

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns Definition & examples

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoidin, permutations

Pattern avoidance in trees

Lara Pudwell (Valparaiso University) faculty.valpo.edu/lpudwell

Notre Dame Discrete Math Seminar November 27, 2012

Partially supported by NSF grant DMS-0851721

Outline

2

Pattern avoidance in trees

Introduction

Brief history

Enumeration

Introduction

- Contiguous
- Definition &

Nonpatterns

Definition & functions

Connections objects

Summarv

contiguous

Non-contiguous patterns 3

Definition & examples

Contiguous tree patterns

- Definition & examples
- Generating functions
- Sets of tree patterns

Connections to other objects

- OEIS hits
- Pattern-avoiding permutations

Outline

Pattern avoidance in trees

Introduction

• Brief history

Introduction

- Brief history
- Contiguous tree patterns
- Definition & examples Enumeration

Noncontiguou patterns

- Definition & examples Generating functions Sets of tree patterns
- Connections to other objects OEIS hits Pattern-avoiding permutations

Summary

Definition & examplesEnumeration

Non-contiguous patterns

- Definition & examples
- Generating functions
- Sets of tree patterns

Connections to other objects

- OEIS hits
- Pattern-avoiding permutations

History of Tree Patterns: Labelled Trees

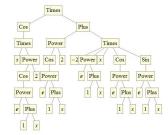
Pattern avoidance in trees

Lara Pudwell

Introduction

Brief history

Contiguous tree patterns Definition & examples


Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations • 1983: Flajolet and Steyaert

- focus on asymptotic probability of avoiding a given pattern
- 1990: Flajolet, Sipala, and Steyaert
 - every leaf of pattern must be matched by a leaf of the tree
 - motivated by compactly storing expressions in computer memory

• e.g.
$$\frac{d}{dx}\left(\sin(x\cos^2(e^{x+1}))\right) =$$

History of Tree Patterns: Labelled Trees

Pattern avoidance in trees

Lara Pudwell

Introduction

Brief history

Contiguous tree patterns Definition & examples

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations

• 1983: Flajolet and Steyaert

- focus on asymptotic probability of avoiding a given pattern
- 1990: Flajolet, Sipala, and Steyaert
 - every leaf of pattern must be matched by a leaf of the tree
 - motivated by compactly storing expressions in computer memory
- 2012: Dotsenko
 - pattern may occur anywhere in tree
 - motivated by operad theory

History of Tree Patterns: Unlabelled Trees

Pattern avoidance in trees

- Lara Pudwell
- Introduction Brief history
- Contiguous tree patterns Definition & examples
- Noncontiguous patterns
- Definition & examples Generating functions Sets of tree patterns
- Connections to other objects OEIS hits Pattern-avoiding permutations

- 2009: Rowland
 - contiguous pattern avoidance in binary trees
 - patterns can be anywhere, not just at leaves
- 2010: Gabriel, Peske, P., Tay
 - $\bullet\,$ extended Rowland's results to $m\text{-}{\rm ary}$ trees
- 2011: Dairyko, P., Tyner, Wynn
 - non-contiguous pattern avoidance in binary trees
- 2012: P., Serrato, Scholten, Schrock
 - non-contiguous pattern containment in binary/m-ary trees

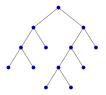
Key Question

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns Definition & examples


examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations Today, our trees will be:

- rooted (root vertex at top)
- ordered (left child and right child are distinct)
- full binary (each vertex has exactly 0 or 2 children)

Key Question

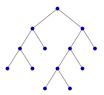
Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns Definition & examples

Noncontiguous patterns


Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations

Summary

Today, our trees will be:

- rooted (root vertex at top)
- ordered (left child and right child are distinct)
- full binary (each vertex has exactly 0 or 2 children)

Question: How many trees with n leaves avoid a given tree pattern?

