University

Avoiding an
Ordered
Partition of
Length 3
Lara Pudwell

Avoiding an Ordered Partition of Length 3

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond

Lara Pudwell
Valparaiso University
(joint work with Anant Godbole and Adam Goyt)

Permutation Patterns 2013
University of Paris Diderot July 1, 2013

Set Partitions

Definition

A partition p of set $\{1, \ldots, n\}$ is a collection of nonempty subsets $B_{1}, B_{2}, \ldots, B_{k}$ called blocks such that
(1) $B_{1} \cup B_{2} \cup \cdots \cup B_{k}=\{1, \ldots, n\}$ and
(2) $B_{i} \cap B_{j}=\emptyset$ for $i \neq j$.

Write $B_{1} / B_{2} / \cdots / B_{k}$.
Conventions:

- Write elements in each block in increasing order.
- Order blocks by increasing minimal elements.

Example: $15 / 2 / 346$ is a partition of $\{1,2,3,4,5,6\}$.

Set Partitions

Definition

A partition p of set $\{1, \ldots, n\}$ is a collection of nonempty subsets $B_{1}, B_{2}, \ldots, B_{k}$ called blocks such that
(1) $B_{1} \cup B_{2} \cup \cdots \cup B_{k}=\{1, \ldots, n\}$ and
(2) $B_{i} \cap B_{j}=\emptyset$ for $i \neq j$.

Write $B_{1} / B_{2} / \cdots / B_{k}$.
Conventions:

- Write elements in each block in increasing order.
- Order blocks by increasing minimal elements.

Example: $15 / 2 / 346$ is a partition of $\{1,2,3,4,5,6\}$. Pattern avoidance in set partitions: Klazar (1996, 2000), Jelínek/Mansour (2008), Goyt (2008), Goyt/Sagan (2009), Sagan (2010)

Ordered Partitions

Avoiding an Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond

Definitions

An ordered partition is a set partition where the order of the blocks is important. The number of blocks of p is the length of p.

Example: 15/2/346, 15/346/2, 2/15/346, $2 / 346 / 15,346 / 15 / 2$, and $346 / 2 / 15$ are distinct ordered partitions of length 3 of the set $\{1,2,3,4,5,6\}$.

Graphs of Ordered Partitions

Avoiding an
Ordered
Partition of
Length 3
Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of

size 2

and beyond

Plot the point (i, j) iff $j \in B_{i}$.

Note:
May not have two points in same row. May have two points in same column. No empty rows or columns.

Example: $p=15 / 346 / 2$
Graph of p :

Ordered Partition Patterns

In $\mathrm{n}-1$ blocks
and beyond

Definition

Ordered partition p of length k contains permutation $\pi \in \mathcal{S}_{n}$ if there exist

- $1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq k$ and
- $b_{j} \in B_{i j}$ for $1 \leq j \leq n$
such that $b_{1} \cdots b_{n}$ is order-isomorphic to π.

Example: $p=14 / 56 / 2 / 3$ contains $\pi=312$.

$$
\begin{aligned}
& i_{1}=1, i_{2}=3, i_{3}=4 \\
& b_{1}=4, b_{2}=2, b_{3}=3
\end{aligned}
$$

Valparaiso
University

Avoiding an Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond
... or as a graph

Example: $p=14 / 56 / 2 / 3$ contains $\pi=312$.

Valparaiso
University

Avoiding an Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond
... or as a graph

Example: $p=14 / 56 / 2 / 3$ contains $\pi=312$.

Valparaiso
University

Avoiding an Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond
... or as a graph

Example: $p=14 / 56 / 2 / 3$ contains $\pi=312$.

Notation, notation...

 UniversityAvoiding an Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond

- $\mathcal{O} \mathcal{P}_{n, k}(\pi)$ the set of π-avoiding ordered partitions of $\{1, \ldots, n\}$ of length k

Notation, notation...

Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond

- $\mathcal{O} \mathcal{P}_{n, k}(\pi)$ the set of π-avoiding ordered partitions of $\{1, \ldots, n\}$ of length k
- $\mathcal{O} \mathcal{P}_{\left[b_{1}, b_{2}, \ldots, b_{k}\right]}(\pi)$ the set of π-avoiding ordered partitions where $\left|B_{i}\right|=b_{i}$ for $1 \leq i \leq k$

Valparaiso
University

Avoiding an
Ordered
Partition of
Length 3
Lara Pudwell

Ordered
Partitions
In 3 blocks
In $\mathrm{n}-1$ blocks
All blocks of size 2
and beyond

Notation, notation...

