

Pattern avoidance in permutations

Lara Pudwell
Permutation

Vincular

Patterns

Enumeration Schemes

Divide Conquer

> Reversibly Deletable

Gap Vect

Classic

Vincula

Conclusion

Pattern avoidance in permutations

Lara Pudwell (Valparaiso University)

LaCIM seminar, UQÀM Montréal, Québec March 15, 2013

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns Classical

Barred Vincular

Enumerati Schemes

2CHEILIE

Conquer Reversible Deletable

Gap Vect Results

Barred

Conclusion

• Permutations are written in *one-line* notation. e.g. $S_3 = \{123, 132, 213, 231, 312, 321\}$

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns

Classical Barred Vincular

Enumeration Schemes

Divide
Conquer
Reversibly
Deletable
Elements
Gap Vector
Results
Classical
Barred

Conclusion

• Permutations are written in *one-line* notation. e.g. $S_3 = \{123, 132, 213, 231, 312, 321\}$

• Two sequences $s = s_1 \cdots s_m$ and $t = t_1 \cdots t_m$ are order-isomorphic when $s_i < s_j \iff t_i < t_j$ for all $1 \le i < j \le m$. (In this case, write $s \sim t$.) e.g. $2314 \sim 4639$

Pattern avoidance in permutations

Lara Pudwell

Permutation

Patterns Classical Barred Vincular

Enumeration Schemes

Divide Conquer Reversibly Deletable Elements Gap Vector Results

Results Classical Barred

- Permutations are written in *one-line* notation. e.g. $S_3 = \{123, 132, 213, 231, 312, 321\}$
- Two sequences $s = s_1 \cdots s_m$ and $t = t_1 \cdots t_m$ are order-isomorphic when $s_i < s_j \iff t_i < t_j$ for all $1 \le i < j \le m$. (In this case, write $s \sim t$.) e.g. $2314 \sim 4639$
- $\pi \in \mathcal{S}_n$ contains $\rho \in \mathcal{S}_m$ as a classical pattern if π has a subpermutation order-isomorphic to ρ . Otherwise π avoids ρ .

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns Classical

Barred Vincular

Enumeration Schemes

Conquer
Reversibly
Deletable
Elements
Gap Vector
Results
Classical

Barred Vincular Conclusion • Permutations are written in *one-line* notation. e.g. $S_3 = \{123, 132, 213, 231, 312, 321\}$

- Two sequences $s = s_1 \cdots s_m$ and $t = t_1 \cdots t_m$ are order-isomorphic when $s_i < s_j \iff t_i < t_j$ for all $1 \le i < j \le m$. (In this case, write $s \sim t$.) e.g. $2314 \sim 4639$
- $\pi \in \mathcal{S}_n$ contains $\rho \in \mathcal{S}_m$ as a classical pattern if π has a subpermutation order-isomorphic to ρ . Otherwise π avoids ρ .

e.g. $\pi = 7362541$ contains 231.

 $\pi = 7362541$ contains 132.

 $\pi = 7362541$ avoids 123.

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns Classical

Vincular Enumeratio

Schemes

Divide Conquer

Reversibly Deletable Elements

Gap Vect Results

Barred Vincular

Conclusion

Consider π as a discrete function from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$.

Graph of $\pi = 7362541$

Pattern avoidance in permutations

Lara Pudwell

Permutation

Patterns Classical

Enumeratio

Schemes

Divide

Reversibly Deletable Elements

Gap Vect Results

Classica Barred

Conclusion

Consider π as a discrete function from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$.

 $\pi = 7362541$ contains 231.

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns

Classical Barred

Enumeratio

Divide

Conquer Reversibly Deletable Elements

Gap Vector Results

Barred

Conclusion

Consider π as a discrete function from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$.

 $\pi = 7362541$ contains 132.

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns Classical

Barred Vincula

Schemes

Divide

Reversibly Deletable

Gap Vector Results

Classica Barred

Vincular

Consider π as a discrete function from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$.

 $\pi = 7362541$ avoids 123.

