Patterns in Parking Functions

Lara Pudwell joint work with Ayomikun Adeniran (Colby College)

54th Southeastern International Conference on Combinatorics,
Graph Theory and Computing March 10, 2023

Definition

A permutation is a list where order matters. \mathcal{S}_{n} is the set of all permutations of $\{1,2, \ldots, n\}$.

Examples:

- $\mathcal{S}_{1}=\{1\}$
- $\mathcal{S}_{2}=\{12,21\}$
- $\mathcal{S}_{3}=\{123,132,213,231,312,321\}$

$$
\left|\mathcal{S}_{n}\right|=n!
$$

Visualize $\pi=\pi_{1} \pi_{2} \cdots \pi_{n} \in \mathcal{S}_{n}$ by plotting the points $\left(i, \pi_{i}\right)$ in the $x y$-plane.

123

$$
\pi=562719348
$$

562719348 contains the pattern 132

562719348 contains the pattern 1234

562719348 avoids the pattern 4321

Big question

How many permutations of length n contain the pattern ρ ?

Or, alternatively...

Big question

How many permutations of length n avoid the pattern ρ ?

$$
\text { (depends on what } \rho \text { is!) }
$$

Notation

$\mathcal{S}_{n}(\rho)$ is the set of permutations of length n avoiding ρ.

Definition

A parking function is a sequence $a_{1} \cdots a_{n} \in[n]^{n}$ such that if $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ is the increasing rearrangement of $a_{1} \cdots a_{n}$ then $b_{i} \leq i$ for all $1 \leq i \leq n$.

Definition

A parking function is a sequence $a_{1} \cdots a_{n} \in[n]^{n}$ such that if $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ is the increasing rearrangement of $a_{1} \cdots a_{n}$ then $b_{i} \leq i$ for all $1 \leq i \leq n$.

Examples: 11111, 32123, 45312

$$
11111,12233,12345
$$

Definition

A parking function is a sequence $a_{1} \cdots a_{n} \in[n]^{n}$ such that if $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ is the increasing rearrangement of $a_{1} \cdots a_{n}$ then $b_{i} \leq i$ for all $1 \leq i \leq n$.

Examples: 11111, 32123, 45312

$$
\text { 11111, 12233, } 12345
$$

Nonexamples: 22222, 51244, 15151

22222, 12445, 11155

Definition

A parking function is a sequence $a_{1} \cdots a_{n} \in[n]^{n}$ such that if $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ is the increasing rearrangement of $a_{1} \cdots a_{n}$ then $b_{i} \leq i$ for all $1 \leq i \leq n$.

Examples: 11111, 32123, 45312

$$
11111,12233,12345
$$

Nonexamples: 22222, 51244, 15151
22222, 12445, 11155

Observations

- There are $(n+1)^{n-1}$ parking functions of size n.
- Every permutation of size n is a parking function of size n.

History

Jelínek and Mansour (2009)

- Consider parking functions as words on $[n]^{n}$
- Determined all equivalence classes of patterns of length at most 5

History

Jelínek and Mansour (2009)

- Consider parking functions as words on $[n]^{n}$
- Determined all equivalence classes of patterns of length at most 5

Remmel and Qiu (2016)

- Consider parking functions as labeled Dyck paths (bijection of Garsia and Haiman)
- Each Dyck path is associated with a permutation (many-to-one correspondence)
- Determined number of 123 -avoiding parking functions

History

Jelínek and Mansour (2009)

- Consider parking functions as words on $[n]^{n}$
- Determined all equivalence classes of patterns of length at most 5

Remmel and Qiu (2016)

- Consider parking functions as labeled Dyck paths (bijection of Garsia and Haiman)
- Each Dyck path is associated with a permutation (many-to-one correspondence)
- Determined number of 123 -avoiding parking functions

Current project:

- Extend Remmel and Qiu's work
- Count parking functions avoiding a subset of \mathcal{S}_{3}.

