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Identifying Integer Sequences...

I 2, 4, 6, 8, 10, 12, 14, . . .
I 3, 9, 27, 81, 243, 729, . . .

I 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

(Fibonacci)

I 2, 1, 3, 4, 7, 11, 18, 29, 47, . . .

(Lucas)

I 1, 2, 5, 14, 42, 132, 429, 1430, . . .

(Catalan)

I 1, 2, 4, 9, 21, 51, 127, 323, 835, . . .

(Motzkin)

I 1, 2, 6, 22, 90, 394, 1806, 8558, . . .

(Schroeder)

I 1, 2, 5, 15, 52, 203, 877, 4140, . . .

(Bell)

Undergraduates have a much smaller list of sequences they
recognize – OEIS helps bridge the gap.
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Definitions/Notation

I Sn is the set of permutations of length n.

S3 = {123, 132, 213, 231, 312, 321}.

I σ1 · · ·σn contains ρ1 · · · ρm if there exist 1 ≤ i1 < · · · < im ≤ n
so that σia ≤ σib iff ρa ≤ ρb. Otherwise σ avoids ρ.

14235 contains 132. (e.g. 1 4 2 3 5)
14235 avoids 4321.

I Dn = {ππ | π ∈ Sn}.
D3 = {123123, 132132, 213213, 231231, 312312, 321321}.

I Dn(ρ) = {σ | σ ∈ Dn and σ avoids ρ}.
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Warmup

I Dn(1) = ∅ for n ≥ 1.
I Dn(12) = Dn(21) = ∅ for n ≥ 2.

1423514235 →

I |Dn(ρ)| = |Dn(ρ
r )| = |Dn(ρ

c)|

I Dn(123) = {n · · · 1n · · · 1} for n ≥ 3.

I Dn(132) =


{11} n = 1
{1212, 2121} n = 2
{231231} n = 3
∅ n ≥ 4

.
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Length 4 Trivial Wilf Classes

Pattern ρ {|Dn(ρ)|}10
n=1

1342, 2431, 1, 2, 6, 12, 15, 15, 15, 15, 15, 153124, 4213
2143, 3412 1, 2, 6, 12, 13, 14, 16, 18, 20, 22
1423, 2314, 1, 2, 6, 12, 17, 23, 27, 30, 33, 363241, 4132
1432, 2341, 1, 2, 6, 12, 17, 23, 31, 40, 50, 613214, 4123
1243, 2134, 1, 2, 6, 12, 19, 25, 34, 44, 55, 673421, 4312
2413, 3142 1, 2, 6, 12, 18, 29, 47, 76, 123, 199
1324, 4231 1, 2, 6, 12, 21, 38, 69, 126, 232, 427
1234, 4321 1, 2, 6, 12, 27, 58, 121, 248, 503, 1014

Contrast: For large n, |Sn(1342)| < |Sn(1234)| < |Sn(1324)|.



Dn(1342)
(1, 2, 6, 12, 15, 15, 15, 15, 15, 15,. . . )



Dn(1342)
(1, 2, 6, 12, 15, 15, 15, 15, 15, 15,. . . )



Dn(1234)
(1, 2, 6, 12, 27, 58, 121, 248, 503, 1014,. . . )
Picture of 1234-avoiding double lists:

For n ≥ 4, in OEIS, “Number of different permutations of a deck
of n cards that can be produced by a single shuffle”.

1. Begin with ordered deck n · · · 1.
2. Cut.
3. Each card either comes from upper or lower partial deck.

There are 2n strings on {U, L}n, but the (n + 1) decks of the form
U · · ·UL · · · L are all equivalent to the original deck.

|Dn(1234)| = 2n − n for n ≥ 4.
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Summary

Pattern ρ |Dn(ρ)| OEISfor sufficiently large n
1342, 2431, 15 A0108543124, 4213
2143, 3412 2n + 2 A005843
1423, 2314, 3n + 6 A0085853241, 4132
1432, 2341, 1

2n2 + 3
2n − 4 A0529053214, 4123

1243, 2134, 1
2n2 + 5

2n − 8 (soon!)3421, 4312
2413, 3142 Ln+2 A000032
1324, 4231 (Tribonacci recurrence) (soon!)
1234, 4321 2n − n A000325



Key Question

Our trees are:
I rooted (root vertex at top)
I ordered (left child and right

child are distinct)
I full binary (each vertex has

exactly 0 or 2 children)

Tn is the set of n-leaf binary trees.

Question: How many trees in Tn avoid a given tree pattern?



