What really counts: the joy of enumeration

Lara Pudwell Valparaiso University
faculty.valpo.edu/lpudwell

Professorial Lecture
April 14, 2022

What is counting (as research)?

What is counting (as research)?

$$
\sum_{\pi \in \mathcal{P}_{2}} x^{|\pi|}=\frac{x\left(x^{2}+1\right)}{1-2 x-x^{2}-2 x^{3}}
$$

What is counting (as research)?

$$
\sum_{\pi \in \mathcal{P}_{2}} x^{|\pi|}=\frac{x\left(x^{2}+1\right)}{1-2 x-x^{2}-2 x^{3}}
$$

Goal: Answer "How many?" in an efficient, strategic way.

What to count?

REFEREED PUBLICATIONS

(* denotes undergraduate student)
37. Jonathan Beagley and Lara Pudwell, Colorful tilings and permutations, Journal of Integer Sequences 24 (2021) 21.10.4.
36. Lara Pudwell, From permutation patterns to the periodic table, Notices of the American Mathematical Society 67.7 (2020), 994-1001.
35. Lara Pudwell and Rebecca Smith, Two-stack-sorting with pop stacks, Australasian Journal of Combinatorics 74.1 (2019), 179-195.
34. Michael Bukata*, Ryan Kulwicki*, Nicholas Lewandowski*, Lara Pudwell, Jacob Roth ${ }^{*}$, and Teresa Wheeland*, Distributions of Statistics over Pattern-Avoiding Permutations, Journal of Integer Sequences 22 (2019) 19.2.6.
33. Monica Anderson*, Marika Diepenbroek*, Lara Pudwell, and Alex Stoll*, Pattern avoidance in reverse double lists, Discrete Mathematics and Theoretical Computer Science 19.2 (2018), \#13.
32. Lara Pudwell and Eric Rowland, Avoiding fractional powers over the natural numbers, Electronic Journal of Combinatorics 25.2 (2018), P2.27.
31. Michael Dorff, Allison Henrich, and Lara Pudwell, Successfully Mentoring Undergraduates in Research: A How To Guide for Mathematicians, PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies, 27.3 (2017), $320-336$.
30. Charles Cratty*, Samuel Erickson*, Frehiwet Negassi*, and Lara Pudwell, Pattern avoidance in double lists, Involve, a Journal of Mathematics 10.3 (2017), 379-398.

A permutation of length n is an list of the numbers $1,2, \ldots, n$ where order matters.

- Permutations of length 1 ?

1

A permutation of length n is an list of the numbers $1,2, \ldots, n$ where order matters.

- Permutations of length 1 ? 1
- Permutations of length 2 ?

12
21

A permutation of length n is an list of the numbers $1,2, \ldots, n$ where order matters.

- Permutations of length 1 ? 1
- Permutations of length 2 ?

12
21

- Permutations of length 3 ?

123
132
$213 \quad 231$
312321

A permutation of length n is an list of the numbers $1,2, \ldots, n$ where order matters.

- Permutations of length 1 ?
- Permutations of length 2 ?

12
21

- Permutations of length 3 ?

123
132
213
231
312321
Fact
There are $n \cdot(n-1) \cdot(n-2) \cdots 1=n!$ permutations of length n.

Permutations in picture form

Visualize permutations by plotting the points in the plane. (Heights correspond to digits in the permutation.)

A bigger permutation picture

562719348

Patterns in permutations

Patterns in permutations

Patterns in permutations

562719348 contains the pattern 132

Patterns in permutations

562719348 contains the pattern 1234

Patterns in permutations

562719348 avoids the pattern 4321

Big question

How many permutations of length n contain the permutation p ?

Or, alternatively...

Big question

How many permutations of length n avoid the permutation p ?

(depends on what p is!)

Why avoid patterns?

Why avoid patterns?

Theorem (Knuth, 1968)
A permutation is stack sortable if and only if it avoids 231.

What's my application motivation?

- Knuth (1968): avoiding 231 is useful in computer science
- Mathematicians (1980s): what interesting things happen when we avoid other patterns?

What's my application motivation?

- Knuth (1968): avoiding 231 is useful in computer science
- Mathematicians (1980s): what interesting things happen when we avoid other patterns?
- Directions in past $30+$ years:

㢵

What's my application motivation?