Parking functions of size 2

Sequences:
11
12
21

Parking functions of size 2

Sequences:
11
12
21
Blocks:
$\{1,2\}, \emptyset$
$\{1\},\{2\}$
$\{2\},\{1\}$

Parking functions of size 2

Sequences:
Blocks:

11
12
21
$\{1,2\}, \emptyset$
$\{1\},\{2\}$
$\{2\},\{1\}$

Dyck paths:

Parking functions of size 2

Sequences:
Blocks:
Dyck paths:

11
12
21
$\{1,2\}, \emptyset$
$\{1\},\{2\}$
$\{2\},\{1\}$

Associated permutations:

12
12
21

Parking function:

Blocks:

Dyck path:

Associated permutation:
2756341

Warmup

Notation

Let $\mathrm{pf}_{n}(\rho)$ be the number of parking functions of size n whose associated permutations avoid ρ.

Proposition

$\mathrm{pf}_{n}(21)=C_{n}$ (nth Catalan number)

Warmup

Proposition
 $\mathrm{pf}_{n}(12)=1$

Patterns P	$\mathrm{pf}_{n}(P), 1 \leq n \leq 6$	OEIS
$123,132,231$	$1,3,5,7,9,11$	A 005408
$123,132,312$ $123,213,231$ $123,231,312$	$1,3,6,10,15,21$	A 000217
$123,213,312$	$1,3,7,13,21,31$	A 002061
$123,132,213$	$1,3,6,17,43,123$	A 143363
$132,213,231$	$1,3,8,22,64,196$	A 014138
$132,231,312$		
$132,213,312$ $213,231,312$	$1,3,9,28,90,297$	A 000245
$132,231,321$	$1,3,9,29,98,342$	A 077587
$132,213,321$ $132,312,321$ $213,231,321$	$1,3,10,35,126,462$	A 001700
$213,312,321$	$1,3,11,41,154,582$	A 076540
$231,312,321$	$1,3,10,38,154,654$	A 001002

Patterns P	$\mathrm{pf}_{n}(P), 1 \leq n \leq 6$	OEIS
123,231	$1,3,8,17,31,51$	A105163
123,312	$1,3,9,21,41,71$	A064999
123,132	$1,3,8,24,75,243$	A000958
123,213	$1,3,9,28,90,297$	A000245
132,231	$1,3,10,36,137,543$	A002212
132,213		
132,312	$1,3,11,45,197,903$	A001003
213,231		
231,312		new
132,321	$1,3,12,52,229,1006$	new
213,321	$1,3,13,60,275,1238$	new
213,312	$1,3,12,54,259,1293$	A001764
231,321	$1,3,12,55,273,1428$	Aew
312,321	$1,3,13,63,324,1736$	new

Theorem

$$
\operatorname{pf}_{n}(132,213,312)=\operatorname{pf}_{n}(213,231,312)=\frac{3(2 n)!}{(n+2)!(n-1)!}=C_{n+1}-C_{n}
$$

$\mathcal{S}_{n}(213,231,312) \quad \because \cdot$

Let $a(n, k)$ be the number of size n parking functions whose associated permutation begins with $k-1$ ascents.

- $a(n, 1)=1$
- $a(n, n)=C_{n}$

$\mathcal{S}_{n}(213,231,312) \quad \because \cdot$

Let $a(n, k)$ be the number of size n parking functions whose associated permutation begins with $k-1$ ascents.

- $a(n, 1)=1$
- $a(n, n)=C_{n}$

Two cases:
(1) Last block has one element
(2) Last block is empty

$$
\mathcal{S}_{n}(213,231,312) \quad \because \ddots
$$

Let $a(n, k)$ be the number of size n parking functions whose associated permutation begins with $k-1$ ascents.

- $a(n, 1)=1$
- $a(n, n)=C_{n}$

Two cases:
(1) Last block has one element $(a(n-1, k))$
(2) Last block is empty

Case 1? Deleting/reinserting last block (and standardizing) is bijection

$$
\{1,2\}, \emptyset,\{7\},\{6\},\{5\},\{4\},\{3\} \leftrightarrow\{1,2\}, \emptyset,\{6\},\{5\},\{4\},\{3\}
$$

$$
\mathcal{S}_{n}(213,231,312) \quad \because \ddots
$$

Let $a(n, k)$ be the number of size n parking functions whose associated permutation begins with $k-1$ ascents.