- $\mathcal{O} \mathcal{P}_{n, k}(\pi)$
the set of π-avoiding ordered partitions of $\{1, \ldots, n\}$ of length k
- $\mathcal{O} \mathcal{P}_{\left[b_{1}, b_{2}, \ldots, b_{k}\right]}(\pi)$ the set of π-avoiding ordered partitions where $\left|B_{i}\right|=b_{i}$ for $1 \leq i \leq k$
- $\operatorname{op}_{n, k}(\pi)=\left|\mathcal{O} \mathcal{P}_{n, k}(\pi)\right|$
$\mathrm{op}_{\left[b_{1}, b_{2}, \ldots, b_{k}\right]}(\pi)=\left|\mathcal{O} \mathcal{P}_{\left[b_{1}, b_{2}, \ldots, b_{k}\right]}(\pi)\right|$

Avoiding an Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In $\mathrm{n}-1$ blocks
All blocks of size 2
and beyond

- $\mathcal{O P}_{n, k}(\pi)$
the set of π-avoiding ordered partitions of $\{1, \ldots, n\}$ of length k
- $\mathcal{O} \mathcal{P}_{\left[b_{1}, b_{2}, \ldots, b_{k}\right]}(\pi)$ the set of π-avoiding ordered partitions where $\left|B_{i}\right|=b_{i}$ for $1 \leq i \leq k$
- $\operatorname{op}_{n, k}(\pi)=\left|\mathcal{O} \mathcal{P}_{n, k}(\pi)\right|$
$\mathrm{op}_{\left[b_{1}, b_{2}, \ldots, b_{k}\right]}(\pi)=\left|\mathcal{O} \mathcal{P}_{\left[b_{1}, b_{2}, \ldots, b_{k}\right]}(\pi)\right|$
- Note: $\mathrm{op}_{n, n}(\pi)=\mathrm{op}_{[\underbrace{1, \ldots, 1}_{n}]}(\pi)=\left|\mathcal{S}_{n}(\pi)\right|$

Review?

Avoiding an
Ordered
Partition of
Length 3
Lara Pudwell

Ordered
Partitions
In 3 blocks
In $\mathrm{n}-1$ blocks
All blocks of size 2
and beyond

At PP2012, Goyt presented:

- initial counting results
- proof that $\mathrm{op}_{\left[b_{1}, \ldots, b_{k}\right]}(123)=\mathrm{op}_{\left[b_{1}, \ldots, b_{k}\right]}(132)$
- relationship between ordered partitions and pattern avoiding words in $[k]^{n}$.

Today...

University

Avoiding an
Ordered
Partition of
Length 3
Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond

- $\mathrm{op}_{n, k}(12)$
- $\mathrm{op}_{n, 3}(123)$
- $\mathrm{op}_{n, n-1}(123)$
- $\mathrm{op}_{[2, \ldots, 2]}(123)$

Valparaiso

Avoiding 12

Avoiding an Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond

$$
\mathrm{op}_{n, k}(12)=
$$

Valparaiso

Avoiding 12

Avoiding an Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond

Avoiding 12

Avoiding an Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond

$\mathrm{op}_{n, k}(12)=$
number of integer compositions of n into k parts $=$

Avoiding 12

Avoiding an
Ordered
Partition of
Length 3
Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of

size 2

and beyond

$\mathrm{op}_{n, k}(12)=$
number of integer compositions of n into k parts $=$ $\binom{n-1}{k-1}$.

In as few blocks as possible

Valparaiso
University

Avoiding an
Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond

Theorem

$$
\mathrm{op}_{n, 3}(123)=\left(\frac{n^{2}}{8}+\frac{3 n}{8}-2\right) 2^{n}+3
$$

Sketch of Proof:

$$
\begin{aligned}
& b_{1}:=\left|B_{1}\right| \\
& b_{2}:=\left|B_{2}\right| \\
& \ell:=\min \left(B_{1}\right) \\
& i:=\left|\left\{j \in B_{2}: j<\ell\right\}\right|
\end{aligned}
$$

Obtain

$$
\sum_{b_{1}=1}^{n-2} \sum_{b_{2}=1}^{n-1-b_{1}} \sum_{\ell=1}^{n-b_{1}+1} \sum_{i=\max \left(0, \ell-1-b_{3}\right)}^{\min \left(\ell-1, b_{2}\right)}\binom{n-\ell}{b_{1}-1}\binom{\ell-1}{i}
$$ and simplify using CAS.