Outline

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns

Definition & examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoidin; permutations

Summary

IntroductionBrief history

2 Contiguous tree patterns

- Definition & examples
- Enumeration

Non-contiguous patterns

- Definition & examples
- Generating functions
- Sets of tree patterns

Connections to other objects

- OEIS hits
- Pattern-avoiding permutations

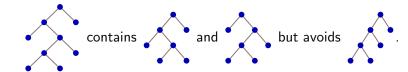
Pattern avoidance in trees

Introduction

Contiguous tree patterns Definition & examples

Tree patterns

Contiguous tree pattern


Tree T contains tree t if and only if T contains t as a contiguous rooted ordered subtree.

Example:

Noncontiguous patterns

examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoidin, permutations

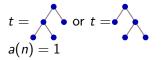
Pattern avoidance in trees

Lara Pudwe

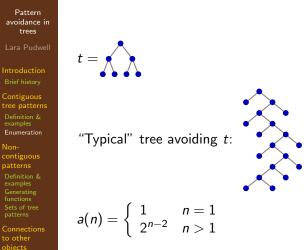
Introduction Brief history Contiguous tree patterns

examples Enumeration

Noncontiguou: patterns


Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations $t = \bigwedge$


t =

a(n) = 0

$$a(n) = \begin{cases} 1 & n = 1 \\ 0 & n > 1 \end{cases}$$

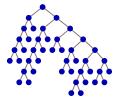
Lara Pudwell

Introduction Brief history Contiguous tree patterns Definition &

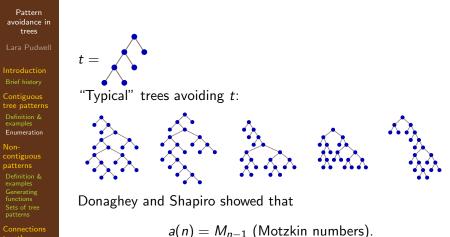
examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns


Connections to other objects OEIS hits Pattern-avoidin, permutations

Summary



"Typical" tree avoiding t:

$$a(n) = \begin{cases} 1 & n=1\\ 2^{n-2} & n>1 \end{cases}$$

Summary

objects

Contiguous pattern enumeration data

Lara Pudwell

Introduction Brief history

Definition & examples Enumeration

Noncontiguou patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoidin; permutations

t	a(n)
•	0
~	$\begin{cases} 1 & n = 1 \\ 0 & n > 1 \end{cases}$
$\widehat{}$	1
$\widehat{\wedge} \widehat{\wedge}$	2 ^{<i>n</i>-2}
	M_{n-1} (Motzkin numbers)

Contiguous tree pattern enumeration

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns Definition & examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations Rowland

- Devised algorithm to find functional equation for avoidance generating function for any set of tree patterns.
 - Generating functions are always algebraic.
- Enumerated trees containing specified number of copies of a given tree pattern.
- Completely determined equivalence classes for tree patterns with at most 8 leaves.
 - For *n* = 1, 2, 3, ..., there are 1, 1, 1, 2, 3, 7, 15, 44, ... equivalence classes of *n*-leaf binary trees.

Outline

Pattern avoidance in trees

Introduction

Contiguous

Noncontiguous

patterns

Generating functions

Connections

objects

tree patterns Definition &

- Brief history
- - Definition & examples
 - Enumeration

Non-contiguous patterns 3

- Definition & examples
- Generating functions
- Sets of tree patterns

Connections to other objects

- OEIS hits
- Pattern-avoiding permutations

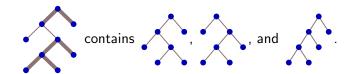
Summarv

Pattern avoidance in trees

Introduction

Contiguous

Noncontiguous patterns Definition & examples


tree patterns

Tree patterns

Non-contiguous tree pattern

Tree T contains tree t if and only if there exists a sequence of edge contractions of T that produce T^* which contains t as a contiguous rooted ordered subtree.

