Pattern Avoiding Colored Partitions

Adam M. Goyt
Minnesota State University Moorhead
goytadam@mnstate.edu

Lara K. Pudwell
Valparaiso University
Lara.Pudwell@valpo.edu

Valparaiso University

August 9, 2010
1. History and Definitions

2. Colored Partitions and Avoidance

3. A Flavor of the Proofs

4. Summary and Future Ideas
Outline

1. History and Definitions
2. Colored Partitions and Avoidance
3. A Flavor of the Proofs
4. Summary and Future Ideas
Who and What

- Pattern Avoidance in Permutations. (Knuth [4], Simion and Schmidt [7], and Boom!)

- Pattern Avoidance in Colored Permutations. Done by considering the set $S_n \wr C_k$. (Mansour [5], Egge [2], and Sizzle!)

- Pattern Avoidance in Set Partitions. (Klazar [3], Sagan [6], Snap, Crackle)

The notion of signed set partitions was considered by Anders Björner and Michelle Wachs [1] from a poset and homological perspective.
Who and What

- Pattern Avoidance in Permutations. (Knuth [4], Simion and Schmidt [7], and Boom!)
- Pattern Avoidance in Colored Permutations. Done by considering the set $S_n \wr C_k$. (Mansour [5], Egge [2], and Sizzle!)
Who and What

- Pattern Avoidance in Permutations. (Knuth [4], Simion and Schmidt [7], and Boom!)
- Pattern Avoidance in Colored Permutations. Done by considering the set $S_n \wr C_k$. (Mansour [5], Egge [2], and Sizzle!)
- Pattern Avoidance in Set Partitions. (Klazar [3], Sagan [6], Snap, Crackle)
Who and What

- Pattern Avoidance in Permutations. (Knuth [4], Simion and Schmidt [7], and Boom!)
- Pattern Avoidance in Colored Permutations. Done by considering the set $S_n \bowtie C_k$. (Mansour [5], Egge [2], and Sizzle!)
- Pattern Avoidance in Set Partitions. (Klazar [3], Sagan [6], Snap, Crackle)
- The notion of signed set partitions was considered by Anders Björner and Michelle Wachs [1] from a poset and homological perspective.
Who and What

- Pattern Avoidance in Permutations. (Knuth [4], Simion and Schmidt [7], and Boom!)
- Pattern Avoidance in Colored Permutations. Done by considering the set $S_n \wr C_k$. (Mansour [5], Egge [2], and Sizzle!)
- Pattern Avoidance in Set Partitions. (Klazar [3], Sagan [6], Snap, Crackle)
- The notion of signed set partitions was considered by Anders Björner and Michelle Wachs [1] from a poset and homological perspective.
- Now, we consider Pattern Avoidance in Colored Set Partitions. (Boom?)
Set Partition Definition

Definition

A partition π of a set S, written $\pi \vdash S$, is a family of disjoint nonempty subsets $B_i \subseteq S$, called blocks, such that $\biguplus B_i = S$.

Example
Set Partition Definition

Definition

A partition π of a set S, written $\pi \vdash S$, is a family of disjoint nonempty subsets $B_i \subseteq S$, called blocks, such that $\biguplus B_i = S$.

We write

$$\pi = B_1/B_2/\ldots/B_k,$$

where

$$\min B_1 < \min B_2 < \cdots < \min B_k,$$
Set Partition Definition

Definition

A partition π of a set S, written $\pi \vdash S$, is a family of disjoint nonempty subsets $B_i \subseteq S$, called blocks, such that $\biguplus B_i = S$.

We write

$$\pi = B_1/B_2/\ldots/B_k,$$

where

$$\min B_1 < \min B_2 < \cdots < \min B_k,$$

Let

$$\Pi_n = \{\pi : \pi \vdash [n] = \{1, 2, \ldots, n\}\}, \text{ and } \Pi = \bigcup_n \Pi_n.$$
Definition

A partition π of a set S, written $\pi \vdash S$, is a family of disjoint nonempty subsets $B_i \subseteq S$, called blocks, such that $\biguplus B_i = S$.