Avoiding an Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond

Theorem

$$
\mathrm{op}_{n, n-1}(123)=\frac{3(n-1)^{2}\binom{2 n-2}{n-1}}{n(n+1)}
$$

In as many blocks as possible

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond

Theorem

$$
\mathrm{op}_{n, n-1}(123)=\frac{3(n-1)^{2}\binom{2 n-2}{n-1}}{n(n+1)}
$$

Outline:

(1) Pick $\pi \in \mathcal{S}_{n-1}(123)$ such that $\pi_{1}=i$.
(2) Treat π as if in $\mathcal{O} \mathcal{P}_{n-1, n-1}(123)$ and insert a larger number into the first block.
(3) Now have op ${ }_{[2,1, \ldots, 1]}(123)$.

Show that $\mathrm{op}_{[2,1,1,1, \ldots, 1]}(123)=\mathrm{op}_{[1,2,1,1, \ldots, 1]}(123)=$ $\mathrm{op}_{[1,1,2,1, \ldots, 1]}(123)=\cdots=\mathrm{op}_{[1,1,1, \ldots, 1,2]}(123)$.

Step 1: Pick a permutation.

Proposition

The number of 123 -avoiding permutations of length n that begin with i is given by

$$
c_{n, i}=\frac{(n-2+i)!(n-i+1)}{(i-1)!n!}
$$

(OEIS A0009766: Catalan's triangle read by rows)

$$
\text { e.g. } \begin{align*}
c_{3,1} & =1 \tag{132}\\
c_{3,2} & =2 \\
c_{3,3} & =2
\end{align*}
$$

$(213,231)$
$(312,321)$

In n-1 blocks

and beyond

Step 2: Add a dot.

Proposition

If $\pi \in \mathcal{S}_{n-1}(123)$ has $\pi_{1}=i$, then there are $n-i$ ways to insert an element larger than i into B_{1}.
And inserting a larger element into B_{1} cannot introduce a 123-pattern.

Halfway there...

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond

We've just shown:

$$
\mathrm{op}_{[2, \underbrace{1, \ldots, 1}_{n-2}]}(123)=\sum_{i=1}^{n-1}(n-i) c_{n-1, i}=\sum_{i=1}^{n-1}(n-i) \frac{(n-3+i)!(n-i)}{(i-1)!(n-1)!} \text {. }
$$

Or, after simplifying....

Lemma

For $n \geq 2$,

$$
\mathrm{op}_{[2, \underbrace{1, \ldots, 1]}_{n-2}}(123)=\frac{3(n-1)\binom{2 n-2}{n-1}}{n(n+1)} .
$$

(OEIS A000245) University

Avoiding an Ordered Partition of Length 3

Lara Pudwell

Goal: $\mathrm{op}_{n, n-1}(123)$
Have: $\operatorname{op}_{[2, ~}^{[\underbrace{}_{n-2}, \ldots, 1]}](123)$

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond

Reassessing...

Avoiding an Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond

Goal: $\mathrm{op}_{n, n-1}(123)$
Have: $\mathrm{op}_{[2, \underbrace{1, \ldots, 1}_{n-2}]}(123)$

Proposition

$\mathrm{op}_{[2,1,1,1, \ldots, 1]}(123)=\mathrm{op}_{[1,2,1,1, \ldots, 1]}(123)=\mathrm{op}_{[1,1,2,1, \ldots, 1]}(123)=$
$\cdots=\mathrm{op}_{[1,1,1, \ldots, 1,2]}(123)$
and beyond

Reassessing...

Goal: $\mathrm{op}_{n, n-1}(123)$
Have: op $[\underbrace{1, \ldots, 1]}_{[2,2}](123)$

Proposition

$$
\begin{aligned}
& \mathrm{op}_{[2,1,1,1, \ldots, 1]}(123)=\mathrm{op}_{[1,2,1,1, \ldots, 1]}(123)=\mathrm{op}_{[1,1,2,1, \ldots, 1]}(123)= \\
& \cdots=\mathrm{op}_{[1,1,1, \ldots, 1,2]}(123)
\end{aligned}
$$

In fact....

Proposition (generalized!)

$\mathrm{op}_{\left[b_{1}, \ldots, b_{k}\right]}(123)=\mathrm{op}_{\left[c_{1}, \ldots, c_{k}\right]}(123)$
where $c_{1} \cdots c_{k}$ is any permutation of $b_{1} \cdots b_{k}$.