Example:

Connections to other objects OEIS hits Pattern-avoidin permutations

functions

Non-contiguous pattern enumeration data

Pattern avoidance in trees	
Introduction	
Brief history	
Contiguous	
tree patterns	
Definition & examples	
Non-	
contiguous	
patterns	
Definition & examples	
Generating	
Sets of tree	
patterns	
Connections	
to other	
objects	
OEIS hits	
Pattern-avoiding permutations	
Summary	

Pattern t	Number of n -leaf trees avoiding t						
•	0						
•	$\int 1 n = 1$						
••	$iggl\{ 0 n>1 \ $						
	1						
	2 ^{<i>n</i>-2}						
	2 ^{<i>n</i>-2}						
	2 ^{<i>n</i>-2}						

The Main Theorem

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Definition & examples

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations

Notation

Let av_t(n) be the number of n-leaf trees that avoid t non-contiguously.

• Let
$$g_t(x) = \sum_{n=1}^{\infty} \operatorname{av}_t(n) x^n$$
.

The Main Theorem

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history Contiguous

tree patterns Definition & examples

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations Notation

Let av_t(n) be the number of n-leaf trees that avoid t non-contiguously.

• Let
$$g_t(x) = \sum_{n=1}^{\infty} \operatorname{av}_t(n) x^n$$
.

Theorem

Fix $k \in \mathbb{Z}^+$. Let t and s be two k-leaf binary tree patterns. Then $g_t(x) = g_s(x)$.

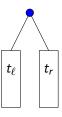
Notation and Computation

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns Definition & examples


Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations (More) Notation

• Given tree *t*,

- let t_{ℓ} be the subtree whose root is the left child of t's root.
- let *t_r* be the subtree whose root is the right child of *t*'s root.

Notation and Computation

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history Contiguous

tree patterns Definition & examples

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations

(More) Notation • Given tree t,

- let t_{ℓ} be the subtree whose root is the left child of t's root.
 - let *t_r* be the subtree whose root is the right child of *t*'s root.

Notice

$$g_t(x) = x + g_{t_\ell}(x) \cdot g_t(x) + g_t(x) \cdot g_{t_r}(x) - g_{t_\ell}(x) \cdot g_{t_r}(x)$$

Notation and Computation

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history Contiguous

tree patterns Definition & examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations

(More) Notation

• Given tree t,

- let t_{ℓ} be the subtree whose root is the left child of t's root.
- let *t_r* be the subtree whose root is the right child of *t*'s root.

Notice

$$g_t(x) = x + g_{t_\ell}(x) \cdot g_t(x) + g_t(x) \cdot g_{t_r}(x) - g_{t_\ell}(x) \cdot g_{t_r}(x)$$

Solving...

$$g_t(x) = \frac{x - g_{t_\ell}(x) \cdot g_{t_r}(x)}{1 - g_{t_\ell}(x) - g_{t_r}(x)}.$$

Proposition

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns

Definition & examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations $g_t(x) = \frac{x - g_{t_\ell}(x) \cdot g_{t_r}(x)}{1 - g_{t_\ell}(x) - g_{t_r}(x)}.$

Proposition

For any tree pattern t, $g_t(x)$ is a rational function of x.

A special case...

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns Definition & examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations Let c_k be the k-leaf left comb (the unique k-leaf binary tree where every right child is a leaf). $c_1 = \cdot, c_2 = \Lambda, c_3 = \Lambda, c_4 = \Lambda, c_5 = \Lambda, \text{etc.}$

A special case...

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns Definition & examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoidin permutations Let c_k be the k-leaf left comb (the unique k-leaf binary tree where every right child is a leaf). $c_1 = \cdot, c_2 = \Lambda, c_3 = \Lambda, c_4 = \Lambda, c_5 = \Lambda, c_5 = \Lambda, etc.$ If $t = c_k$, then $t_\ell = c_{k-1}$ and $t_r = \cdot$.