- $a(n, 1)=1$
- $a(n, n)=C_{n}$

Two cases:
(1) Last block has one element $(a(n-1, k))$
(2) Last block is empty $(a(n, k-1))$

Case 2? Bijection via moving last element before decreasing run.

$\mathcal{S}_{n}(213,231,312) \quad \because \quad$.

Let $a(n, k)$ be the number of size n parking functions whose associated permutation begins with $k-1$ ascents.

- $a(n, 1)=1$
- $a(n, n)=C_{n}$

Two cases:
(1) Last block has one element $(a(n-1, k))$
(2) Last block is empty $(a(n, k-1))$

In general:

$$
a(n, k)=a(n-1, k)+a(n, k-1) .
$$

Let $a(n, k)$ be the number of size n parking functions whose associated permutation begins with $k-1$ ascents.

- $a(n, 1)=1$
- $a(n, n)=C_{n}$

In general:

$$
a(n, k)=a(n-1, k)+a(n, k-1) .
$$

Let $a(n, k)$ be the number of size n parking functions whose associated permutation begins with $k-1$ ascents.

- $a(n, 1)=1$
- $a(n, n)=C_{n}$

In general:

$$
a(n, k)=a(n-1, k)+a(n, k-1) .
$$

$a(n, k)$ gives triangle A030237, i.e. Catalan's triangle with the rightmost diagonal removed.

Let $a(n, k)$ be the number of size n parking functions whose associated permutation begins with $k-1$ ascents.

- $a(n, 1)=1$
- $a(n, n)=C_{n}$

In general:

$$
a(n, k)=a(n-1, k)+a(n, k-1) .
$$

$a(n, k)$ gives triangle A030237, i.e. Catalan's triangle with the rightmost diagonal removed.

$$
\operatorname{pf}_{n}(132,213,312)=\operatorname{pf}_{n}(213,231,312)=\sum_{k=1}^{n} a(n, k)=C_{n+1}-C_{n}
$$

Theorem

$$
\operatorname{pf}_{n}(231,312,321)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{n+1}\binom{2 n-k}{n+k}\binom{n+k}{k} \quad \text { (OEIS A001002) }
$$

(number of dissections of a convex $(n+2)$-gon into triangles and quadrilaterals)

Theorem

$$
\operatorname{pf}_{n}(231,312,321)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{n+1}\binom{2 n-k}{n+k}\binom{n+k}{k}
$$

(number of dissections of a convex $(n+2)$-gon into triangles and quadrilaterals)

Catalan object 1: dissections of a convex $(n+2)$-gon into triangles Catalan object 2: 21-avoiding parking functions

Small cases:

\{1\}

$\{1\},\{2\}$

$\{1,2\}, \emptyset$

Small cases:

\{1\}

$\{1\},\{2\}$

$\{1,2\}, \emptyset$

General cases:

Small cases:

\{1\}

$\{1\},\{2\}$

$\{1,2\}, \emptyset$

General cases:

$\{n-1\},\{n\}$

Small cases:

\{1\}

$\{1\},\{2\}$

$\{1,2\}, \emptyset$

General cases:

$\{n-1\},\{n\}$

$\{n-1, n\}, \emptyset$

$\{n-1\}, \emptyset,\{n\}$

General case:

$$
\{n-1\},\{n\} \quad\{n-1, n\}, \emptyset
$$

$\{n-1\}, \emptyset,\{n\}$

$$
n=3:
$$

General case:

$\{n-1\}, \emptyset,\{n\}$

$$
n=3:
$$

$$
\{1,2,3\}, \emptyset, \emptyset \quad\{1,2\},\{3\}, \emptyset
$$

General case:

$$
n=3:
$$

$\{1,2,3\}, \emptyset, \emptyset$
$\{1,2\},\{3\}, \emptyset$
$\{1\},\{2,3\}, \emptyset$
\{1\}, $\{2\},\{3\}$