Counting Warmup

Pattern avoidance in permutations

. Lara Pudwell

Permutation Patterns

Classical Barred Vincular

Enumeration Schemes

Divide

Conquer Reversibly Deletable Elements

Gap Vect

Barred Vincula

Conclusion

Notation

$$S_n(\rho) = \{ \pi \in S_n \mid \pi \text{ avoids } \rho \}$$

 $s_n(\rho) = |S_n(\rho)|$

Observation

 $s_n(\rho) = s_n(\rho^*)$ if the graph of ρ can be obtained by rotation and/or reflection of the graph of ρ^* .

$$s_n\left(\begin{array}{c} \downarrow \downarrow \\ \downarrow \downarrow \end{array}\right) = s_n\left(\begin{array}{c} \downarrow \downarrow \\ \downarrow \downarrow \end{array}\right)$$

$$s_n\left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array}\right) = s_n\left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array}\right)$$

$$s_n\left(\begin{array}{c} \downarrow & \downarrow \\ \downarrow & \downarrow \end{array}\right) = s_n\left(\begin{array}{c} \downarrow & \downarrow \\ \downarrow & \downarrow \end{array}\right) = s_n\left(\begin{array}{c} \downarrow & \downarrow \\ \downarrow & \downarrow \end{array}\right)$$

Let's Count...

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns

Classical Barred

Enumeration Schemes

Divide

Reversibly Deletable Elements

Gap Vecto

Barred Vincula

$$s_n(12)=1$$

$$S_n$$

$$s_n(132) = \sum_{i=1}^{n} s_{i-1}(132)s_{n-i}(132)$$

$$s_n(\rho) = C_n$$
 for any $\rho \in S_3$.

More Counting

Pattern avoidance in permutations

Lara Pudwell

Permutation

Classical Barred

Enumeratio

Schemes

Conquer Reversibly Deletable Elements Gap Vector

Gap Vect Results Classical

Barred Vincular

								exact
n	1	2	3	4	5	6	7	enumeration
$s_n(1342)$	1	2	6	23	103	512	2740	Bóna (1997)
$s_n(1234)$	1	2	6	23	103	513	2761	Gessel (1990)
$s_n(1324)$	1	2	6	23	103	513	2762	unknown

Classical Pattern Sightings

Pattern avoidance in permutations

Lara Pudwell

Permutation

Patterns Classical

Barred Vincular

Enumeration Schemes

Conquer
Reversibly
Deletable
Elements
Gap Vecto
Results
Classical
Barred

Conclusion

Theorem (Erdős-Szekeres, 1935)

Given $a, b \in \mathbb{Z}^+$, if $n \ge (a-1)(b-1)+1$, then $s_n (12 \cdots (a-1)a, b(b-1) \cdots 21) = 0$.

Theorem (Knuth, 1968)

A permutation is sortable after one pass through a stack if and only if it avoids 231.

Theorem (Lakshmibai and Sandhya, 1990)

Schubert variety X_{π} is smooth if and only if π avoids 3412 and 4231.

Barred Pattern Notation

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns

Barred Vincular

Enumeration

Schemes Divide

Conquer
Reversibly
Deletable
Elements
Gap Vector
Results

Classical Barred Vincular

Conclusion

 A barred pattern is a permutation where each number may or may not have a bar over it.

ullet For a barred pattern ho

• $u(\rho)$ is the unbarred portion of ρ .

• $e(\rho)$ is the entire permutation ρ (ignoring bars).

• π avoids ρ if every copy of $u(\rho)$ extends to a copy of $e(\rho)$.

Example: $\rho = 1\overline{4}23$

•
$$u(\rho) = 123$$

•
$$e(\rho) = 1423$$

162534 avoids $1\overline{4}23$ 146235 contains $1\overline{4}23$.

Barred Pattern Sightings

Pattern avoidance in permutations

Lara Pudwell

Permutation

Patterns Classical

Barred Vincular

Enumeration Schemes

Divide Conquer Reversibly Deletable Elements

Gap Vecto Results Classical Barred

Conclusion

Theorem (West, 1990)

A permutation is sortable after two passes through a stack if and only if it avoids 2341 and $3\overline{5}241$.