- Knuth (1968): avoiding 231 is useful in computer science
- Mathematicians (1980s): what interesting things happen when we avoid other patterns?
- Directions in past $30+$ years:

Theme: studying new mathematical structure for its own sake
Bonus: spotting surprise connections

Isn't that peculiar?

---------- Forwarded message
 \qquad
 From: David Harris

Date: Thu, Jun 4, 2009 at 9:24 PM
Subject: a series of numbers
To: Lara.Pudwell@valpo.edu
$\mathrm{Hi}-$
I happened across a web site of yours at Rutgers website via a google search.(http://www.math.rutgers.edu/~1pudwel//maple/schemes/3340ut).

I got there because my Middle school aged daughter had a math project that generated the following series of numbers:
618345478106138174
When I googled the series, only your site came up. We got the numbers from the following problem, which we're trying to find an equation to describe:
(This is a triangle series but with cubes).
We have a single cube($n=1$) total surface area equals 6 sides.
If we add a cube on either side and one on top, forming a triangle surrounding the original ($n=2$) total surface area is 18 sides.

Pyramids of cubes

6
18
34

Theorem

The surface area of Harris's nth pyramid of blocks is...

Theorem

The surface area of Harris's nth pyramid of blocks is... the number of lists with two 1 s , two $2 \mathrm{~s}, \ldots$, and two $(n+1) \mathrm{s}$ that avoid 132,231 , and 2134.

Theorem

The surface area of Harris's nth pyramid of blocks is... the number of lists with two 1 s , two $2 \mathrm{~s}, \ldots$, and two $(n+1) \mathrm{s}$ that avoid 132, 231, and 2134.

Example:

has surface area 18 .

18 pattern-avoiding lists:

$$
\begin{aligned}
& 112233,121233,122133,211233,212133,221133 \\
& 311223,312123,312213,321123,321213,322113 \\
& 331122,331212,331221,332112,332121,332211
\end{aligned}
$$

The next step is...

Theorem (Knuth, 1968)
A permutation is stack sortable if and only if it avoids 231.

The next step is...

Theorem (Knuth, 1968)
A permutation is stack sortable if and only if it avoids 231.

Theorem (Avis and Newborn, 1981)
A permutation is pop-stack sortable if and only if it avoids 231 and 312.

The next step is...

Theorem (Knuth, 1968)
A permutation is stack sortable if and only if it avoids 231.

Theorem (Avis and Newborn, 1981)
A permutation is pop-stack sortable if and only if it avoids 231 and 312.

Theorem (West, 1990)
A permutation is sortable after two passes through a stack if and only if it avoids 2341 and 35241 .

Theorem (Pudwell and Smith, 2019)
A permutation is sortable after two passes through a pop-stack if and only if it avoids $2341,3412,3421,4123,4231,4312,4 \overline{1} 352$, and $413 \overline{5} 2$.

Theorem (Pudwell and Smith, 2019)
A permutation is sortable after two passes through a pop-stack if and only if it avoids $2341,3412,3421,4123,4231,4312,4 \overline{1} 352$, and $413 \overline{5} 2$.

The number of such permutations is...

Theorem (Pudwell and Smith, 2019)

A permutation is sortable after two passes through a pop-stack if and only if it avoids 2341, 3412, 3421, 4123, 4231, 4312, 4 $\overline{1} 352$, and $413 \overline{5} 2$.

The number of such permutations is...

the number of n-square polyominoes...

Theorem (Pudwell and Smith, 2019)

A permutation is sortable after two passes through a pop-stack if and only if it avoids 2341, 3412, 3421, 4123, 4231, 4312, 4 $\overline{1} 352$, and $413 \overline{5} 2$.

The number of such permutations is...

the number of n-square polyominoes... that can be drawn on a "twisted cylinder" of width 3.

Theorem (Pudwell and Smith, 2019)

A permutation is sortable after two passes through a pop-stack if and only if it avoids 2341, 3412, 3421, 4123, 4231, 4312, 4 $\overline{1} 352$, and $413 \overline{5} 2$.

The number of such permutations is...

the number of n-square polyominoes... that can be drawn on a "twisted cylinder" of width 3 .

$$
\text { e.g. } \square \square \text { and } \square \square \text { are now the same }
$$

What if...?

A permutation is alternating if its adjacent pairs of digits alternate between increasing and decreasing pairs.

Examples:

What if...?

