Patterns in Parking Functions

54th Southeastern International Conference on Combinatorics, Graph Theory and Computing March 10, 2023

Permutations

•0000

A permutation is a list where order matters.

 S_n is the set of all permutations of $\{1, 2, \dots, n\}$.

Examples:

- $S_1 = \{1\}$
- $S_2 = \{12, 21\}$
- $S_3 = \{123, 132, 213, 231, 312, 321\}$

$$|\mathcal{S}_n|=n!$$

Visualize $\pi = \pi_1 \pi_2 \cdots \pi_n \in S_n$ by plotting the points (i, π_i) in the xy-plane.

Permutations 0•000 Permutations

$$\pi = 562719348$$

Permutations 000•0

Permutations 000•0

562719348 contains the pattern 132

00000

562719348 contains the pattern 1234

562719348 avoids the pattern 4321

Big question

Permutations

How many permutations of length n contain the pattern ρ ?

Or, alternatively...

Big question

How many permutations of length n avoid the pattern ρ ?

(depends on what ρ is!)

Notation

 $S_n(\rho)$ is the set of permutations of length *n* avoiding ρ .

A parking function is a sequence $a_1 \cdots a_n \in [n]^n$ such that if $b_1 \leq b_2 \leq \cdots \leq b_n$ is the increasing rearrangement of $a_1 \cdots a_n$ then $b_i < i$ for all 1 < i < n.

A parking function is a sequence $a_1 \cdots a_n \in [n]^n$ such that if $b_1 \leq b_2 \leq \cdots \leq b_n$ is the increasing rearrangement of $a_1 \cdots a_n$ then $b_i \leq i$ for all $1 \leq i \leq n$.

Examples: 11111, 32123, 45312 11111, 12233, 12345

A parking function is a sequence $a_1 \cdots a_n \in [n]^n$ such that if $b_1 \leq b_2 \leq \cdots \leq b_n$ is the increasing rearrangement of $a_1 \cdots a_n$ then $b_i < i$ for all 1 < i < n.

Examples: 11111, 32123, 45312 11111, 12233, 12345

Nonexamples: 22222, 51244, 15151 22222, 12445, 11155

A parking function is a sequence $a_1 \cdots a_n \in [n]^n$ such that if $b_1 \leq b_2 \leq \cdots \leq b_n$ is the increasing rearrangement of $a_1 \cdots a_n$ then $b_i \leq i$ for all $1 \leq i \leq n$.

Examples: 11111, 32123, 45312 11111, 12233, 12345

Nonexamples: 22222, 51244, 15151 22222, 12445, 11155

Observations

- There are $(n+1)^{n-1}$ parking functions of size n.
- Every permutation of size n is a parking function of size n.

History

Jelínek and Mansour (2009)

- Consider parking functions as words on $[n]^n$
- Determined all equivalence classes of patterns of length at most 5

History

Jelínek and Mansour (2009)

- Consider parking functions as words on $[n]^n$
- Determined all equivalence classes of patterns of length at most 5

Remmel and Qiu (2016)

- Consider parking functions as labeled Dyck paths (bijection of Garsia and Haiman)
- Each Dyck path is associated with a permutation (many-to-one correspondence)
- Determined number of 123-avoiding parking functions

History

Jelínek and Mansour (2009)

- Consider parking functions as words on $[n]^n$
- Determined all equivalence classes of patterns of length at most 5

Remmel and Qiu (2016)

- Consider parking functions as labeled Dyck paths (bijection of Garsia and Haiman)
- Each Dyck path is associated with a permutation (many-to-one correspondence)
- Determined number of 123-avoiding parking functions

Current project:

- Extend Remmel and Qiu's work
- Count parking functions avoiding a subset of S_3 .