We write

$$\pi = B_1 / B_2 / \ldots / B_k,$$

where

$$\min B_1 < \min B_2 < \cdots < \min B_k,$$

Let

$$\Pi_n = \{\pi : \pi \vdash [n] = \{1, 2, \ldots, n\}\}, \text{ and } \Pi = \bigcup_n \Pi_n.$$
Definition

Given any word $w \in [k]^n$ *we may canonize* w *by replacing all occurrences of the first letter of* w *by 1, all occurrences of the next occurring letter by 2, etc.*
Canonical Words

Definition

Given any word $w \in [k]^n$ *we may canonize* w *by replacing all occurrences of the first letter of* w *by 1, all occurrences of the next occurring letter by 2, etc.*

Example

The canonized form of 47411477 *is* 12133122.
Canonical Words

Definition

Given any word $w \in [k]^n$ we may canonize w by replacing all occurrences of the first letter of w by 1, all occurrences of the next occurring letter by 2, etc.

Example

The canonized form of 47411477 is 12133122.

There is a bijection between all canonized words of length n and partitions of $[n]$.
Canonical Words

To each set partition is associated a canonical word $a_1a_2\ldots a_n$ where $a_i = j$ if $i \in B_j$.
Canonical Words

To each set partition is associated a canonical word $a_1 a_2 \ldots a_n$ where $a_i = j$ if $i \in B_j$.

Example

137/25/46 corresponds to 1213231.
Canonical Words

To each set partition is associated a canonical word $a_1 a_2 \ldots a_n$ where $a_i = j$ if $i \in B_j$.

Example

$137/25/46$ corresponds to 1213231.

We will say that a partition, π is of length n, $\ell(\pi) = n$, if its associated canonical word has n letters.

From now on we will refer to these canonical words as partitions.
Pattern Avoidance

Definition

Let σ be a partition with $\ell(\sigma) = n$ and π be a partition with $\ell(\pi) = k$. We say that σ contains π if there is a subsequence of σ of length k whose canonization is π. Otherwise we say that σ avoids π.

Example

Let $\sigma = 1213431$.
Definition

Let σ be a partition with $\ell(\sigma) = n$ and π be a partition with $\ell(\pi) = k$. We say that σ contains π if there is a subsequence of σ of length k whose canonization is π. Otherwise we say that σ avoids π.

Example

Let $\sigma = 1213431$.

σ contains a copy of 112 namely $\color{red}12\color{black}1343\color{red}1$ or $\color{red}1\\color{black}21343\color{red}1$. However, σ avoids 1112.
Outline

1. History and Definitions
2. Colored Partitions and Avoidance
3. A Flavor of the Proofs
4. Summary and Future Ideas
Colored Partitions

Definition

A \textit{colored partition} is a set partition where each element is given one of \(k \) colors.
Colored Partitions

Definition
A colored partition is a set partition where each element is given one of k colors.

Definition
Denote the set of all k-colored set partitions of $[n]$ by $\Pi_n \wr C_k$.

Example
Consider $\sigma = 1213431 \in \Pi_7$ from the previous slide. We can make σ an element of $\Pi_7 \wr C_3$ simply by choosing one of three colors for each of the elements. So $1211341 \in \Pi_7 \wr C_3$.
Avoiding Colored Partitions

Definition

We say that $\sigma \in \Pi_n \wr C_k$ contains a copy of $\pi \in \Pi_m \wr C_j$ if

1. the uncolored version of σ contains a copy of the uncolored version of π and
Avoiding Colored Partitions

Definition

We say that $\sigma \in \Pi_n \wr C_k$ contains a copy of $\pi \in \Pi_m \wr C_j$ if

1. the uncolored version of σ contains a copy of the uncolored version of π and
2. the colors of this copy of π equal the colors of π.

Otherwise we say that σ avoids π.
Avoiding Colored Partitions

Definition

We say that $\sigma \in \Pi_n \wr C_k$ contains a copy of $\pi \in \Pi_m \wr C_j$ if

1. the uncolored version of σ contains a copy of the uncolored version of π and
2. the colors of this copy of π equal the colors of π.

Otherwise we say that σ avoids π.

Example

Consider $\sigma = 1211341$. Then σ contains a copy of 122, but σ avoids 122.
Avoiding Colored Partitions

Definition

We say that $\sigma \in \Pi_n \wr C_k$ contains a copy of $\pi \in \Pi_m \wr C_j$ if

1. the uncolored version of σ contains a copy of the uncolored version of π and
2. the colors of this copy of π equal the colors of π.

Otherwise we say that σ avoids π.

Example

Consider $\sigma = 1211341$. Then σ contains a copy of 122, but σ avoids 122.