A permutation is alternating if its adjacent pairs of digits alternate between increasing and decreasing pairs.

Examples:

Which of these examples has the most 123 patterns?

Many 123s

The alternating permutation with the most 123s possible looks like this:

Question: How many 123 patterns does it have?

Many 123s

The alternating permutation with the most 123s possible looks like this:

Question: How many 123 patterns does it have?

2 copies

4 copies

12 copies

20 copies

Many 123s

$2,4,12,20,38,56,88,120,170,220,292,364,462,560,688,816,978, \ldots$

Many 123s

$2,4,12,20,38,56,88,120,170,220,292,364,462,560,688,816,978, \ldots$

A099956	Atomic numbers of the alkaline earth metals.	9
4, 12, 20	$38,56,88$ (list; graph; refs; listen; history; text; internal format)	
OFFSET	1,1	
LINkS	Table of $n, a(\underline{n})$ for $n=1 . .6$.	
EXAMPLE	12 is the atomic number of magnesium.	
CROSSREFS	Cf. A099955, alkali metals; A101648, metalloids; A101647, nonmetals (except halogens and noble gases); A097478, halogens; A018227, noble gases; A101649, poor metals.	
	Sequence in context: $\frac{\text { a } 057317}{\text { A008068 }}$ A008183 * A301066 ${ }^{\text {A008092 }}$ A316299	
	Adjacent sequences: A099953 A099954 A099955 * A099957 A099958 ${ }^{\text {A099959 }}$	
KEYWORD	nonn, fini, full	
AUTHOR	Parthasarathy Nambi, Nov 122004	
STATUS	approved	

Online Encyclopedia of Integer Sequences (oeis.org)

Many 123s

$2,4,12,20,38,56,88,120,170,220,292,364,462,560,688,816,978, \ldots$

```
A168380 Row sums of A168281. 
    2, 4, 12, 20, 38, 56, 88, 120, 170, 220, 292, 364, 462, 560, 688, 816, 978, 1140,
    1340, 1540, 1782, 2024, 2312, 2600, 2938, 3276, 3668, 4060, 4510, 4960, 5472, 5984, 6562, 7140,
    7788, 8436, 9158, 9880, 10680, 11480, 12362, 13244, 14212, 15180, 16238, 17296, 18448, 19600,
    20850, 22100 (list; graph; refs; listen; history; text; internal format)
    OFFSET 1,1
    COMMENTS The atomic numbers of the augmented alkaline earth group in Charles Janet's spiral
    periodic table are 0 and the first eight terms of this sequence (see Stewart
    reference). - Alonso del Arte, May 13 }201
    LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..10000
            Stewart, Philip, Charles Janet: unrecognized genius of the Periodic System.
                        Foundations of Chemistry (2010), p. }9
            Index entries for linear recurrences with constant coefficients, signature
                (2,1,-4,1,2,-1).
    FORMULA }\quada(n)=2*A005993(n-1)
            a(n) = (n+1)*(3 + 2*n^2 + 4*n - 3* (-1)^n)/12.
            a(n+1)-a(n) = A093907(n) = A137583(n+1).
            a(2n+1) = A035597(n+1) a(2n)=A002492(n).
            a(n) = A099956(n-1), 2<=n<=7.
            Online Encyclopedia of Integer Sequences (oeis.org)
```


Alkaline Earth Metals (Group 2)

