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Conventions and Definitions

Permutations are written in one-line notation.
e.g. S3 = {123, 132, 213, 231, 312, 321}

Two sequences s = s1 · · · sm and t = t1 · · · tm are
order-isomorphic when si < sj ⇐⇒ ti < tj for all
1 ≤ i < j ≤ m. (In this case, write s ∼ t.)
e.g. 2314 ∼ 4639

π ∈ Sn contains ρ ∈ Sm as a classical pattern if π has a
subpermutation order-isomorphic to ρ. Otherwise π avoids
ρ.
e.g. π = 7362541 contains 231.

π = 7362541 contains 132.

π = 7362541 avoids 123.
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Graphs of Permutations

Consider π as a discrete function from {1, . . . , n} to {1, . . . , n}.

Graph of π = 7362541
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Counting Warmup

Notation

Sn(ρ) = {π ∈ Sn | π avoids ρ}
sn(ρ) = |Sn(ρ)|

Observation

sn(ρ) = sn(ρ∗) if the graph of ρ can be obtained by rotation
and/or reflection of the graph of ρ∗.

sn

( )
= sn

( )
sn

( )
= sn

( )

sn

( )
= sn

( )
= sn

( )
= sn

( )
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Let’s Count...

Sn
( )

sn(12) = 1

Sn

( )
sn(132) =

n∑
i=1

si−1(132)sn−i (132)

sn(ρ) = Cn for any ρ ∈ S3.
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More Counting

exact
n 1 2 3 4 5 6 7 enumeration

sn(1342) 1 2 6 23 103 512 2740 Bóna (1997)

sn(1234) 1 2 6 23 103 513 2761 Gessel (1990)

sn(1324) 1 2 6 23 103 513 2762 unknown
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Classical Pattern Sightings

Theorem (Erdős-Szekeres, 1935)

Given a, b ∈ Z+, if n ≥ (a− 1)(b − 1) + 1, then
sn (12 · · · (a− 1)a, b(b − 1) · · · 21) = 0.

Theorem (Knuth, 1968)

A permutation is sortable after one pass through a stack if and
only if it avoids 231.

Theorem (Lakshmibai and Sandhya, 1990)

Schubert variety Xπ is smooth if and only if π avoids 3412 and
4231.
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Barred Pattern Notation

A barred pattern is a permutation where each number may
or may not have a bar over it.
For a barred pattern ρ

u(ρ) is the unbarred portion of ρ.
e(ρ) is the entire permutation ρ (ignoring bars).
π avoids ρ if every copy of u(ρ) extends to a copy of e(ρ).

Example: ρ = 1423

u(ρ) = 123

e(ρ) = 1423

162534 avoids 1423 146235 contains 1423.
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Barred Pattern Sightings

Theorem (West, 1990)

A permutation is sortable after two passes through a stack if
and only if it avoids 2341 and 35241.

Theorem (Bousquet-Mélou and Butler, 2007, proving a
conjecture of Woo and Yong)

Schubert variety Xπ is locally factorial if and only if π avoids
1324 and 21354.

Theorem (Bousquet-Mélou, Claesson, Dukes, and Kitaev,
2010)

Self-modifying ascent sequences are in bijection with
permutations which avoid 31524.
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Vincular pattern notation

A vincular pattern is a permutation where each pair of
consecutive entries may or may not have a dash between
them.

If ρ is a vincular pattern...

ρi -ρi+1 indicates ρi and ρi+1 may appear arbitrarily far
apart.
ρiρi+1 indicates ρi and ρi+1 must appear consecutively.

Example:

251643 contains 1-2-3 and 12-3 but avoids 1-23.
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Vincular Pattern Sightings

(Babson and Steingŕımsson, 2000)

Given vincular pattern β, write β(π) for the number of copies
of β in π. Nearly all known Mahonian permutation statistics
can be expressed in terms of vincular patterns.

Examples:

inv(π) = 2-1(π)

maj(π) = 1-32(π)+2-31(π)+3-21(π) + 21(π).
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First half recap

Permutation patterns appear in a variety of applications
(computer science, algebraic geometry, and more).

Permutation patterns provide a plethora of enumeration
problems.

Enumeration is generally hard and requires arguments
depending on the particular pattern.

Goal: Design an algorithm

Input: Set of permutation patterns Q to be avoided
Output: Recurrence to compute sn(Q)
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Enumeration Schemes

Definition (informal)

An enumeration scheme is an encoding for a family of
recurrence relations enumerating members of a family of sets.

Find enumeration schemes via a divide-and-conquer algorithm.

