

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

Noncontiguous patterns

Definitions & Examples
Generating functions
Connection to permutations
Sets of tree

Summary

Non-contiguous pattern avoidance in binary trees

Michael Dairyko (Pomona College)

Lara Pudwell (Valparaiso University)

Samantha Tyner (Augustana College/Iowa State)

Casey Wynn (Hendrix College/Kent State)

Permutation Patterns 2012 June 15, 2012

Partially supported by NSF grant DMS-0851721

Key Question

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Context

Contiguous

tree patterns

contiguous patterns

Non-

Examples
Generating functions
Connection to permutations
Sets of tree patterns

How many permutations of length n avoid a given permutation pattern?

Key Question

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Context

Brief History

Contiguous

tree patterns

contiguous patterns

Non-

Definitions & Examples
Generating functions
Connection to permutations

How many binary trees with *n* leaves avoid a given tree pattern?

Key Question

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

Noncontiguous patterns

Examples
Generating functions
Connection to permutations
Sets of tree patterns
Summary

How many binary trees with n leaves avoid a given tree pattern?

Concerned with rooted, ordered, full binary trees (each vertex has exactly 0 or 2 children)

History of Tree Patterns: Labelled Trees

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

Noncontiguous patterns Definitions & Examples

Generating functions
Connection to permutations
Sets of tree patterns
Summary

- 1983: Flajolet and Steyaert
 - focus on asymptotic probability of avoiding a given pattern
- 1990: Flajolet, Sipala, and Steyaert
 - \bullet every leaf of pattern must be matched by a leaf of the tree
 - motivated by compactly storing expressions in computer memory
 - e.g. $\frac{d}{dx} \left(\sin(x \cos^2(e^{x+1})) \right) =$

History of Tree Patterns: Labelled Trees

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous

tree patterns

Noncontiguous patterns

Examples
Generating functions
Connection to permutations
Sets of tree patterns
Summary

- 1983: Flajolet and Steyaert
 - focus on asymptotic probability of avoiding a given pattern
- 1990: Flajolet, Sipala, and Steyaert
 - \bullet every leaf of pattern must be matched by a leaf of the tree
 - motivated by compactly storing expressions in computer memory
- 2012: Dotsenko
 - pattern may occur anywhere in tree
 - motivated by operad theory

History of Tree Patterns: Unlabelled Trees

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

Noncontiguous patterns

Examples
Generating functions
Connection to permutations
Sets of tree patterns
Summary

• 2009: Rowland

contiguous pattern avoidance in binary trees

patterns can be anywhere, not just at leaves

• 2010: Gabriel, Peske, P., Tay

extended Rowland's results to m-ary trees

• 2011: Dairyko, P., Tyner, Wynn

non-contiguous pattern avoidance in binary trees

Tree patterns

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

Noncontiguous patterns

Definitions & Examples
Generating functions
Connection to permutations

Sets of tree patterns Summary

Contiguous tree pattern (Rowland)

Tree T contains tree t if and only if T contains t as a contiguous rooted ordered subtree.

Example:

Contiguous pattern enumeration data

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction

Brief History

Contiguous tree patterns

Noncontiguous patterns Definitions Examples

Generating functions Connection to permutations Sets of tree patterns

Pattern t	Number of n leaf trees avoiding t	
•	0	
	$\begin{cases} 1 & n=1 \\ 0 & n>1 \end{cases}$	
	(0 11 > 1	
	1	
	2^{n-2}	
	2^{n-2}	
	M_{n-1} (Motzkin numbers)	

Contiguous tree pattern enumeration

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

Noncontiguous patterns

Definitions & Examples
Generating functions
Connection to permutations
Sets of tree patterns
Summary

Rowland

- Devised algorithm to find functional equation for avoidance generating function for any set of tree patterns.
- Generating functions are always algebraic.
- Enumerated trees containing specified number of copies of a given tree pattern.
- Completely determined Wilf classes for tree patterns with at most 8 leaves.

Tree patterns

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

Noncontiguous patterns

Definitions & Examples
Generating functions
Connection to permutations
Sets of tree patterns

Summary

Non-contiguous tree pattern (Dairyko, P., Tyner, Wynn)

Tree T contains tree t if and only if there exists a sequence of edge contractions of T that produce T^* which contains t as a contiguous rooted ordered subtree.

Example:

Non-contiguous pattern enumeration data

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

tree patterns

Definitions & Examples

Pattern t	Number of n leaf trees avoiding t	
•	0	
Λ	$\int 1 n=1$	
	$\begin{cases} 0 & n > 1 \end{cases}$	
	1	
	2^{n-2}	
	2^{n-2}	
	2^{n-2}	

The Main Theorem

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

ntroduction Context Brief History

Contiguous tree patterns

contiguou patterns Definitions

Non-

Examples
Generating functions
Connection

Connection to permutations Sets of tree patterns Summary

Notation

- Let $av_t(n)$ be the number of *n*-leaf trees that avoid t non-contiguously.
- Let $g_t(x) = \sum_{n=1}^{\infty} \operatorname{av}_t(n) x^n$.