Theorem (Bousquet-Mélou and Butler, 2007, proving a conjecture of Woo and Yong)

Schubert variety X_{π} is locally factorial if and only if π avoids 1324 and $21\overline{3}54$.

Theorem (Bousquet-Mélou, Claesson, Dukes, and Kitaev, 2010)

Self-modifying ascent sequences are in bijection with permutations which avoid $3\overline{1}52\overline{4}$.

Vincular pattern notation

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns

Classical Barred Vincular

Enumeration Schemes

Divide Conquer Reversibly Deletable Elements Gap Vecto

Gap Vector Results Classical Barred

Conclusion

- A vincular pattern is a permutation where each pair of consecutive entries may or may not have a dash between them.
- ullet If ho is a vincular pattern...
 - ρ_i - ρ_{i+1} indicates ρ_i and ρ_{i+1} may appear arbitrarily far apart.
 - $\rho_i \rho_{i+1}$ indicates ρ_i and ρ_{i+1} must appear consecutively.

Example:

251643 contains 1-2-3 and 12-3 but avoids 1-23.

Vincular Pattern Sightings

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns

Classica Barred

Vincular

Enumeration

Schemes

Conquer Reversibly Deletable Elements

Gap Vec Results

Barred

Conclusion

(Babson and Steingrímsson, 2000)

Given vincular pattern β , write $\beta(\pi)$ for the number of copies of β in π . Nearly all known Mahonian permutation statistics can be expressed in terms of vincular patterns.

Examples:

- $inv(\pi) = 2-1(\pi)$
- $maj(\pi) = 1-32(\pi)+2-31(\pi)+3-21(\pi)+21(\pi)$.

First half recap

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns

Classical Barred Vincular

Enumeration Schemes

Divide
Conquer
Reversibly
Deletable
Elements
Gap Vecto
Results
Classical
Barred

- Permutation patterns appear in a variety of applications (computer science, algebraic geometry, and more).
- Permutation patterns provide a plethora of enumeration problems.
- Enumeration is generally hard and requires arguments depending on the particular pattern.

First half recap

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns

Classical Barred Vincular

Enumeration Schemes

Divide
Conquer
Reversibly
Deletable
Elements
Gap Vector
Results
Classical
Barred

- Permutation patterns appear in a variety of applications (computer science, algebraic geometry, and more).
- Permutation patterns provide a plethora of enumeration problems.
- Enumeration is generally hard and requires arguments depending on the particular pattern.
- Goal: Design an algorithm
 - Input: Set of permutation patterns Q to be avoided
 - Output: Recurrence to compute $s_n(Q)$

Enumeration Schemes

Pattern avoidance in permutations

Lara Pudwell

Permutation

Patterns Classical

Barred Vincular

Enumeration Schemes

Conquer Reversibly Deletable

Elements Gap Vector Results

Classica Barred

Conclusion

Definition (informal)

An *enumeration scheme* is an encoding for a family of recurrence relations enumerating members of a family of sets.

Find enumeration schemes via a divide-and-conquer algorithm.

3 pieces:

- Divide:
 - Refinement
- Conquer:
 - Reversibly Deletable Elements
 - Gap Vectors

Refinement

Pattern avoidance in permutations Lara Pudwell

Permutation Patterns

Notation: Prefix Pattern

 $S_n(Q)[p] = \{ \pi \in S_n(Q) \mid \pi_1 \cdots \pi_{|p|} \sim p \}$

For any set of patterns Q

 $s_n(Q)[p] = |\mathcal{S}_n(Q)[p]|$

Barred Note

Enumeration Schemes

Divide Reversibly

Rarred

 $S_n(Q) = S_n(Q)[1] = S_n(Q)[12] \cup S_n(Q)[21] = \cdots$

Therefore

 $s_n(Q) = s_n(Q)[1] = s_n(Q)[12] + s_n(Q)[21] = \cdots$

Conclusion

 $s_n(132) = s_n(132)[12] + s_n(132)[21]$

Refinement

Pattern avoidance in permutations

Lara Pudwell

Permutation

Patterns Classical Barred

Enumeration

Schemes

Divide

Reversibly Deletable Elements

Results

Barred Vincula

Conclusion

Notation: Prefix Pattern with Specified Letters

$$S_n(Q)[p; w] = \{ \pi \in S_n(Q)[p] \mid \pi_1 \cdots \pi_{|p|} = w \}$$

 $S_n(Q)[p; w] = |S_n(Q)[p; w]|$

Note

For any set of patterns Q $s_n(Q)[p] = \sum_{w^* \sim p} s_n(Q)[p; w^*]$

Running Example:

$$s_n(132) = s_n(132)[12] + s_n(132)[21]$$

$$= \sum_{1 \le i < j \le n} s_n(132)[12; ij] + \sum_{1 \le j < i \le n} s_n(132)[21; ij]$$

Reversibly Deletable Elements

Pattern avoidance in permutations

Lara Pudwell

Permutation

Patterns

Barred Vincula

Enumeratio Schemes

Divide

Reversibly Deletable

Elements Gap Vect

Results Classic

Barred Vincula

Reversibly Deletable Elements

Pattern avoidance in permutations

Lara Pudwell

Permutation

Patterns

Barred Vincula

Enumeration Schemes

Divide Conquer

Reversibly Deletable Elements

Gap Vector Results

Classical Barred

Conclusio

So deleting π_1 produces $\pi^* \in \mathcal{S}_{n-1}(132)[1]$.

So reinserting π_1 into π^* produces $\pi \in \mathcal{S}_n(132)[21]$.

Reversibly Deletable Elements

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns

Classica Barred

Enumeration

Schemes

Conquer Reversibly Deletable Elements

Elements Gap Vecto Results

Classical Barred

Conclusion

So deleting π_1 produces $\pi^* \in \mathcal{S}_{n-1}(132)[1]$.

So reinserting π_1 into π^* produces $\pi \in \mathcal{S}_n(132)[21]$.

$$s_n(132)[21; ij] = s_{n-1}(132)[1; j].$$

Running example

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns

Classica Barred Vincular

Enumeration Schemes

Conquer Reversibly Deletable Elements

Elements Gap Vecto Results

Classica Barred

Conclusion

Running Example:

$$s_{n}(132) = s_{n}(132)[12] + s_{n}(132)[21]$$

$$= \sum_{1 \leq i < j \leq n} s_{n}(132)[12; ij] + \sum_{1 \leq j < i \leq n} s_{n}(132)[21; ij]$$

$$= \sum_{1 \leq i < j \leq n} s_{n}(132)[12; ij] + \sum_{1 \leq j < i \leq n} s_{n-1}(132)[1; j]$$

Gap Vectors

Pattern avoidance in permutations

Lara Pudwell

Permutation

Patterns Classical

Barred Vincula

Schemes

Divide

Reversibly

Elements
Gap Vectors

Results

Classic: Barred

Consider
$$\pi \in \mathcal{S}_n(132)[12]$$

$$s_n(132)[12; ij] = \begin{cases} 0 & j > i+1 \\ ? & j = i+1 \end{cases}$$

Gap Vectors

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns

Schemes

Deletable

Gap Vectors

Results

Barred

$$s_n(132)[12; ij] = \begin{cases} 0 & j > i+1 \\ ? & j = i+1 \end{cases}$$

Gap Vectors

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns

Classica Barred Vincular

Enumeration Schemes

Divide

Conquer

Deletable

Gap Vectors

Results

Barred Vincula

$$s_n(132)[12; ij] = \begin{cases} 0 & j > i+1 \\ s_{n-1}(132)[1; i] & j = i+1 \end{cases}$$

Running example

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns

Barred Vincula

Enumeration Schemes

Conquer Reversibly Deletable

Gap Vectors Results

Classi

Barred Vincula

$$s_{n}(132) = s_{n}(132)[12] + s_{n}(132)[21]$$

$$= \sum_{1 \leq i < j \leq n} s_{n}(132)[12; ij] + \sum_{1 \leq j < i \leq n} s_{n-1}(132)[1; j]$$

$$= \sum_{1 \leq i < n} s_{n}(132)[1; i(i+1)] + \sum_{1 \leq j < i \leq n} s_{n-1}(132)[1; j]$$

$$= \sum_{1 \leq i \leq n-1} s_{n-1}(132)[1; i] + \sum_{1 \leq j < i \leq n} s_{n-1}(132)[1; j]$$