$\underset{\substack{\text { Group } \\ \text { Period }}}{ } \rightarrow 1$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
																	2 He
23 4 1	$\begin{array}{\|c\|} \hline 4 \\ \mathrm{Be} \\ \hline \end{array}$											5	${ }_{6}^{6}$	7 N	8	9	10 Ne
311 Na 1	$\begin{array}{\|c\|} \hline 12 \\ \mathrm{Mg} \\ \hline \end{array}$											13 Al	14 Si	15	16 S	17 $C l$	18 Ar
419 	$\begin{array}{\|l\|} \hline 20 \\ \mathrm{Ca} \\ \hline \end{array}$	21 Sc	22	23	24	$\begin{array}{\|l\|} \hline 25 \\ \mathrm{Mn} \\ \hline \end{array}$	26	27 Co	$\begin{aligned} & 28 \\ & \mathrm{Ni} \\ & \hline \end{aligned}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 30 \\ \mathrm{Zn} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 31 \\ \mathrm{Ga} \\ \hline \end{array}$	$\begin{aligned} & 32 \\ & \mathrm{Ge} \\ & \hline \end{aligned}$	$\begin{aligned} & 33 \\ & \text { As } \\ & \hline \end{aligned}$	34 Se	35 Br	36 Kr
	$\begin{array}{\|c\|} \hline 38 \\ \mathrm{Sr} \\ \hline \end{array}$	39 Y	40	41 Nb	$\begin{array}{\|l\|} \hline 42 \\ \mathrm{Mo} \\ \hline \end{array}$	$\begin{aligned} & 43 \\ & \mathrm{Tc} \end{aligned}$	$\begin{aligned} & 44 \\ & \mathrm{Ru} \end{aligned}$	45	$\begin{aligned} & \hline 46 \\ & \mathrm{Pd} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 47 \\ \mathrm{Ag} \\ \hline \end{array}$	$\begin{aligned} & 48 \\ & \mathrm{Cd} \end{aligned}$	$\begin{aligned} & \hline 49 \\ & \text { In } \end{aligned}$	50 Sn	51 Sb	52	53 I	54 Xe
$6 \begin{aligned} & 55 \\ & \\ & \hline \end{aligned}$	56 Ba	57 1		73 Ta	74	$\begin{aligned} & 75 \\ & \mathrm{Re} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 76 \\ & \mathrm{Os} \\ & \hline \end{aligned}$	77 Ir	$\begin{aligned} & 78 \\ & \mathrm{Pt} \\ & \hline \end{aligned}$	79 Au 1	$\begin{array}{\|r\|} \hline 80 \\ \mathrm{Hg} \\ \hline \end{array}$	$\stackrel{81}{11}$	$\begin{array}{\|l\|} \hline 82 \\ \hline \end{array}$	83	84	85 At	86 Rn
$\begin{array}{l\|l\|} \hline 87 \\ \hline \end{array} \begin{gathered} 87 \\ \mathrm{Fr} \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 88 \\ \mathrm{Ra} \\ \hline \end{array}$	$\begin{aligned} & 89 \\ & \mathrm{Ac} \end{aligned}$	$\star \star \begin{gathered} 104 \\ \mathrm{Rf} \\ \hline \end{gathered}$	$\begin{array}{\|l} \hline 105 \\ \mathrm{Db} \end{array}$	$\begin{aligned} & \hline 106 \\ & \mathrm{Sg} \\ & \hline \end{aligned}$	$\begin{gathered} 107 \\ \mathrm{Bh} \end{gathered}$	$\begin{aligned} & \hline 108 \\ & \mathrm{Hs} \\ & \hline \end{aligned}$	$\begin{aligned} & 109 \\ & \mathrm{Mt} \end{aligned}$	$\begin{array}{\|c\|} \hline 110 \\ \text { Ds } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 111 \\ \mathrm{Rg} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 112 \\ \mathrm{Cn} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 113 \\ \mathrm{Nh} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 114 \\ \mathrm{FI} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 115 \\ \mathrm{Mc} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 116 \\ \mathrm{LV} \end{array}$	$\begin{gathered} 117 \\ \text { Ts } \end{gathered}$	$\begin{array}{r}118 \\ 0 \mathrm{O} \\ \hline\end{array}$
			$* \begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 59 \\ & \mathrm{Pr} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$	$\begin{aligned} & 61 \\ & \mathrm{Pm} \end{aligned}$	$\begin{array}{\|l\|} \hline 62 \\ 5 \mathrm{~m} \\ \hline \end{array}$	$\begin{aligned} & \hline 63 \\ & \mathrm{Eu} \\ & \hline \end{aligned}$	$\begin{aligned} & 64 \\ & \mathrm{Gd} \end{aligned}$	$\begin{aligned} & 65 \\ & \mathrm{~Tb} \end{aligned}$	$\begin{array}{l\|} \hline 66 \\ \text { Dy } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 67 \\ \mathrm{HO} \\ \hline \end{array}$	$\begin{aligned} & \hline 68 \\ & E r \end{aligned}$	$\begin{array}{\|c\|} \hline 69 \\ \mathrm{Tm} \\ \hline \end{array}$	$\begin{aligned} & 70 \\ & \mathrm{Yb} \end{aligned}$	71 4	
			* ${ }^{90}$	$\begin{aligned} & \hline 91 \\ & \mathrm{~Pa} \\ & \hline \end{aligned}$	$\begin{aligned} & 92 \\ & \hline \end{aligned}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \\ & \hline \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 95 \\ \text { Am } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 96 \\ \mathrm{Cm} \\ \hline \end{array}$	$\begin{aligned} & \hline 97 \\ & \mathrm{Bk} \\ & \hline \end{aligned}$	$\begin{aligned} & 98 \\ & \mathrm{Cf} \end{aligned}$	$\begin{aligned} & \hline 99 \\ & \text { Es } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ \mathrm{Fm} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 101 \\ \mathrm{Md} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 102 \\ \mathrm{No} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 103 \\ \mathrm{Lr} \end{array}$	