The Main Theorem

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

Noncontiguous patterns

Definitions & Examples Generating functions Connection to permutations

Sets of tree patterns Summary

Notation

- Let $av_t(n)$ be the number of *n*-leaf trees that avoid t non-contiguously.
- Let $g_t(x) = \sum_{n=1}^{\infty} \operatorname{av}_t(n) x^n$.

Theorem

Fix $k \in \mathbb{Z}^+$. Let t and s be two k-leaf binary tree patterns. Then $g_t(x) = g_s(x)$.

Notation and Computation

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

Non-

contiguous
patterns

Definitions &
Examples

Generating
functions

Connection to
permutations
Sets of tree

(More) Notation

- Given tree t,
 - let t_{ℓ} be the subtree whose root is the left child of t's root.
 - let t_r be the subtree whose root is the right child of t's root.

Notation and Computation

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

Noncontiguous patterns

Examples
Generating functions

Connection to permutations Sets of tree patterns Summary

(More) Notation

- Given tree *t*,
 - let t_{ℓ} be the subtree whose root is the left child of t's root.
 - let t_r be the subtree whose root is the right child of t's root.

Notice

$$g_t(x) = x + g_{t_{\ell}}(x) \cdot g_t(x) + g_t(x) \cdot g_{t_r}(x) - g_{t_{\ell}}(x) \cdot g_{t_r}(x)$$

Notation and Computation

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

Noncontiguous patterns

Definitions & Examples
Generating functions

Connection to permutations Sets of tree patterns Summary

(More) Notation

- Given tree t,
 - let t_{ℓ} be the subtree whose root is the left child of t's root.
 - let t_r be the subtree whose root is the right child of t's root.

Notice

$$g_t(x) = x + g_{t\ell}(x) \cdot g_t(x) + g_t(x) \cdot g_{tr}(x) - g_{t\ell}(x) \cdot g_{tr}(x)$$

Solving...

$$g_t(x) = rac{x - g_{t_\ell}(x) \cdot g_{t_r}(x)}{1 - g_{t_\ell}(x) - g_{t_r}(x)}.$$

Proposition

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Context

Contiguous

Noncontiguous

Definitions & Examples
Generating functions

functions

Connection to permutations

Sets of tree patterns

Summary

$$g_t(x) = \frac{x - g_{t_\ell}(x) \cdot g_{t_r}(x)}{1 - g_{t_\ell}(x) - g_{t_r}(x)}.$$

Proposition

For any tree pattern t, $g_t(x)$ is a rational function of x.

A special case...

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context

Brief History

Contiguous tree patterns

contiguous patterns Definitions

Non-

Examples
Generating functions
Connection t

Connection to permutations Sets of tree patterns Summary Let c_k be the k-leaf left comb (the unique k-leaf binary tree where every right child is a leaf).

$$c_1 = {}^{\bullet}, c_2 = {}^{\wedge}, c_3 = {}^{\wedge}, c_4 = {}^{\wedge}, c_5 = {}^{\wedge}, \text{etc.}$$

A special case...

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

Noncontiguous patterns

Definitions & Examples Generating functions

Connection to permutations Sets of tree patterns Summary Let c_k be the k-leaf left comb (the unique k-leaf binary tree where every right child is a leaf).

$$c_1 = \cdot$$
, $c_2 = \Lambda$, $c_3 = \Lambda$, $c_4 = \Lambda$, $c_5 = \Lambda$, etc.

If $t = c_k$, then $t_\ell = c_{k-1}$ and $t_r = {}^{\bullet}$.

For $k \ge 2$, we have

$$g_{c_k}(x) = \frac{x - g_{c_{k-1}}(x) \cdot g_{\bullet}(x)}{1 - g_{c_{k-1}}(x) - g_{\bullet}(x)} = \frac{x}{1 - g_{c_{k-1}}(x)}.$$

Back to the main result

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

Noncontiguous patterns Definitions &

Examples
Generating functions
Connection t

Connection to permutations Sets of tree patterns Summary

Theorem

Fix $k \in \mathbb{Z}^+$. Let t and s be two k-leaf binary tree patterns. Then $g_t(x) = g_s(x)$.