For $k \geq 2$, we have

$$g_{c_k}(x) = \frac{x - g_{c_{k-1}}(x) \cdot g_{\bullet}(x)}{1 - g_{c_{k-1}}(x) - g_{\bullet}(x)} = \frac{x}{1 - g_{c_{k-1}}(x)}.$$

Back to the main result

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns Definition & examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations Theorem Fix $k \in \mathbb{Z}^+$. Let t and s b

Fix $k \in \mathbb{Z}^+$. Let t and s be two k-leaf binary tree patterns. Then $g_t(x) = g_s(x)$.

Proof sketch

Inductive step:

- Assume the theorem holds for tree patterns with ℓ leaves where $\ell < k$.
- Then any ℓ -leaf tree has avoidance generating function $g_{c_{\ell}}(x)$.
- Consider tree t with ℓ leaves to the left of its root and tree s with $\ell 1$ leaves to the left of its root.
- Do algebra with previous work to show that $g_t(x) = g_s(x)$.

Patte avoidan tree

tree pati

Generatin functions

Generating functions

ern	k	$g_{c_k}(x)$	OEIS number
nce in es		$\mathcal{B}_k(\wedge)$	
	1	0	trivial
	2	x	trivial
ous terns	3	$\frac{x}{1-x}$	trivial
n & s ition	4	$\frac{x-x^2}{1-2x}$	A000079
	5	$\frac{x-2x^2}{1-3x+x^2}$	A001519
n & s ng s	6	$\frac{x-3x^2+x^3}{1-4x+3x^2}$	A007051
ree tions	7	$\frac{x - 4x^2 + 3x^3}{1 - 5x + 6x^2 - x^3}$	A080937
	8	$\frac{x-5x^2+6x^3-x^4}{1-6x+10x^2-4x^3}$	A024175
avoiding tions 'Y	9	$\frac{x-6x^2+10x^3-4x^4}{1-7x+15x^2-10x^3+x^4}$	A080938

Coefficient sightings...

Pattern avoidance in trees											
Lara Pudwell											
Introduction	1										
Brief history	-										
Contiguous	1	1									
tree patterns	1	2	1								
Definition & examples	-	_	-	-							
Enumeration	1	3	3	1							
Non-	1	4	6	4	1						
contiguous	1	5	10	10	5	1					
patterns Definition &	Т	5	10	10	5	T					
examples	1	6	15	20	15	6	1				
Generating functions	1	7	21	35	35	21	7	1			
Sets of tree	T	1	Z 1	35	35	Z 1	1	T			
patterns	1	8	28	56	70	56	28	8	1		
Connections											

Coefficient sightings...

Pattern avoidance in trees										$\frac{x}{1}$
Lara Pudwell										$\frac{x}{1-x}$
Introduction Brief history Contiguous	1 1	1								$\frac{x-x^2}{1-2x}$
tree patterns Definition & examples Enumeration	1 1	2 3	1 3	1						$\frac{x-2x^2}{1-3x+x^2}$
Non- contiguous patterns	1 1	4 5	6 10	4 10	1 5	1				$\frac{x-3x^2+x^3}{1-4x+3x^2}$
Definition & examples Generating functions Sets of tree	1 1	6 7	15 21	20 35	15 35	6 21	1 7	1		$\frac{x - 4x^2 + 3x^3}{1 - 5x + 6x^2 - x^3}$
patterns Connections to other objects	1	8	28	56	70	56	28	8	1	$\frac{x-5x^2+6x^3-x^4}{1-6x+10x^2-4x^3}$
OEIS hits Pattern-avoiding permutations										$\frac{x - 6x^2 + 10x^3 - 4x^4}{1 - 7x + 15x^2 - 10x^3 + x^4}$
Summary										$1 - ix + 15x^2 - 10x^3 + x^4$

Coefficient sightings...