Bijection

Avoiding an
Ordered
Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
and beyond

$$
\mathcal{O} \mathcal{P}_{\left[b_{1}, \ldots, b_{i}, b_{i+1}, \ldots, b_{k}\right]}(123) \leftrightarrow \mathcal{O} \mathcal{P}_{\left[b_{1}, \ldots, b_{i+1}, b_{i}, \ldots, b_{k}\right]}(123)
$$

For every $j \in B_{i} \cup B_{i+1}$ exactly one of the following is true:
(1) j is not involved in a 12 pattern outside of $B_{i} \cup B_{i+1}$.
(2) j plays the role of a 1 in a 12 pattern involving elements outside of $B_{i} \cup B_{i+1}$.
(3) j plays the role of a 2 in a 12 pattern involving elements outside of $B_{i} \cup B_{i+1}$.

Valparaiso
University

Avoiding an Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of

size 2

and beyond

Example

Want to find new partition with $b_{3}=6$ and $b_{4}=5$.

Example

Avoiding an Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of

size 2

and beyond

Want to find new partition with $b_{3}=6$ and $b_{4}=5$.

Valparaiso University

Avoiding an Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond

Example

Valparaiso University

Avoiding an Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond

Example

In n-1 blocks

Want to find new partition with $b_{3}=6$ and $b_{4}=5$.

If not in 12 pattern, move to other block.

Arrange elements playing role of ' 1 ' in 12 pattern in non-increasing order so number of such elements in each block is swapped.

In n-1 blocks

Want to find new partition with $b_{3}=6$ and $b_{4}=5$.

If not in 12 pattern, move to other block.

Arrange elements playing role of ' 1 ' in 12 pattern in non-increasing order so number of such elements in each block is swapped.

In n-1 blocks

Want to find new partition with $b_{3}=6$ and $b_{4}=5$.

If not in 12 pattern, move to other block.

Arrange elements playing role of ' 1 ' in 12 pattern in non-increasing order so number of such elements in each block is swapped.

Arrange elements playing role of ' 2 ' in 12 pattern in non-increasing order so number of such elements in each block is swapped..

In n-1 blocks

Want to find new partition with $b_{3}=6$ and $b_{4}=5$.

If not in 12 pattern, move to other block.

Arrange elements playing role of ' 1 ' in 12 pattern in non-increasing order so number of such elements in each block is swapped.

Arrange elements playing role of ' 2 ' in 12 pattern in non-increasing order so number of such elements in each block is swapped..

Upshot

Avoiding an Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond

Theorem

For $n \geq 2$,
$\operatorname{op}_{n, n-1}(123)=(n-1) \operatorname{op}_{[2, \underbrace{1, \ldots, 1}_{n-2}}](123)=\frac{3(n-1)^{2}\binom{2 n-2}{n-1}}{n(n+1)}$.
And more generally...

Theorem

For $n>p \geq 1$, the number of 123 -avoiding ordered partitions of n into $n-p+1$ parts where there is one part of size p and $n-p$ parts of size 1 is given by

$$
\frac{(n-p+1)(p+1)\binom{2 n-p}{n-p}}{(n+1)} .
$$

Credit to Shalosh B. Ekhad...

In n-1 blocks

We didn't notice the nice formula for $\mathrm{op}_{n, n-1}(123)$ until Zeilberger's FindRec package predicted

$$
\mathrm{op}_{n, n-1}(123)= \begin{cases}1 & n=2 \\ \frac{(4 n-6)(n-1)^{2}}{(n-2)^{2}(n+1)} \mathrm{op}_{n-1, n-2}(123) & n>2\end{cases}
$$

(The solution to this recurrence is indeed the formula from the previous slide.)

More fun with Shalosh

University

Avoiding an
Ordered
Partition of
Length 3
Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond
Zeilberger's FindRec package also predicted:

$$
\mathrm{op}_{[\underbrace{2, \ldots, 2}_{k}]}(123)=
$$

$$
\frac{329 k^{3}-749 k^{2}+514 k-96}{2 k(2 k+1)(7 k-9)} \mathrm{op}_{[\underbrace{2, \ldots, 2]}_{k-1}]}(123)+\frac{3\left(14 k^{3}-39 k^{2}+31 k-6\right)}{k(2 k+1)(7 k-9)} \mathrm{op}_{[\underbrace{2, \ldots, 2]}_{k-2}}(123) .
$$

More fun with Shalosh

Avoiding an Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond
Zeilberger's FindRec package also predicted:
$\mathrm{op}_{[\underbrace{2, \ldots, 2}_{k}}](123)=$
$\frac{329 k^{3}-749 k^{2}+514 k-96}{2 k(2 k+1)(7 k-9)} \mathrm{op}[\underbrace{2, \ldots, 2]}_{k-1}](123)+\frac{3\left(14 k^{3}-39 k^{2}+31 k-6\right)}{k(2 k+1)(7 k-9)} \mathrm{op}_{[\underbrace{2, \ldots, 2]}_{k-2}]}(123)$.
(Proved by Chen, Dai, and Zhou using generating function techniques, preprint on arXiv)

What's next?