Proof sketch

Inductive step:

- Assume the theorem holds for tree patterns with ℓ leaves where $\ell < k$.
- Then any ℓ -leaf tree has avoidance generating function $g_{C_{\ell}}(x)$.
- Consider tree t with ℓ leaves to the left of its root and tree s with $\ell+1$ leaves to the left of its root.
- Do algebra with previous work to show that $gf_t(x) = gf_s(x)$.

Generating functions

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Context Brief History

Contiguous tree patterns

noncontiguous patterns
Definitions & Examples
Generating functions
Connection to permutations
Sets of tree

_			
	k	$g_{c_k}(x)$	OEIS number
	1	0	trivial
	2	X	trivial
	3	$\frac{x}{1-x}$	trivial
	4	$\frac{x-x^2}{1-2x}$	A000079
	5	$\frac{x-2x^2}{1-3x+x^2}$	A001519
	6	$\frac{x-3x^2+x^3}{1-4x+3x^2}$	A007051
	7	$\frac{x - 4x^2 + 3x^3}{1 - 5x + 6x^2 - x^3}$	A080937
	8	$\frac{x-5x^2+6x^3-x^4}{1-6x+10x^2-4x^3}$	A024175
	9	$\frac{x - 6x^2 + 10x^3 - 4x^4}{1 - 7x + 15x^2 - 10x^3 + x^4}$	A080938

An explicit formula

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

contiguous patterns Definitions 8

Non-

Definitions a Examples Generating functions Connection permutation

Sets of tree patterns Summary

Theorem

Let $k \in \mathbb{Z}^+$ and let t be a binary tree pattern with k leaves. Then

$$g_t(x) = \frac{\sum\limits_{i=0}^{\lfloor\frac{k-2}{2}\rfloor} (-1)^i \cdot {\binom{k-(i+2)}{i}} \cdot x^{i+1}}{\sum\limits_{i=0}^{\lfloor\frac{k-1}{2}\rfloor} (-1)^i \cdot {\binom{k-(i+1)}{i}} \cdot x^i}$$

...and permutations

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

Noncontiguous patterns

Examples
Generating

Connection to permutations Sets of tree patterns Summary We know that the Catalan numbers count:

- the number of binary trees
- the number of 231-avoiding permutations

Can we say more?

...and permutations

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

Noncontiguous patterns

Examples
Generating functions
Connection

Connection to permutations Sets of tree patterns Summary We know that the Catalan numbers count:

- the number of binary trees
- the number of 231-avoiding permutations

Can we say more?

Theorem

Let t be any binary tree pattern with $k \ge 2$ leaves. Then

$$av_t(n) = s_{n-1}(231, (k-1)(k-2)\cdots 21).$$

Example

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Context

Contiguous tree patterns

Noncontiguou patterns

Definitions & Examples
Generating

Connection to permutations Sets of tree patterns

Example

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

contiguou patterns

Definitions & Examples

Connection to permutations Sets of tree patterns

Example

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Context
Brief History

Contiguous tree patterns

contiguou patterns

Definitions & Examples
Generating

Connection to permutations Sets of tree patterns

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous

Noncontiguous patterns

Definitions & Examples
Generating functions
Connection to permutations
Sets of tree patterns

Summary

- Methods extend naturally to trees avoiding multiple tree patterns simultaneously:
 - Generating functions are still rational.

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introductior Context Brief History

Contiguous tree patterns

Noncontiguous patterns

Definitions & Examples Generating functions Connection to permutations Sets of tree patterns Summary

- Methods extend naturally to trees avoiding multiple tree patterns simultaneously:
 - Generating functions are still rational.
 - No longer one Wilf class per size of tree pattern

Wilf classes for avoiding a 4 leaf and a 5 leaf tree pattern

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introductio Context Brief History

tree patterns

Noncontiguou patterns Definitions Examples

functions

Connection t
permutations

Sets of tree
patterns

Pattern representatives	OEIS
$\left\{ \bigwedge, \bigwedge \right\}$	0 for $n \ge 11$
$\left\{ \bigwedge^{\bullet}, \bigwedge \right\}$	A016777
	(3k + 1)
$\left\{ \stackrel{\wedge}{\cancel{N}}, \stackrel{\wedge}{\cancel{N}} \right\}$	A152947
•••	$(\frac{(k-2)\cdot(k-1)+1}{2})$
$\left\{ \bigwedge^{\bullet}, \bigwedge^{\bullet} \right\}$	A000071
	(Fibonacci numbers -1)
$\left\{ \stackrel{\wedge}{\bigwedge}, \stackrel{\wedge}{\bigvee} \right\}$	A000073
, , , ,	(Tribonacci Numbers)

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

Noncontiguous patterns

Definitions & Examples
Generating functions
Connection to permutations
Sets of tree patterns
Summary

- Methods extend naturally to trees avoiding multiple tree patterns simultaneously:
 - Generating functions are still rational.
 - No longer one Wilf class per size of tree pattern (Open: Find a combinatorial characterization of when two sets of tree patterns are Wilf equivalent.)