Pattern avoidance in trees										<u>×</u> 1
Lara Pudwell										$\frac{x}{1-x}$
Introduction Brief history	1 1	1								$\frac{x-x^2}{1-2x}$
Contiguous tree patterns Definition &	1	1 2	1							
examples Enumeration	1	3	3	1						$\frac{x-2x^2}{1-3x+x^2}$
Non- contiguous patterns	1 1	4 5	6 10	4 10	1 5	1				$\frac{x-3x^2+x^3}{1-4x+3x^2}$
Definition & examples Generating	1	6	15	20	15	6	1			
functions Sets of tree patterns	1 1	7 8	21 28	35 56	35 70	21 56	7 28	1 8	1	$\frac{x - 4x^2 + 3x^3}{1 - 5x + 6x^2 - x^3}$
Connections to other objects										$\frac{x-5x^2+6x^3-x^4}{1-6x+10x^2-4x^3}$

OEIS hits Pattern-avoidir

Summary

 $\frac{x-6x^2+10x^3-4x^4}{1-7x+15x^2-10x^3+x^4}$

An explicit formula

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history Contiguous

tree patterns Definition & examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations

Theorem

Let $k \in \mathbb{Z}^+$ and let t be a binary tree pattern with k leaves. Then

$$g_t(x) = \frac{\sum_{i=0}^{\lfloor \frac{k-2}{2} \rfloor} (-1)^i \cdot {\binom{k-(i+2)}{i}} \cdot x^{i+1}}{\sum_{i=0}^{\lfloor \frac{k-1}{2} \rfloor} (-1)^i \cdot {\binom{k-(i+1)}{i}} \cdot x^i}.$$

Avoiding multiple tree patterns

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns Definition & examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations Methods extend naturally to trees avoiding multiple tree patterns simultaneously:

- Generating functions are still rational.
- No longer one equivalence class per size of tree pattern

Equivalence classes for avoiding a 4 leaf and a 5 leaf tree pattern

Pattern avoidance in trees Lara Pudwell Introduction Brief history Contiguous tree patterns Definition & examples Enumeration Non-

contiguous patterns Definition & examples

Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoidin permutations

Pattern representatives	OEIS
$\left[\left\{ \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(\left(\begin{array}{c} \left(\left(\left(\begin{array}{c} \left($	0 for $n \ge 11$
$\left\{ \left(\bigwedge^{h}, \bigwedge^{h} \right) \right\}$	A016777
	(3k + 1)
$\left - \left\{ \bigwedge^{\circ}, \bigwedge^{\circ} \right\} \right $	A152947
	$(rac{(k-2)\cdot(k-1)+1}{2})$
$\left\{ \bigwedge^{h}, \bigwedge^{h} \right\}$	A000071
	(Fibonacci numbers -1)
$\left[\left\{ \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(\left(\begin{array}{c} \left(\left(\left(\begin{array}{c} \left($	A000073
	(Tribonacci Numbers)

Avoiding multiple tree patterns

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns Definition & examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations Methods extend naturally to trees avoiding multiple tree patterns simultaneously:

- Generating functions are still rational.
- No longer one equivalence class per size of tree pattern (Open: Find a combinatorial characterization of when two sets of tree patterns are enumeratively equivalent.)

Outline

Pattern avoidance in trees

Introduction

Brief history

Introduction Brief history

- Contiguous tree patterns
- Definition & examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects

OEIS hits Pattern-avoiding permutations

Summary

• Definition & examples

- Definition & examples
- Enumeration

Non-contiguous patterns

- Definition & examples
- Generating functions
- Sets of tree patterns

4

Connections to other objects

- OEIS hits
- Pattern-avoiding permutations

Contiguous patterns

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns

Definition & examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations

Summary

For binary patterns...

- A001006: Motzkin numbers
- A011782: Powers of 2
- A036765: Number of Dyck n-paths that avoid UUUU
- A086581: Number of Dyck n-paths that avoid DDUU.
- A036766: Number of Dyck n-paths that avoid UUUUU
- A005773: Number of n-permutations avoiding 1-23-4 and 1-3-2

Contiguous patterns

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns Definition &

Definition & examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations

Summary

For binary patterns...

- A001006: Motzkin numbers
- A011782: Powers of 2
- A036765: Number of Dyck n-paths that avoid UUUU
- A086581: Number of Dyck n-paths that avoid DDUU.
- A036766: Number of Dyck n-paths that avoid UUUUU
- A005773: Number of n-permutations avoiding 1-23-4 and 1-3-2

For ternary patterns...