Sequences: 11 12 21

Sequences: 11 12 21

Blocks: $\{1,2\}, \emptyset$ $\{1\}, \{2\}$ $\{2\}, \{1\}$

Sequences:

11

12

21

Blocks:

 $\{1,2\},\emptyset$

{1}, {2}

 $\{2\},\{1\}$

1

Dyck paths:

Sequences:

11

12

21

Blocks:

 $\{1, 2\}, \emptyset$

 $\{1\}, \{2\}$

 $\{2\}, \{1\}$

1

Dyck paths:

Associated permutations:

12

12

21

コト 4 回 ト 4 重 ト 4 重 ・ 夕 Q (や)

Parking function: 6144231

Blocks: $\{2,7\}, \{5\}, \{6\}, \{3,4\}, \emptyset, \{1\}, \emptyset$

Dyck path:

Associated permutation: 2756341

Warmup

Notation

Let $\operatorname{pf}_n(\rho)$ be the number of parking functions of size n whose associated permutations avoid ρ .

Proposition

 $\operatorname{pf}_n(21) = C_n (n \operatorname{th Catalan number})$

Warmup

Proposition

$$\operatorname{pf}_n(12)=1$$

Patterns P	$\operatorname{pf}_n(P)$, $1 \leq n \leq 6$	OEIS
123, 132, 231	1, 3, 5, 7, 9, 11	A005408
123, 132, 312		
123, 213, 231	1, 3, 6, 10, 15, 21	A000217
123, 231, 312		
123, 213, 312	1, 3, 7, 13, 21, 31	A002061
123, 132, 213	1, 3, 6, 17, 43, 123	A143363
132, 213, 231	1, 3, 8, 22, 64, 196	A 01 41 20
132, 231, 312	1, 3, 6, 22, 04, 190	A014138
132, 213, 312	1, 3, 9, 28, 90, 297	A000245
213, 231, 312	1, 3, 9, 20, 90, 291	A000243
132, 231, 321	1, 3, 9, 29, 98, 342	A077587
132, 213, 321		
132, 312, 321	1, 3, 10, 35, 126, 462	A001700
213, 231, 321		
213, 312, 321	1, 3, 11, 41, 154, 582	A076540
231, 312, 321	1, 3, 10, 38, 154, 654	A001002

Patterns P	$pf_n(P), 1 \le n \le 6$	OEIS
123, 231	1, 3, 8, 17, 31, 51	A105163
123, 312	1, 3, 9, 21, 41, 71	A064999
123, 132	1, 3, 8, 24, 75, 243	A000958
123, 213	1, 3, 9, 28, 90, 297	A000245
132, 231	1, 3, 10, 36, 137, 543	A002212
132, 213		
132, 312	1, 3, 11, 45, 197, 903	A001003
213, 231		
231, 312		
132, 321	1, 3, 12, 52, 229, 1006	new
213, 321	1, 3, 13, 60, 275, 1238	new
213, 312	1, 3, 12, 54, 259, 1293	new
231, 321	1, 3, 12, 55, 273, 1428	A001764
312, 321	1, 3, 13, 63, 324, 1736	new

Theorem

$$\operatorname{pf}_n(132,213,312) = \operatorname{pf}_n(213,231,312) = \frac{3(2n)!}{(n+2)!(n-1)!} = C_{n+1} - C_n$$

$$S_n(213, 231, 312)$$

- a(n,1) = 1
- $\bullet \ a(n,n)=C_n$

$$S_n(213, 231, 312)$$
 ...

- a(n,1) = 1
- $a(n, n) = C_n$

Two cases:

- Last block has one element
- Last block is empty

$$S_n(213,231,312)$$
 \vdots

- a(n,1) = 1
- $a(n, n) = C_n$

Two cases:

- **1** Last block has one element (a(n-1,k))
- 2 Last block is empty

Case 1? Deleting/reinserting last block (and standardizing) is bijection

$$\{1,2\}, \emptyset, \{7\}, \{6\}, \{5\}, \{4\}, \{3\} \longleftrightarrow \{1,2\}, \emptyset, \{6\}, \{5\}, \{4\}, \{3\}$$

$$S_n(213, 231, 312)$$
 . ••••

- a(n,1) = 1
- $a(n, n) = C_n$

Two cases:

- **1** Last block has one element (a(n-1,k))
- 2 Last block is empty (a(n, k-1))

Case 2? Bijection via moving last element before decreasing run.

$$S_n(213, 231, 312)$$

- a(n,1) = 1
- $a(n, n) = C_n$

Two cases:

- **1** Last block has one element (a(n-1,k))
- 2 Last block is empty (a(n, k-1))

In general:

$$a(n, k) = a(n - 1, k) + a(n, k - 1).$$

- a(n,1)=1
- $a(n, n) = C_n$

In general:

$$a(n, k) = a(n - 1, k) + a(n, k - 1).$$

- a(n,1)=1
- $a(n, n) = C_n$

In general:

$$a(n, k) = a(n - 1, k) + a(n, k - 1).$$

a(n, k) gives triangle A030237, i.e. Catalan's triangle with the rightmost diagonal removed.

- a(n,1)=1
- $a(n, n) = C_n$

In general:

$$a(n, k) = a(n - 1, k) + a(n, k - 1).$$

a(n, k) gives triangle A030237, i.e. Catalan's triangle with the rightmost diagonal removed.

$$\operatorname{pf}_{n}(132, 213, 312) = \operatorname{pf}_{n}(213, 231, 312) = \sum_{k=1}^{n} a(n, k) = C_{n+1} - C_{n}$$

Theorem

$$pf_n(231, 312, 321) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{1}{n+1} {2n-k \choose n+k} {n+k \choose k} \quad (OEIS A001002)$$

(number of dissections of a convex (n + 2)-gon into triangles and quadrilaterals)

Theorem

$$pf_n(231, 312, 321) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{1}{n+1} {2n-k \choose n+k} {n+k \choose k} \quad (OEIS A001002)$$

(number of dissections of a convex (n+2)-gon into triangles and quadrilaterals)

Catalan object 1: dissections of a convex (n+2)-gon into triangles Catalan object 2: 21-avoiding parking functions

General cases:

General cases:

General cases:

$$\left\{ n-1\right\} ,\left\{ n\right\}$$

$$\{n-1,n\},\emptyset$$

$$n = 3$$
:

$$\{n-1\},\{n\}$$

$$\{n-1,n\},\emptyset$$

n = 3:

 $\{1, 2, 3\}, \emptyset, \emptyset$

 $\{1,2\},\{3\},\emptyset$

 $\{n-1,n\},\emptyset$

n = 3:

$$\{n-1\},\{n\}$$

$$\{n-1,n\},\emptyset$$

$$\{n-1\},\emptyset,\{n\}$$

n = 3:

 $\{1,2,3\},\emptyset,\emptyset$

 $\{1,2\},\{3\},\emptyset$ $\{1\},\{2,3\},\emptyset$ $\{1\},\{2\},\{3\}$ $\{1,2\},\emptyset,\{3\}$

Theorem

$$pf_n(231, 312, 321) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{1}{n+1} {2n-k \choose n+k} {n+k \choose k} \quad (OEIS A001002)$$

(number of dissections of a convex (n + 2)-gon into triangles and quadrilaterals)

Avoiding {231, 312, 321}

Theorem

$$pf_n(231, 312, 321) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{1}{n+1} {2n-k \choose n+k} {n+k \choose k} \quad (OEIS A001002)$$

(number of dissections of a convex (n + 2)-gon into triangles and quadrilaterals)

Avoiding {231, 312, 321}

$$\{n-1,n\},\emptyset$$

$$\{n-1\},\emptyset,\{n\}$$

$$\{1,3\},\{2,5\},\{4\},\{6\},\emptyset,\{7,8\},\emptyset,\emptyset$$

Theorem

$$pf_n(231, 321) = \frac{\binom{3n}{n}}{2n+1}$$
 (OEIS A001764)

$$\frac{\binom{3n}{n}}{2n+1}$$
 counts

- ternary trees
- non-crossing trees

Strategy for $pf_n(231, 321)$

- bijection between Dyck paths and rooted ordered trees
- ø bijection between parking functions and non-crossing trees via...
 - labeling Dyck paths
 - arranging tree vertices on circle