Running example

Pattern avoidance in permutations

Lara Pudwell

Lara i uuwe

Permutation Patterns

Barred Vincula

Enumeration Schemes

Conquer Reversibly Deletable Elements Gap Vectors

Results Classica

Barred Vincular

$$\begin{split} s_n(132) &= s_n(132)[12] + s_n(132)[21] \\ &= \sum_{1 \le i < j \le n} s_n(132)[12; ij] + \sum_{1 \le j < i \le n} s_{n-1}(132)[1; j] \\ &= \sum_{1 \le i < n} s_n(132)[1; i(i+1)] + \sum_{1 \le j < i \le n} s_{n-1}(132)[1; j] \\ &= \sum_{1 \le i \le n-1} s_{n-1}(132)[1; i] + \sum_{1 \le j < i \le n} s_{n-1}(132)[1; j] \\ \text{So, } s_1(132) &= s_1(132)[1; 1] = 1, \text{ and for } n \ge 2 \\ s_n(132) &= \sum_{i=1}^n \sum_{i=1}^i s_{n-1}(132)[1; j] \\ &= \sum_{i=1}^n \sum_{i=1}^i s_{n-1}(132)[1; j] \end{split}$$

History of Enumeration Schemes

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns

Classica Barred Vincular

Enumeration

Schemes

Conquer Reversibly Deletable Elements

Gap Vect

Classical Barred

- Schemes for classical patterns (Zeilberger 1998/Vatter 2005)
- Schemes for barred patterns (P. 2010)
- Schemes for vincular patterns (Baxter, P., 2012)

History of Enumeration Schemes

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns

Classica Barred Vincula

Enumeration Schemes

Divide
Conquer
Reversibly
Deletable
Elements
Gap Vector
Results
Classical
Barred

Conclusion

- Schemes for classical patterns (Zeilberger 1998/Vatter 2005)
- Schemes for barred patterns (P. 2010)
- Schemes for vincular patterns (Baxter, P., 2012)

Each algorithm can

- discover new enumeration results.
- help determine when $s_n(\rho) = s_n(\rho^*)$ for pairs of patterns ρ and ρ^* .
- along with OEIS, help conjecture relationships with other combinatorial objects.
- q-count pattern-avoiding permutations according to other permutation statistics.

Results for Classical Pattern Sets

Pattern avoidance in permutations

Lara Pudwell

Permutation

Barred

Schemes

Divide

Reversibly Deletable

Gap Vect

Classical Barred

Pattern Lengths	Success Rate
{3}	2/2 (100%)
{3,3}	5/5 (100%)
{3,3,3}	5/5 (100%)
{3,3,3,3}	5/5 (100%)
{4}	2/7 (29%)
{4,4}	9/56 (16%)
{4,4,4}	116/317 (37%)
{3,4}	22/30 (73%)
{3,3,4}	66/66 (100%)
{3,4,4}	179/268 (67%)
{3,5}	15/118 (13%)