- A000108: Catalan numbers
- A001003: Little Schroeder numbers
- A107264: Counts colored Motzkin paths, where H(1,0) and U(1,1) each have 3 colors and D(1,-1) one color.
- A006605: Number of modes of connections of 2n points. (under Baxter's generalization of the Temperley-Lieb operators)

First things first...

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns Definition &

examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations Notation

 S_n is the set of all permutations of length n written in one-line notation.

Examples: $S_2 = \{12, 21\}$ $S_3 = \{123, 132, 213, 231, 312, 321\}$

Definition

Let $w \in [k]^n$. The *reduction* of w, red(w), is the string obtained by replacing the *i*th smallest letter(s) of w with *i*.

Examples: red(1534) = 1423red(72884) = 31442red(4231) = 4231

Permutation patterns

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns Definition & examples

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations Definition

Let $\pi \in S_n$ and $\rho \in S_k$. π contains ρ if there exist $1 \leq i_1 < \cdots < i_k \leq n$ such that $\operatorname{red}(\pi_{i_1} \cdots \pi_{i_k}) = \rho$. If π does not contain ρ , then π avoids ρ

Examples: 7245631 contains 132 (e.g. 243, 253, 263) contains 4321 (e.g. 7631, 7531, 7431) avoids 54321

Permutation patterns

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns Definition & examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations

Notation

 $s_n(\rho)$ is the number of permutations of length *n* that avoid ρ .

Preliminary results:

•
$$s_n(1) = \begin{cases} 1 & n=0\\ 0 & n>0 \end{cases}$$

•
$$s_n(12) = s_n(21) = 1$$

•
$$s_n(123) = s_n(132) = s_n(213) = s_n(231) = s_n(312) =$$

 $s_n(321) = \frac{\binom{2n}{n}}{(n+1)} = C_n \text{ (Catalan numbers)}$

...and permutations

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns Definition &

examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations We know that the Catalan numbers count:

- the number of binary trees
- the number of 231-avoiding permutations

Can we say more?

...and permutations

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns

Definition & examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations We know that the Catalan numbers count:

- the number of binary trees
- the number of 231-avoiding permutations

Can we say more?

Theorem

Let t be any non-contiguous binary tree pattern with $k\geq 2$ leaves. Then

$$av_t(n) = s_{n-1}(231, (k-1)(k-2)\cdots 21).$$

Example

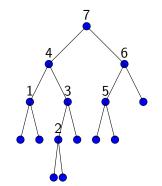
Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

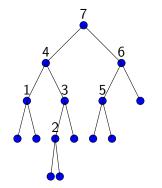
Contiguous tree patterns Definition &

Enumeration


Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations


Example

Pattern-avoiding permutations

Example

1423756

Pattern-avoiding permutations

Main theorem revisited....

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns Definition & examples

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations Theorem

Fix $k \in \mathbb{Z}^+$. Let t and s be two k-leaf binary tree patterns. Then $g_t(x) = g_s(x)$.

Under the tree \leftrightarrow 231-avoiding permutation bijection, this theorem translates into a set of enumeration-equivalances for permutations too!

Lara Pudwell

Introduction Brief history

Contiguous tree patterns Definition &

examples Enumeration

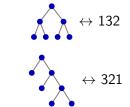
Noncontiguou patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations $\bigwedge^{\leftrightarrow 12} \leftrightarrow 21$

So $s_n(231, 12) = s_n(231, 21)$ (or, really $s_n(12) = s_n(21)$).