General case:

$n=3:$

$\{1,2,3\}, \emptyset, \emptyset$

$\{1,2\},\{3\}, \emptyset$

$\{1\},\{2,3\}, \emptyset$

$\{1\},\{2\},\{3\} \quad\{1,2\}, \emptyset,\{3\}$

Larger example

Larger example

Theorem

$$
\operatorname{pf}_{n}(231,312,321)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{n+1}\binom{2 n-k}{n+k}\binom{n+k}{k} \quad \text { (OEIS A001002) }
$$

(number of dissections of a convex ($n+2$)-gon into triangles and quadrilaterals)

Avoiding $\{231,312,321\}$

Theorem

$$
\operatorname{pf}_{n}(231,312,321)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{n+1}\binom{2 n-k}{n+k}\binom{n+k}{k} \quad \text { (OEIS A001002) }
$$

(number of dissections of a convex ($n+2$)-gon into triangles and quadrilaterals)

Avoiding $\{231,312,321\}$

Larger example

Larger example

Larger example

$\{\underline{5}\},\{\underline{4}\},\{6\} \quad\{1, \underline{3}\},\{\underline{2}\}, \emptyset$

Larger example

$\{\underline{5}\},\{\underline{4}\},\{6\} \quad\{1, \underline{3}\},\{\underline{2}\}, \emptyset$
$\{1,3\},\{2,5\},\{4\},\{6\}, \emptyset,\{7\}, \emptyset$

Larger example

$\{\underline{5}\},\{\underline{4}\},\{6\} \quad\{1, \underline{3}\},\{\underline{2}\}, \emptyset$
$\{1,3\},\{2,5\},\{4\},\{6\}, \emptyset,\{7\}, \emptyset$
$\{1,3\},\{2,5\},\{4\},\{6\}, \emptyset,\{7,8\}, \emptyset, \emptyset$

Theorem

$$
\operatorname{pf}_{n}(231,321)=\frac{\binom{3 n}{n}}{2 n+1} \quad(\text { OEIS A001764) }
$$

$\frac{\binom{3 n}{n}}{2 n+1}$ counts

- ternary trees
- non-crossing trees

Strategy for $\mathrm{pf}_{n}(231,321)$

(1) bijection between Dyck paths and rooted ordered trees
(2) bijection between parking functions and non-crossing trees via...

- labeling Dyck paths
- arranging tree vertices on circle

Strategy for $\mathrm{pf}_{n}(231,321)$

(1) bijection between Dyck paths and rooted ordered trees
(2) bijection between parking functions and non-crossing trees via...

- labeling Dyck paths
- arranging tree vertices on circle

						\prime
				\ddots		

Reframing the Dyck path/tree bijection

Labelling the Dyck path to avoid $\{231,321\}$

Characterization of $\{231,321\}$-avoiding permutations
The digit d must be either first or second among the digits $\{d, d+1, \ldots, n\}$.

Labelling the Dyck path to avoid $\{231,321\}$

Characterization of $\{231,321\}$-avoiding permutations
The digit d must be either first or second among the digits $\{d, d+1, \ldots, n\}$.

Labelling the Dyck path to avoid $\{231,321\}$
Characterization of $\{231,321\}$-avoiding permutations
The digit d must be either first or second among the digits $\{d, d+1, \ldots, n\}$.

Labelling the Dyck path to avoid $\{231,321\}$

Characterization of $\{231,321\}$-avoiding permutations
The digit d must be either first or second among the digits $\{d, d+1, \ldots, n\}$.

Labelling the Dyck path to avoid $\{231,321\}$
Characterization of $\{231,321\}$-avoiding permutations
The digit d must be either first or second among the digits $\{d, d+1, \ldots, n\}$.

Labelling the Dyck path to avoid $\{231,321\}$

Characterization of $\{231,321\}$-avoiding permutations
The digit d must be either first or second among the digits $\{d, d+1, \ldots, n\}$.