University

Avoiding an
Ordered
Partition of
Length 3
Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond

- Exact enumeration for other patterns, other block structures, other pattern types, etc., etc., etc.

What's next?

Valparaiso
University

Avoiding an Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond

- Exact enumeration for other patterns, other block structures, other pattern types, etc., etc., etc.
- For which patterns π is $\mathrm{op}_{\left[b_{1}, \ldots, b_{k}\right]}(\pi)$ invariant under permuting b_{1}, \ldots, b_{k} ?
Known: Invariant for any pattern of length 2 or 3. Not invariant for 1324, 1342, 1423. Might be invariant for 1234.

What's next?

Valparaiso
University

Avoiding an Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In $\mathrm{n}-1$ blocks
All blocks of size 2
and beyond

- Exact enumeration for other patterns, other block structures, other pattern types, etc., etc., etc.
- For which patterns π is $\mathrm{op}_{\left[b_{1}, \ldots, b_{k}\right]}(\pi)$ invariant under permuting b_{1}, \ldots, b_{k} ? Known: Invariant for any pattern of length 2 or 3. Not invariant for 1324, 1342, 1423. Might be invariant for 1234.
- Characterize when two permutations π and σ have $\mathrm{op}_{\left[b_{1}, \ldots, b_{k}\right]}(\pi)=\mathrm{op}_{\left[b_{1}, \ldots, b_{k}\right]}(\sigma)$ for any choice of b_{1}, \ldots, b_{k}. Note: 1342 and 1423 are Wilf-equivalent permutation patterns, but there exist choices of $b_{1}, \ldots b_{k}$ such that $\mathrm{op}_{\left[b_{1}, \ldots, b_{k}\right]}(1342) \neq \mathrm{op}_{\left[b_{1}, \ldots, b_{k}\right]}(1423)$.

What's next?

Avoiding an Ordered Partition of Length 3

Lara Pudwell

Ordered
Partitions
In 3 blocks
In $\mathrm{n}-1$ blocks
All blocks of size 2
and beyond

- Exact enumeration for other patterns, other block structures, other pattern types, etc., etc., etc.
- For which patterns π is $\mathrm{op}_{\left[b_{1}, \ldots, b_{k}\right]}(\pi)$ invariant under permuting b_{1}, \ldots, b_{k} ? Known: Invariant for any pattern of length 2 or 3. Not invariant for 1324, 1342, 1423. Might be invariant for 1234.
- Characterize when two permutations π and σ have $\mathrm{op}_{\left[b_{1}, \ldots, b_{k}\right]}(\pi)=\mathrm{op}_{\left[b_{1}, \ldots, b_{k}\right]}(\sigma)$ for any choice of b_{1}, \ldots, b_{k}. Note: 1342 and 1423 are Wilf-equivalent permutation patterns, but there exist choices of $b_{1}, \ldots b_{k}$ such that $\left.\mathrm{op}_{\left[b_{1}, \ldots, b_{k}\right]}\right](1342) \neq \mathrm{op}_{\left[b_{1}, \ldots, b_{k}\right]}(1423)$.
- Asymptotics of $\mathrm{op}_{\left[b_{1}, \ldots, b_{k}\right]}(\pi)$ and $\mathrm{op}_{n, k}(\pi)$ Stay tuned for Adam Goyt's talk next!

References

- W. Chen, A. Dai, R. Zhou, Ordered Partitions Avoiding a Permutation of Length 3, arXiv:1304.3187.
- A. Godbole, A. Goyt, J. Herdan, L. Pudwell, Pattern Avoidance in Ordered Set Partitions, arXiv:1212.2530, submitted.

Avoiding an
Ordered
Partition of
Length 3
Lara Pudwell

Ordered
Partitions
In 3 blocks
In n-1 blocks
All blocks of size 2
and beyond

References

- W. Chen, A. Dai, R. Zhou, Ordered Partitions Avoiding a Permutation of Length 3, arXiv:1304.3187.
- A. Godbole, A. Goyt, J. Herdan, L. Pudwell, Pattern Avoidance in Ordered Set Partitions, arXiv:1212.2530, submitted.

Thanks for listening!