Strategy for $pf_n(231, 321)$

- bijection between Dyck paths and rooted ordered trees
- 2 bijection between parking functions and non-crossing trees via...
 - ► labeling Dyck paths
 - arranging tree vertices on circle

Reframing the Dyck path/tree bijection

Characterization of {231, 321}-avoiding permutations

Characterization of {231, 321}-avoiding permutations

Characterization of {231, 321}-avoiding permutations

Characterization of {231, 321}-avoiding permutations

Characterization of {231, 321}-avoiding permutations

Characterization of {231, 321}-avoiding permutations

Characterization of {231, 321}-avoiding permutations

The digit d must be either first or second among the digits $\{d, d+1, \ldots, n\}$.

corresponds to $2 \cdot 4 \cdot 2 = 16$ different $\{231, 321\}$ -avoiding parking functions.

corresponds to $2 \cdot 3 = 6$ different $\{231, 321\}$ -avoiding parking functions.

$$\{1,?\}$$

- *a* is left of 1 subtree, so ? is replaced with smallest remaining number.
- *c* is left of 2 subtrees, so ? is replaced with 2nd smallest remaining number.
- e is left of 0 subtrees, so ? remains.

Recap

- $\operatorname{pf}_n(132, 213, 312) = \operatorname{pf}_n(213, 231, 312) = C_{n+1} C_n$
- $\operatorname{pf}_n(231, 312, 321) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{1}{n+1} \binom{2n-k}{n+k} \binom{n+k}{k}$
- $\operatorname{pf}_{n}(231, 321) = \frac{\binom{3n}{n}}{2n+1}$

Recap

•
$$\operatorname{pf}_n(132, 213, 312) = \operatorname{pf}_n(213, 231, 312) = C_{n+1} - C_n$$

•
$$\operatorname{pf}_n(231, 312, 321) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{1}{n+1} \binom{2n-k}{n+k} \binom{n+k}{k}$$

•
$$\operatorname{pf}_n(231, 321) = \frac{\binom{3n}{n}}{2n+1}$$

Forthcoming:

results for avoiding any set of 2 or more patterns in \mathcal{S}_3

Pattern P	$pf_n(P), 1 \le n \le 6$	OEIS
123	1, 3, 11, 48, 232, 1207	new (Remmel & Qiu)
132	1, 3, 13, 69, 417, 2759	A243688*
231	1, 3, 13, 09, 417, 2739	A243000 ·
213	1, 3, 14, 81, 533, 3822	DOM.
312	1, 3, 14, 01, 333, 3022	new
321	1, 3, 15, 97, 728, 6024	new

^{* &}quot;Number of Sylvester classes of 1-multiparking functions of length n."

For further reading...

- A. Adeniran and L. Pudwell, Pattern Avoidance in Parking Functions, arXiv:2209.04068
- A.M. Garsia and M. Haiman, A Remarkable q, t-Catalan Sequence and q-Lagrange Inversion, J. Algebraic Combin. 5 (1996), 191–244.
- V. Jelínek and T. Mansour, Wilf-equivalence on *k*-ary words, compositions, and parking functions, *Electron. J. Combin.* **16** (2009), #R58, 9pp.
- J. Remmel and D. Qiu, Patterns in ordered set partitions and parking functions, Permutation Patterns 2016 (slides), available electronically at https://www.math.ucsd.edu/~duqiu/files/PP16.pdf.
- Richard Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 2001.
- The On-Line Encyclopedia of Integer Sequences at oeis.org.

Thanks for listening!

slides at faculty.valpo.edu/lpudwell