		$?$				
		4				
		3				
	2					
5						
1						

Labelling the Dyck path to avoid $\{231,321\}$
Characterization of $\{231,321\}$-avoiding permutations
The digit d must be either first or second among the digits $\{d, d+1, \ldots, n\}$.

				$?$		
		6				
		4				
		3				
	2					
5						
1						

				6		
		$?$				
		4				
		3				
	2					
5						
1						

Labelling the Dyck path to avoid $\{231,321\}$

Characterization of $\{231,321\}$-avoiding permutations
The digit d must be either first or second among the digits $\{d, d+1, \ldots, n\}$.

				6		
		$?$				
		4				
		3				
	2					
5						
1						

Labelling the Dyck path to avoid $\{231,321\}$

Characterization of $\{231,321\}$-avoiding permutations
The digit d must be either first or second among the digits $\{d, d+1, \ldots, n\}$.

				6		
		7				
		4				
		3				
	2					
5						
1						

Labelling the Dyck path to avoid $\{231,321\}$

Characterization of $\{231,321\}$-avoiding permutations

The digit d must be either first or second among the digits $\{d, d+1, \ldots, n\}$.

corresponds to
$2 \cdot 4 \cdot 2=16$ different
\{231, 321\}-avoiding parking functions.

corresponds to $2 \cdot 3=6$ different $\{231,321\}$-avoiding parking functions.

\{1, ?\}
$\{1,2\},\{?\}$
$\{1,2\},\{4\},\{3,5, ?\}$
$\{1,2\},\{4\},\{3,5, ?\},\{6\}$
a is left of 1 subtree, so ? is replaced with smallest remaining number. c is left of 2 subtrees, so ? is replaced with 2 nd smallest remaining number.
e is left of 0 subtrees, so ? remains.

Recap

- $\operatorname{pf}_{n}(132,213,312)=\operatorname{pf}_{n}(213,231,312)=C_{n+1}-C_{n}$
- $\operatorname{pf}_{n}(231,312,321)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{n+1}\binom{2 n-k}{n+k}\binom{n+k}{k}$
- $\operatorname{pf}_{n}(231,321)=\frac{\binom{3 n}{n}}{2 n+1}$

Recap

- $\operatorname{pf}_{n}(132,213,312)=\operatorname{pf}_{n}(213,231,312)=C_{n+1}-C_{n}$
- $\operatorname{pf}_{n}(231,312,321)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{n+1}\binom{2 n-k}{n+k}\binom{n+k}{k}$
- $\operatorname{pf}_{n}(231,321)=\frac{\binom{3 n}{n}}{2 n+1}$

Forthcoming:
results for avoiding any set of 2 or more patterns in \mathcal{S}_{3}

Pattern P	$\operatorname{pf}_{n}(P), 1 \leq n \leq 6$	OEIS
123	$1,3,11,48,232,1207$	new (Remmel \& Qiu)
132	$1,3,13,69,417,2759$	A243688*
231		
213	$1,3,14,81,533,3822$	new
312		
321	$1,3,15,97,728,6024$	new

*"Number of Sylvester classes of 1-multiparking functions of length n."

For further reading...

- A. Adeniran and L. Pudwell, Pattern Avoidance in Parking Functions, arXiv:2209.04068
- A.M. Garsia and M. Haiman, A Remarkable q, t-Catalan Sequence and q-Lagrange Inversion, J. Algebraic Combin. 5 (1996), 191-244.
- V. Jelínek and T. Mansour, Wilf-equivalence on k-ary words, compositions, and parking functions, Electron. J. Combin. 16 (2009), \#R58, 9pp.
- J. Remmel and D. Qiu, Patterns in ordered set partitions and parking functions, Permutation Patterns 2016 (slides), available electronically at https://www.math.ucsd.edu/~duqiu/files/PP16.pdf.
- Richard Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 2001.
- The On-Line Encyclopedia of Integer Sequences at oeis.org.

Thanks for listening!

slides at faculty.valpo.edu/lpudwell
email: Lara.Pudwell@valpo.edu