Tree patterns

Noncontiguous tree pattern
Tree T contains tree t if and only if there exists a sequence of
edge contractions of T (by pairs) that produces t.

Example:

contains , , and .



Noncontiguous pattern data

Pattern t Number of n-leaf trees avoiding t

0{
1 n = 1
0 n > 1

1

2n−2



The Main Theorem

Notation

I Let avt(n) be the number trees in Tn that avoid t
noncontiguously.

I Let gt(x) =
∑∞

n=1 avt(n)xn.

Theorem
Fix k ∈ Z+. Let t, s ∈ Tk . Then gt(x) = gs(x).



Notation and Computation

(More) Notation

I Given tree t,
I let t` be the subtree whose root is the left child of t’s root.
I let tr be the subtree whose root is the right child of t’s root.

t` tr
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Notice

gt(x) = x + gt`
(x) · gt(x) + gt(x) · gtr (x)− gt`

(x) · gtr (x)

Solving...
gt(x) =

x − gt`
(x) · gtr (x)

1− gt`
(x)− gtr (x)

.
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A special case...

Let ck be the k-leaf left comb
(the unique k-leaf binary tree where every right child is a leaf).

c1 = , c2 = , c3 = , c4 = , c5 = ,etc.

For k ≥ 2, we have

gck (x) =
x − gck−1(x) · g (x)

1− gck−1(x)− g (x) =
x

1− gck−1(x)
.
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Back to the main result

Theorem
Fix k ∈ Z+. Let t and s be two k-leaf binary tree patterns. Then
gt(x) = gs(x).

Proof sketch
Inductive step:

I Assume the theorem holds for tree patterns with j leaves
where j < k.

I Any j-leaf tree has avoidance generating function gcj (x).
I Consider tree t with j leaves to the left of its root and tree s

with j − 1 leaves to the left of its root.
I Do algebra with previous work to show that gt(x) = gs(x).



Generating functions

k gck (x) OEIS number

1 0 trivial

2 x trivial

3 x
1−x trivial

4 x−x2

1−2x A000079

5 x−2x2

1−3x+x2 A001519

6 x−3x2+x3

1−4x+3x2 A007051

7 x−4x2+3x3

1−5x+6x2−x3 A080937

8 x−5x2+6x3−x4

1−6x+10x2−4x3 A024175

9 x−6x2+10x3−4x4

1−7x+15x2−10x3+x4 A080938



Coefficient sightings...
x
1

x
1−x
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An explicit formula

Theorem
Let k ∈ Z+ and let t ∈ Tk . Then

gt(x) =

b k−2
2 c∑

i=0
(−1)i ·

(k−(i+2)
i

)
· x i+1

b k−1
2 c∑

i=0
(−1)i ·

(k−(i+1)
i

)
· x i

.



Stack sorting

15423

→

5423

1

→

23

4
5
1

→

3

2
4
5
1

→

3

4
5

12

→ 3
4
5

12

→

12345

15342

→

5342

1

→

42

3
5
1

→

42

5
13

→

2

4
5

13

→ 2
4
5

13

→

13245

Theorem (Knuth)

π ∈ Sn is 1-stack-sortable if and only if π avoids the pattern 231.
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Finite stacks

Question: What if the stack has a finite capacity d?
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2
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→

3

5
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→

14235

Theorem (Atkinson, Chow, West,...)

π ∈ Sn is 1-stack-sortable in a depth d (d ≥ 1) stack if and only if
π avoids the patterns 231 and (d + 1)d · · · 1.
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Generating functions
I ad(n) is the number of permutations of length n sortable in a

depth d stack.
I fd(x) =

∑
n≥1 ad(n)xn.

=
gcd+2 (x)

x .

d fd(x) OEIS number

1 1
1−x trivial

2 1−x
1−2x A000079

3 1−2x
1−3x+x2 A001519

4 1−3x+x2

1−4x+3x2 A007051

5 1−4x+3x2

1−5x+6x2−x3 A080937

6 1−5x+6x2−x3

1−6x+10x2−4x3 A024175

7 1−6x+10x2−4x3

1−7x+15x2−10x3+x4 A080938
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Summary

OEIS makes students more powerful!

Thanks to...
I Neil, for creating OEIS and making these kinds of

problems reachable for undergraduates
(and Happy Birthday!)

I team double lists
(Charles Cratty, Sam Erickson, Frehiwet Negassi)

I team trees
(Mike Dairyko, Samantha Tyner, Casey Wynn)

I team stacks
(Timothy Goodrich, Will Olson, Julia Yuan)

I you, for listening!

(slides at http://faculty.valpo.edu/lpudwell)
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