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction

Contiguous

Noncontiguous patterns Examples Generating

Definitions & functions Sets of tree patterns

Summary

- Methods extend naturally to trees avoiding multiple tree patterns simultaneously:
 - Generating functions are still rational.
 - No longer one Wilf class per size of tree pattern (Open: Find a combinatorial characterization of when two sets of tree patterns are Wilf equivalent.)
 - Some sets of patterns have enumeration sequences that obviously count a set of pattern-avoiding permutations. Others clearly aren't (classical) permutation sequences.

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

Noncontiguous patterns Definitions & Examples Generating

functions
Connection t
permutations
Sets of tree
patterns
Summary

- Methods extend naturally to trees avoiding multiple tree patterns simultaneously:
 - Generating functions are still rational.
 - No longer one Wilf class per size of tree pattern (Open: Find a combinatorial characterization of when two sets of tree patterns are Wilf equivalent.)
 - Some sets of patterns have enumeration sequences that obviously count a set of pattern-avoiding permutations.
 Others clearly aren't (classical) permutation sequences.
 Example:

$$\left\{ \text{av}_{\{, \dots, \dots, \}} (n) \right\}^{\infty} = 1, 2, 5, 12, 26, 49, 83, 129, \dots$$

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

Noncontiguous patterns Definitions & Examples Generating functions

Sets of tree patterns Summary Methods extend naturally to trees avoiding multiple tree patterns simultaneously:

- Generating functions are still rational.
- No longer one Wilf class per size of tree pattern (Open: Find a combinatorial characterization of when two sets of tree patterns are Wilf equivalent.)
- Some sets of patterns have enumeration sequences that obviously count a set of pattern-avoiding permutations.
 Others clearly aren't (classical) permutation sequences.
 (Open: Precisely characterize which sets of tree patterns correspond to classical permutation sequences.)

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History Contiguous

tree patterns

Noncontiguous patterns

Definitions & Examples

Generating functions

Connection to

Sets of tree

patterns Summary Methods extend naturally to trees avoiding multiple tree patterns simultaneously:

- Generating functions are still rational.
- No longer one Wilf class per size of tree pattern (Open: Find a combinatorial characterization of when two sets of tree patterns are Wilf equivalent.)
- Some sets of patterns have enumeration sequences that obviously count a set of pattern-avoiding permutations.
 Others clearly aren't (classical) permutation sequences.
 (Open: Precisely characterize which sets of tree patterns correspond to classical permutation sequences.)

(Open: Let f be the vertex-labelling bijection between binary trees and 231-avoiding permutations given before. Let S be a set of tree patterns. Characterize which permutations correspond to S-avoiding trees under f.)

Summary

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction Context Brief History

Contiguous tree patterns

Noncontiguous patterns Definitions &

Definitions & Examples
Generating functions
Connection to permutations
Sets of tree patterns
Summary

- $g_t(x)$ is rational and of a very nice form for any non-contiguous tree pattern t.
- Only one Wilf class for each number of leaves!
- Trees avoiding a k-leaf tree pattern are in bijection with permutations avoiding 231 and $(k-1)(k-2)\cdots 1$.
- Several open questions remain for trees avoiding sets of non-contiguous patterns.

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Contact

Contiguous

tree patterns

contiguous patterns

Examples Generating

Sets of tree patterns

Thank You!

References

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Context
Brief History

Contiguous tree patterns Non-

contiguous patterns Definitions & Examples Generating functions Connection permutation

Sets of tree patterns Summary

- M. Dairyko, L. Pudwell, S. Tyner, and C. Wynn, Non-contiguous pattern avoidance in binary trees, preprint, http://arxiv.org/abs/1203.0795
- V. Dotsenko, Pattern avoidance in labelled trees, S'em. Lothar. Combin., B67b (2012), 27 pp.
- P. Flajolet, P. Sipala, and J. M. Steyaert, Analytic variations on the common subexpression problem, *Automata, Languages, and Programming: Proc. of ICALP 1990*, Lecture Notes in Computer Science, Vol. 443, Springer, 1990, pp. 220–234.
- N. Gabriel, K. Peske, L. Pudwell, and S. Tay, Pattern avoidance in ternary trees, J. Integer Seq. 15 (2012), 12.1.5.
- E. S. Rowland, Pattern avoidance in binary trees, J. Combin. Theory, Ser. A 117 (2010), 741–758.
- J. M. Steyaert and P. Flajolet, Patterns and pattern-matching in trees: an analysis, *Info. Control* 58 (1983), 19–58.