Lara Pudwell


Introduction Brief history

Contiguous tree patterns Definition & examples Enumeration

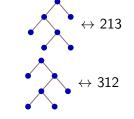
Noncontiguous patterns

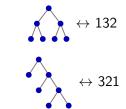
Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations $\leftrightarrow 213$ $\leftrightarrow 312$

So $s_n(231, 213) = s_n(231, 132) = s_n(231, 312) = s_n(231, 321)$

Lara Pudwell

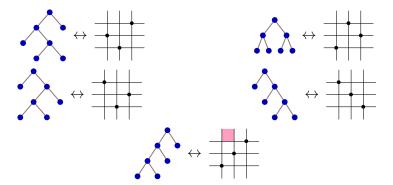

Introduction Brief history


Contiguous tree patterns Definition & examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations


So $s_n(231, 213) = s_n(231, 132) = s_n(231, 312) = s_n(231, 321)$

- Lara Pudwell
- Introduction Brief history Contiguous
- tree patterns Definition & examples Enumeration
- Noncontiguous patterns
- Definition & examples Generating functions Sets of tree patterns
- Connections to other objects OEIS hits Pattern-avoiding permutations

Outline

Pattern avoidance in trees

Introduction

Contiguous tree patterns

Nonpatterns

Generating functions

Connections objects

Summary

Brief history

- Definition & examples
- Enumeration

Non-contiguous patterns

- Definition & examples
- Generating functions
- Sets of tree patterns

Connections to other objects

- OEIS hits
- Pattern-avoiding permutations

Pattern avoidance in trees

Valparaiso University Summary

Lara Pudwell

Introduction Brief history Contiguous

tree patterns Definition & examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations

- Tree patterns have a rich history ranging from data storage considerations to non-associative algebra.
- Both contiguous and non-contiguous tree patterns yield nice enumeration sequences.
 - For contiguous tree patterns, $g_t(x)$ is algebraic.
 - For non-contiguous tree patterns, $g_t(x)$ is rational and has a nice closed form.
 - Open:
 - Equivalence classes for contiguous tree patterns with 9 or more leaves.
 - Equivalence classes for trees avoiding sets of tree patterns.

Summary (continued)

Pattern avoidance in trees

- Lara Pudwell
- Introduction Brief history
- Contiguous tree patterns Definition & examples Enumeration
- Noncontiguous patterns
- Definition & examples Generating functions Sets of tree patterns
- Connections to other objects OEIS hits Pattern-avoiding permutations

- Trees avoiding a non-contiguous k-leaf tree pattern are in bijection with permutations avoiding 231 and (k-1)(k-2)···1.
 - For any n ∈ Z⁺, there are at least Catalan-many enumeration equivalent pattern sets of the form {231, π} where π is a mesh pattern of length n.

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns Definition & examples

examples Enumeration

Noncontiguou patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations Thank You!

References

Pattern avoidance in trees

Lara Pudwell

Introduction Brief history

Contiguous tree patterns Definition & examples

examples Enumeration

Noncontiguous patterns

Definition & examples Generating functions Sets of tree patterns

Connections to other objects OEIS hits Pattern-avoiding permutations

- M. Dairyko, L. Pudwell, S. Tyner, and C. Wynn, Non-contiguous pattern avoidance in binary trees, *Electronic Journal of Combinatorics* 19 (3) (2012), P22.
- V. Dotsenko, Pattern avoidance in labelled trees, S'em. Lothar. Combin., B67b (2012), 27 pp.
- P. Flajolet, P. Sipala, and J. M. Steyaert, Analytic variations on the common subexpression problem, *Automata, Languages, and Programming: Proc. of ICALP 1990*, Lecture Notes in Computer Science, Vol. 443, Springer, 1990, pp. 220–234.
- N. Gabriel, K. Peske, L. Pudwell, and S. Tay, Pattern avoidance in ternary trees, *J. Integer Seq.* 15 (2012), 12.1.5.
- D. Knuth, The Art of Computer Programming. 2nd ed. 1. Reading, MA: Addison-Wesley, 1973.
- E. S. Rowland, Pattern avoidance in binary trees, J. Combin. Theory, Ser. A 117 (2010), 741–758.
- J. M. Steyaert and P. Flajolet, Patterns and pattern-matching in trees: an analysis, *Info. Control* **58** (1983), 19–58.