pudwell, Ascent sequences avoiding pairs of patterns,

Introduction \& History

Pairs of Length 3 Patterns

Unbalanced equivalences
An Erdös-Szekeres-like Theorem
Other sequences
Dyck paths
Generating trees
Onward.

- T. Mansour and M. Shattuck. Restricted partitions and generalized Catalan numbers. Pure Math. Appl. (PU.M.A.) 22 (2011), no. 2, 239-251. 05A18 (05A15)
- T. Mansour and M. Shattuck. Some enumerative results related to ascent sequences. Discrete Mathematics 315-316 (2014), 29-41.
- V. Vatter. Finitely labeled generating trees and restricted permutations, J. Symb. Comput. 41 (2006), 559-572.

Thanks for listening!