Definition

For a set of colored set partitions S let $\Pi_n \wr C_k(S)$ be the set of partitions in $\Pi_n \wr C_k$ that avoid every pattern in S.
Outline

1. History and Definitions
2. Colored Partitions and Avoidance
3. A Flavor of the Proofs
4. Summary and Future Ideas
Friendly Results

Theorem

For $n \geq 1$ and $c \geq 2$, $|\Pi_n \land C_2(11, 11)| = \sum_{i=1}^{n} 2^i S(n, i)$

(OEIS A001861)

Theorem

For $n \geq 1$ and $c \geq 2$, $|\Pi_n \land C_2(12)| = (B_{n+2} - B_{n+1}) - (B_{n+1} - B_n)$

(OEIS A011965)
Theorem

For \(n \geq 1 \) and \(c \geq 2 \), \(|\Pi_n \wr C_k(112)| =

\[B(n)(k - 1)^n + \sum_{m=1}^{n} \sum_{j=1}^{m} \binom{n}{m} \binom{m}{j} B(n - j)(k - 1)^{n-j} + \]
\[
\sum_{1 \leq i < j \leq n} \sum_{a,b} \sum_{d,e} \sum_{f,g} \sum_{m} \sum_{p,q} \sum_{\ell} \binom{i-1}{a,b} \binom{j-i-1}{d,e} \binom{n-j}{f,g} \cdot
\]
\[
\binom{i-a-b-1}{m} \binom{j-i-d-e-1}{p} \binom{n-a-b-f-g-j+i-m-1}{q} \cdot
\]
\[
S(p+q, \ell) m^\ell B(n - a - b - d - e - f - g - m - p - q - 2) \cdot
\]
\[
((k - 1)^b + b(k - 1)^{b-1})((k - 1)^a + a(k - 1)^{a-1})(k - 2)^{d+p} k^e \cdot
\]
\[
(k - 1)^{n-a-b-d-e-m-p-2}.
\]
The Proof of this Theorem can be broken into 3 cases.

Case 1: No elements are colored blue.

Case 2: Exactly one block contains elements colored blue.

Case 3: At least two blocks contain elements colored blue.
Avoiding 112 – Sketch of Proof

The Proof of this Theorem can be broken into 3 cases.

Case 1: No elements are colored blue.
Avoiding 112 – Sketch of Proof

The Proof of this Theorem can be broken into 3 cases.

Case 1: No elements are colored blue.

Case 2: Exactly one block contains elements colored blue.
Avoiding 112 – Sketch of Proof

The Proof of this Theorem can be broken into 3 cases.

Case 1: No elements are colored blue.

Case 2: Exactly one block contains elements colored blue.

Case 3: At least two blocks contain elements colored blue.
No elements are colored blue.

In this case there can’t possibly be a copy of 112.

- $B(n)$ (n^{th} Bell number) ways to partition the elements in $[n]$
- $(k - 1)^n$ ways to color each element any color but blue.

Thus there are $B(n)(k - 1)^n$ such 112 avoiding partitions in $\Pi_n \wr C_k$.
Exactly one block contains elements colored blue.

In this case there can’t possibly be a copy of 112.

- Select \(m \) elements to be in the block with the elements that are colored blue.
- Select \(j \) of these elements to be colored blue.
- Partition the remaining \(n - m \) elements in \(B(n - m) \) ways.
- Color the non-blue elements in \((k - 1)^{n-j} \) ways.

Thus there are

\[
\sum_{m=1}^{n} \sum_{j=1}^{m} \binom{n}{m} \binom{m}{j} B(n - m)(k - 1)^{n-j}
\]

such partitions avoiding 112.
The Final Case

At least two blocks contain elements colored blue and there is no copy of 112.

SEE BOARD!
Outline

1. History and Definitions
2. Colored Partitions and Avoidance
3. A Flavor of the Proofs
4. Summary and Future Ideas
Where Do We Go from Here?

- Generating Functions?
Where Do We Go from Here?

- Generating Functions?
- connections via OEIS
Where Do We Go from Here?

- Generating Functions?
- connections via OEIS
- Wilf Classes
Where Do We Go from Here?

- Generating Functions?
- connections via OEIS
- Wilf Classes
- eq-avoidance, lt-avoidance, color-pattern-avoidance
Where Do We Go from Here?

- Generating Functions?
- connections via OEIS
- Wilf Classes
- eq-avoidance, lt-avoidance, color-pattern-avoidance
- Set Partition Statistics
Thank You

THANK YOU