3 pieces:

Divide:

Refinement

Conquer:

Reversibly Deletable Elements
Gap Vectors
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Refinement

Notation: Prefix Pattern

Sn(Q)[p] = {π ∈ Sn(Q) | π1 · · ·π|p| ∼ p}
sn(Q)[p] = |Sn(Q)[p]|

Note

For any set of patterns Q

Sn(Q) = Sn(Q)[1] = Sn(Q)[12] ∪ Sn(Q)[21] = · · · .

Therefore

sn(Q) = sn(Q)[1] = sn(Q)[12] + sn(Q)[21] = · · · .

Running Example:
sn(132) = sn(132)[12] + sn(132)[21]
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Refinement

Notation: Prefix Pattern with Specified Letters

Sn(Q)[p;w ] = {π ∈ Sn(Q)[p] | π1 · · ·π|p| = w}
sn(Q)[p;w ] = |Sn(Q)[p;w ]|

Note

For any set of patterns Q
sn(Q)[p] =

∑
w∗∼p sn(Q)[p;w∗]

Running Example:
sn(132) = sn(132)[12] + sn(132)[21]

=
∑

1≤i<j≤n
sn(132)[12; ij ] +

∑
1≤j<i≤n

sn(132)[21; ij ]
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Reversibly Deletable Elements

Consider π ∈ Sn(132)[21]

→

So deleting π1 produces π∗ ∈ Sn−1(132)[1].

→

So reinserting π1 into π∗ produces π ∈ Sn(132)[21].

sn(132)[21; ij ] = sn−1(132)[1; j ].
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Gap Vectors

Consider π ∈ Sn(132)[12]

sn(132)[12; ij ] =

{
0 j > i + 1

? j = i + 1
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Gap Vectors

Consider π ∈ Sn(132)[12]

→

sn(132)[12; ij ] =

{
0 j > i + 1

sn−1(132)[1; i ] j = i + 1
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Running example

sn(132) = sn(132)[12] + sn(132)[21]

=
∑

1≤i<j≤n
sn(132)[12; ij ] +

∑
1≤j<i≤n

sn−1(132)[1; j ]

=
∑

1≤i<n

sn(132)[1; i(i + 1)] +
∑

1≤j<i≤n
sn−1(132)[1; j ]

=
∑

1≤i≤n−1

sn−1(132)[1; i ] +
∑

1≤j<i≤n
sn−1(132)[1; j ]

So, s1(132) = s1(132)[1; 1] = 1, and for n ≥ 2

sn(132) =
n∑

i=1

sn(132)[1; i ]

=
n∑

i=1

i∑
j=1

sn−1(132)[1; j ]
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History of Enumeration Schemes

Schemes for classical patterns (Zeilberger 1998/Vatter
2005)

Schemes for barred patterns (P. 2010)

Schemes for vincular patterns (Baxter, P., 2012)

Each algorithm can

discover new enumeration results.

help determine when sn(ρ) = sn(ρ∗) for pairs of patterns ρ
and ρ∗.

along with OEIS, help conjecture relationships with other
combinatorial objects.

q-count pattern-avoiding permutations according to other
permutation statistics.
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Results for Classical Pattern Sets

Pattern Lengths Success Rate

{3} 2/2 (100%)

{3, 3} 5/5 (100%)

{3, 3, 3} 5/5 (100%)

{3, 3, 3, 3} 5/5 (100%)

{4} 2/7 (29%)

{4, 4} 9/56 (16%)

{4, 4, 4} 116/317 (37%)

{3, 4} 22/30 (73%)

{3, 3, 4} 66/66 (100%)

{3, 4, 4} 179/268 (67%)

{3, 5} 15/118 (13%)
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Results for Barred Pattern Sets

Pattern Lengths Success Rate Pattern Lengths Success Rate

[2, 1] 1/1 (100%) [3, 0], [3, 0], [3, 1] 43/45 (95.6%)

[2, 0], [2, 1] 2/2 (100%) [3, 0], [3, 0], [3, 2] 45/45 (100%)

[2, 1], [2, 1] 2/2 (100%) [3, 0], [3, 1], [3, 1] 135/138 (97.8%)

[3, 0], [3, 1], [3, 2] 280/280 (100%)

[3, 1] 4/4 (100%) [3, 0], [3, 2], [3, 2] 138/138 (100%)

[3, 2] 4/4 (100%) [3, 1], [3, 1], [3, 1] 115/118 (97.5%)

[3, 0], [3, 1] 18/20 (90%) [3, 1], [3, 1], [3, 2] 378/378 (100%)

[3, 0], [3, 2] 20/20 (100%) [3, 1], [3, 2], [3, 2] 378/378 (100%)