...and more!

My (personal) motivation

- (Mathematical) Beauty
(Delight in surprise connections)

My (personal) motivation

- (Mathematical) Beauty (Delight in surprise connections)
- (Mathematical) Truth
(Rising to the challenge of writing rigorous proofs)

My (personal) motivation

- (Mathematical) Beauty (Delight in surprise connections)
- (Mathematical) Truth
(Rising to the challenge of writing rigorous proofs)
- Community
(Sharing the (pursuit of) beauty and truth with others)

Community: with other researchers

Permutation Patterns 2019, Zurich, Switzerland

Community: with other researchers

Permutation Patterns Locations

Community: with other researchers

Permutation Patterns 2020

Community: with other researchers

valparaiso university
 Permutation Patterns 2022

VALPARAISO UNIVERSITY, INDIANA, UNITED STATES JUNE 20-24

Plenary Speakers

Mathilde Bouvel
LORIA
Eranca

Pamela Harris Williams College
USA

Important Dates
SUBMISSION DEADLINE APRIL 15, 2022 EARLY REGISTRATION DEADLINE MAY 1, 2022 LATE REGISTRATION DEADLINE JUNE 3, 2022

More information at permutationpatterns.com

Community: with students

Community: with students

Community: with students

Community: with young thinkers

> MathPath (mathpath.org)
a national residential summer camp for 11-14 year olds showing high interest in mathematics.

Math in Action?

- $D(x, y)=\sum_{n \geq 1} \sum_{i=1}^{n} d_{n, i} x^{i} y^{n}$,
- $C_{2}(y)=\sum_{n \geq 2} c_{n, 2} y^{n}$.
$c_{n, i}=c_{n, i-1}-d_{n, i-1}$ for $3 \leq i \leq n$ implies that

$$
(1-x) C(x, y)+x D(x, y)=\frac{x y}{1-y}+x^{2} C_{2}(y)
$$

$d_{n, i}=d_{n-1, i}+c_{n-1, i-1}$ for $2 \leq i \leq n$ implies that

$$
(1-y) D(x, y)-x y C(x, y)=x y
$$

We also know that $c_{n, n}=1$ for $n \geq 1$, which implies that

$$
\begin{aligned}
\left.C\left(\frac{1}{y}, y z\right)\right|_{y=0} & =\left.\left(\sum_{n \geq 1} \sum_{i=1}^{n} c_{n, i}\left(\frac{1}{y}\right)^{i}(y z)^{n}\right)\right|_{y=0} \\
& =\left.\left(\sum_{n \geq 1} \sum_{i=1}^{n} c_{n, i} y^{n-i} z^{n}\right)\right|_{y=0} \\
& =\sum_{n \geq 1} \sum_{i=1}^{n} c_{n, i} 0^{n-i} z^{n} \\
& =\sum_{n \geq 1} c_{n, n} z^{n} \\
& =\frac{z}{1-z}
\end{aligned}
$$

Beautiful Structure

Beauty + Truth + Community $=$ Joy

For more technical details...

- Lara Pudwell, Stacking blocks and counting permutations, Mathematics Magazine 83 (2010), 297-302.
- Lara Pudwell and Rebecca Smith, Two-stack-sorting with pop stacks, Australasian Journal of Combinatorics 74.1 (2019), 179-195.
- Lara Pudwell, From permutation patterns to the periodic table, Notices of the American Mathematical Society 67.7 (2020), 994-1001.
- Lara Pudwell, The hidden and surprising structure of ordered lists, Math Horizons 29.3 (February 2022), 5-7.

Thanks for listening!

slides at faculty.valpo.edu/lpudwell