Results for Barred Pattern Sets

Pattern avoidance in permutations

Lara Pudwell

Permutation

Classica Barred

Enumeration

Schemes

Reversibly Deletable Elements Gap Vecto Results Classical Barred

Pattern Lengths	Success Rate	Pattern Lengths	Success Rate
[2, 1]	1/1 (100%)	[3,0],[3,0],[3,1]	43/45 (95.6%)
[2,0],[2,1]	2/2 (100%)	[3,0],[3,0],[3,2]	45/45 (100%)
[2,1],[2,1]	2/2 (100%)	[3,0],[3,1],[3,1]	135/138 (97.8%)
		[3,0],[3,1],[3,2]	280/280 (100%)
[3, 1]	4/4 (100%)	[3,0],[3,2],[3,2]	138/138 (100%)
[3, 2]	4/4 (100%)	[3, 1], [3, 1], [3, 1]	115/118 (97.5%)
[3,0],[3,1]	18/20 (90%)	[3, 1], [3, 1], [3, 2]	378/378 (100%)
[3,0],[3,2]	20/20 (100%)	[3,1],[3,2],[3,2]	378/378 (100%)
[3,1],[3,1]	27/28 (96.4%)	[3, 2], [3, 2], [3, 2]	118/118 (100%)
[3, 1], [3, 2]	50/50 (100%)		
[3, 2], [3, 2]	28/28 (100%)	[4, 1]	12/16 (75%)
		[4, 2]	25/26 (96.2%)
[3, 1], [4, 0]	59/71 (83.1%)	[4, 3]	16/16 (100%)
[3, 1], [4, 1]	229/240 (95.4%)		
[3, 1], [4, 2]	355/364 (97.5%)	[5, 1]	15/89 (16.9%)
[3,0],[4,1]	84/88 (95.5%)	[5, 2]	136/172 (79.1%)
[3,0],[4,2]	133/136 (97.8%)	[5, 3]	168/172 (97.7%)

Results for Vincular Pattern Sets

Pattern avoidance in permutations

Lara Pudwell

Permutation

Barred

Enumeratio

Schemes

Conquer

Reversibly Deletable Elements

Results Classica

Vincular

Pattern Lengths	Success Rate
{2}	2/2 (100%)
{2,2}	3/3 (100%)
{2,3}	11/11 (100%)
{3}	7/7 (100%)
{3,3}	68/70 (97.1%)
{3,3,3}	354/358 (98.9%)
{4}	35/55 (63.6%)
{4,4}	1600/4624 (34.6%)
{5}	144/479 (30.1%)
{3,4}	639/914 (69.9%)
{3,5}	2465/7411 (33.3%)

Guaranteed Schemes

Pattern avoidance in permutations

Lara Pudwell

Patterns Classical

Barred Vincular

Enumeration Schemes

Divide Conquer Reversibly Deletable Elements Gap Vector

Results Classical Barred

Vincular Conclusion

Theorem 1 – Consecutive Patterns

If ρ is a dashless pattern of length t, then $\{\rho\}$ has a finite enumeration scheme of depth t.

Theorem 2 – "Nearly Consecutive" Patterns

If ρ is a pattern of length t where only the last two numbers have a dash between them, then $\{\rho\}$ has a finite enumeration scheme of depth t-1.

Theorem 3

If the finite set Q contains only consecutive and "nearly consecutive" patterns, then Q has a finite enumeration scheme.

Dashes vs. Depth

Pattern avoidance in permutations

Lara Pudwell

Permutation

Classica Barred

Enumeratio

Schemes

Conquer
Reversibly
Deletable
Elements
Gap Vector
Results

Classica

Vincular

Conclusion

Question

Is number of dashes related to scheme depth?

ρ	Depth
1234	4
123–4	3
12–34	4
1–234	4
12–3–4	4
1–23–4	3
1–2–34	5
1-2-3-4	4

Dashes vs. Depth

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns

Barred Vincular

Enumeration

Divide

Conquer Reversibly Deletable

Elements Gap Vecto Results

Classica Barred

Vincular

Question

Is number of dashes related to scheme depth?

ρ	Depth
1234	4
123–4	3
12–34	4
1–234	4
12–3–4	4
1–23–4	3
1–2–34	5
1-2-3-4	4

Answer: Maybe, but not monotonically.

Success Rate by Block Type

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns

Barred Vincular

Enumeration Schemes

Conquer Reversibly Deletable Elements Gap Vector

Results Classica

Barred Vincular

Conclusion

Block Type

The block type of a dashed pattern is a vector describing the number of letters between each dash.