[3, 1], [3, 1] 27/28 (96.4%) [3, 2], [3, 2], [3, 2] 118/118 (100%)

[3, 1], [3, 2] 50/50 (100%)

[3, 2], [3, 2] 28/28 (100%) [4, 1] 12/16 (75%)

[4, 2] 25/26 (96.2%)

[3, 1], [4, 0] 59/71 (83.1%) [4, 3] 16/16 (100%)

[3, 1], [4, 1] 229/240 (95.4%)

[3, 1], [4, 2] 355/364 (97.5%) [5, 1] 15/89 (16.9%)

[3, 0], [4, 1] 84/88 (95.5%) [5, 2] 136/172 (79.1%)

[3, 0], [4, 2] 133/136 (97.8%) [5, 3] 168/172 (97.7%)
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Results for Vincular Pattern Sets

Pattern Lengths Success Rate

{2} 2/2 (100%)

{2, 2} 3/3 (100%)

{2, 3} 11/11 (100%)

{3} 7/7 (100%)

{3, 3} 68/70 (97.1%)

{3, 3, 3} 354/358 (98.9%)

{4} 35/55 (63.6%)

{4, 4} 1600/4624 (34.6%)

{5} 144/479 (30.1%)

{3, 4} 639/914 (69.9%)

{3, 5} 2465/7411 (33.3%)
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Guaranteed Schemes

Theorem 1 – Consecutive Patterns

If ρ is a dashless pattern of length t, then {ρ} has a finite
enumeration scheme of depth t.

Theorem 2 – “Nearly Consecutive” Patterns

If ρ is a pattern of length t where only the last two numbers
have a dash between them, then {ρ} has a finite enumeration
scheme of depth t − 1.

Theorem 3

If the finite set Q contains only consecutive and “nearly
consecutive” patterns, then Q has a finite enumeration scheme.
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Dashes vs. Depth

Question

Is number of dashes related to scheme depth?

ρ Depth
1234 4

123−4 3
12−34 4
1−234 4

12−3−4 4
1−23−4 3
1−2−34 5

1−2−3−4 4

Answer: Maybe, but not monotonically.
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Dashes vs. Depth

Question

Is number of dashes related to scheme depth?

ρ Depth
1234 4

123−4 3
12−34 4
1−234 4

12−3−4 4
1−23−4 3
1−2−34 5

1−2−3−4 4

Answer: Maybe, but not monotonically.
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Success Rate by Block Type

Block Type

The block type of a dashed pattern is a vector describing the number
of letters between each dash.

Block type Success Rate
(3) 2/2 (100%)

(2,1) 3/3 (100%)
(1,1,1) 2/2 (100%)

(4) 8/8 (100%)
(3,1) 12/12 (100%)
(2,2) 3/8 (37.5%)

(2,1,1) 4/12 (25%)
(1,2,1) 6/8 (75%)

(1,1,1,1) 2/7 (28.6%)
(5) 32/32 (100%)

(4,1) 32/32 (100%)
other length 5 80/415 (19.3%)
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Interesting? Sequences

Q OEIS No. Description
{13−2, 213} A105633 Number of Dyck paths

of semilength n + 1
avoiding UUDU

{1−2−3, 231} A135307 Number of Dyck paths
of semilength n
avoiding UDDU

{12−3, 1−3−2, 312} A005314 Number of compositions
of n into parts
congruent to {1, 2} mod 4

{1−2−3, 231, 3−1−2} A089071 Number of liberties
a big eye of size n
gives in the game of Go
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Where next?

classical
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Where next?

vincular1-barred

classical
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Where next?

mesh

bivincular

vincular1-barred

classical
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Thank You!



Pattern
avoidance in
permutations

Lara Pudwell

Permutation
Patterns

Classical

Barred

Vincular

Enumeration
Schemes

Divide

Conquer

Reversibly
Deletable
Elements

Gap Vectors

Results

Classical

Barred

Vincular

Conclusion

References

E. Babson and E. Steingŕımsson, “Generalized permutation patterns and a classification of the
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M. Bóna, “Exact enumeration of 1342-avoiding permutations: a close link with labeled trees and
planar maps”, J. Combin. Theory Ser. A 80 (2) (1997): 257272.

M. Bousquet-Mélou and S. Butler, “Forest-like permutations”, Annals of Combinatorics 11 (3)
(2007), 335-354.

M. Bousquet-Mélou, A. Claesson, M. Dukes and S. Kitaev, “(2 + 2)-free posets, ascent sequences
and pattern avoiding permutations”. Journal of Combinatorial Theory Series A 117 (2010), no. 7,
884-909.
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