Block type	Success Rate
(3)	2/2 (100%)
(2,1)	3/3 (100%)
(1,1,1)	2/2 (100%)
(4)	8/8 (100%)
(3,1)	12/12 (100%)
(2,2)	3/8 (37.5%)
(2,1,1)	4/12 (25%)
(1,2,1)	6/8 (75%)
(1,1,1,1)	2/7 (28.6%)
(5)	32/32 (100%)
(4,1)	32/32 (100%)
other length 5	80/415 (19.3%)

Interesting? Sequences

Pattern avoidance in permutations

Lara Pudwell

Classica Barred

Barred Vincular

Schemes

Conquer
Reversibly
Deletable
Elements
Gap Vector
Results

Classical Barred Vincular

Q	OEIS No.	Description
{13-2,213}	A105633	Number of Dyck paths
		of semilength $n+1$
		avoiding UUDU
{1-2-3,231}	A135307	Number of Dyck paths
		of semilength <i>n</i>
		avoiding UDDU
$\{12-3,1-3-2,312\}$	A005314	Number of compositions
		of <i>n</i> into parts
		congruent to $\{1,2\}$ mod 4
{1-2-3, 231, 3-1-2}	A089071	Number of liberties
		a big eye of size <i>n</i>
		gives in the game of Go

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns

Barred Vincular

Enumeration

Divide

Reversibly Deletable

Gap Ve Results

Classica

Vincular

Pattern avoidance in permutations

Lara Pudwell

Permutation

Classica Barred

Enumeratio

Scheme

Divide Conquer

Reversibly Deletable

Gap Vect

Results

Barred

Pattern avoidance in permutations

Lara Pudwell

Permutation

Classica Barred

Enumeration

Cabanasa

Divide

Reversibly Deletable

Gap Vecto

Classica

Vincula

Pattern avoidance in permutations

Lara Pudwell

Permutation

Classic Barred

Enumeration

00....

Conquer

Deletable Flements

Gap Vecto

Results

Barred

Pattern avoidance in permutations

Lara Pudwell

Permutation

Barred

Enumeratio

Scheme

Reversibly
Deletable
Elements
Gap Vectors
Results

Classica

Vincular

Conclusion

Thank You!

References

Pattern avoidance in permutations

Lara Pudwell

Permutation Patterns

Classical Barred Vincular

Enumeration Schemes

Divide
Conquer
Reversibly
Deletable
Elements
Gap Vectors
Results
Classical
Barred
Vincular

- E. Babson and E. Steingrímsson, "Generalized permutation patterns and a classification of the Mahonian statistics", Séminaire Lotharingien de Combinatoire 44 (2000): Research article B44b, 18 pp.
- A. Baxter and L. Pudwell, "Enumeration schemes for vincular patterns", Discrete Mathematics 312 (2012), 1699-1712.
- M. Bóna, "Exact enumeration of 1342-avoiding permutations: a close link with labeled trees and planar maps", J. Combin. Theory Ser. A 80 (2) (1997): 257272.
- M. Bousquet-Mélou and S. Butler, "Forest-like permutations", Annals of Combinatorics 11 (3)
- (2007), 335-354.
 M. Bousquet-Mélou, A. Claesson, M. Dukes and S. Kitaev, "(2 + 2)-free posets, ascent sequences and pattern avoiding permutations". Journal of Combinatorial Theory Series A 117 (2010), no. 7,
- 884-909.

 P. Erdős and G. Szekeres, "A combinatorial problem in geometry", Compositio Mathematica 2
- (1935): 463470.

 I. Gessel, "Symmetric functions and P-recursiveness", J. Combin. Theory Ser. A 53 (2) (1990):
- 257285.
- D. E. Knuth, The Art Of Computer Programming Vol. 1, Boston: Addison-Wesley, 1968.
- V. Lakshmibai and B. Sandhya, "Criterion for smoothness of Schubert varieties in SL(n)/B", Proc. Indian Acad. Sci. Math. Sci. 100 (1990), 45-52.
- L. Pudwell, "Enumeration schemes for permutations avoiding barred patterns", Electronic Journal of Combinatorics 17 (2010), R29.
- V. Vatter, "Enumeration schemes for restricted permutations", Combinatorics, Probability, and Computing 17 (2008), 137-159.
- J. West, Permutations with forbidden subsequences and stack-sortable permutations, Ph.D. thesis, MIT (1990).
- A. Woo and A. Yong, "When is a Schubert variety Gorenstein?", Adv. Math. 207 (1) (2006), 205-220.
- D. Zeilberger, "Enumeration schemes, and more importantly, their automatic generation", Annals of Combinatorics 2 (1998), 185-195.