OEIS meets UGR

DIMACS Conference on Challenges of Identifying Integer Sequences DIMACS Center, Rutgers University October 9, 2014

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

OEIS meets UGR?

Online Encyclopedia of Integer Sequences

meets

U G R

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

OEIS meets UGR?

Online Encyclopedia of Integer Sequences

meets

Under-Graduate Research

▶ 2,4,6,8,10,12,14,...

▶ 3,9,27,81,243,729,...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ▶ 2,4,6,8,10,12,14,...
- ▶ 3,9,27,81,243,729,...
- ▶ 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
- 2, 1, 3, 4, 7, 11, 18, 29, 47, ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ▶ 2,4,6,8,10,12,14,...
- ▶ 3,9,27,81,243,729,...
- ▶ 1, 1, 2, 3, 5, 8, 13, 21, 34, ... (Fibonacci)
- ▶ 2,1,3,4,7,11,18,29,47,... (Lucas)

A D N A 目 N A E N A E N A B N A C N

- ▶ 2,4,6,8,10,12,14,...
- ▶ 3,9,27,81,243,729,...
- ▶ 1,1,2,3,5,8,13,21,34,... (Fibonacci)
- \blacktriangleright 2,1,3,4,7,11,18,29,47,... (Lucas)
- ▶ 1,2,5,14,42,132,429,1430,...
- ▶ 1, 2, 4, 9, 21, 51, 127, 323, 835, . . .
- ▶ 1, 2, 6, 22, 90, 394, 1806, 8558, ...
- ▶ 1,2,5,15,52,203,877,4140,...

- ▶ 2,4,6,8,10,12,14,...
- ▶ 3,9,27,81,243,729,...
- ▶ 1,1,2,3,5,8,13,21,34,... (Fibonacci)
- \blacktriangleright 2,1,3,4,7,11,18,29,47,... (Lucas)
- ▶ 1,2,5,14,42,132,429,1430,... (Catalan)
- ▶ 1, 2, 4, 9, 21, 51, 127, 323, 835, ... (Motzkin)
- ▶ 1, 2, 6, 22, 90, 394, 1806, 8558, ... (Schroeder)
- ▶ 1,2,5,15,52,203,877,4140,... (Bell)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- ▶ 2,4,6,8,10,12,14,...
- ▶ 3,9,27,81,243,729,...
- ▶ 1,1,2,3,5,8,13,21,34,... (Fibonacci)
- \blacktriangleright 2,1,3,4,7,11,18,29,47,... (Lucas)
- ▶ 1,2,5,14,42,132,429,1430,... (Catalan)
- ▶ 1,2,4,9,21,51,127,323,835,... (Motzkin)
- ▶ 1, 2, 6, 22, 90, 394, 1806, 8558, ... (Schroeder)
- ▶ 1, 2, 5, 15, 52, 203, 877, 4140, ... (Bell)

Undergraduates have a much smaller list of sequences they recognize – OEIS helps bridge the gap.

Definitions/Notation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• S_n is the set of permutations of length n.

 $\mathcal{S}_3 = \{123, 132, 213, 231, 312, 321\}.$

• $\sigma_1 \cdots \sigma_n$ contains $\rho_1 \cdots \rho_m$ if there exist $1 \le i_1 < \cdots < i_m \le n$ so that $\sigma_{i_a} \le \sigma_{i_b}$ iff $\rho_a \le \rho_b$. Otherwise σ avoids ρ .

> 14235 contains 132. (e.g. 1 4 2 3 5) 14235 avoids 4321.

Definitions/Notation

• S_n is the set of permutations of length n.

$$\mathcal{S}_3 = \{123, 132, 213, 231, 312, 321\}.$$

• $\sigma_1 \cdots \sigma_n$ contains $\rho_1 \cdots \rho_m$ if there exist $1 \le i_1 < \cdots < i_m \le n$ so that $\sigma_{i_a} \le \sigma_{i_b}$ iff $\rho_a \le \rho_b$. Otherwise σ avoids ρ .

► $\mathcal{D}_n = \{\pi \pi \mid \pi \in \mathcal{S}_n\}.$ $\mathcal{D}_3 = \{123123, 132132, 213213, 231231, 312312, 321321\}.$

•
$$\mathcal{D}_n(\rho) = \{ \sigma \mid \sigma \in \mathcal{D}_n \text{ and } \sigma \text{ avoids } \rho \}.$$

Warmup

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Warmup

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$|\mathcal{D}_n(\rho)| = |\mathcal{D}_n(\rho^r)| = |\mathcal{D}_n(\rho^c)|$$

Warmup

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$|\mathcal{D}_n(\rho)| = |\mathcal{D}_n(\rho^r)| = |\mathcal{D}_n(\rho^c)|$$

$$\mathcal{D}_n(123) = \{n \cdots 1n \cdots 1\} \text{ for } n \ge 3.$$

$$\mathcal{D}_n(132) = \begin{cases} \{11\} & n = 1 \\ \{1212, 2121\} & n = 2 \\ \{231231\} & n = 3 \\ \emptyset & n \ge 4 \end{cases}$$

Length 4 Trivial Wilf Classes

Pattern ρ	$\{ \mathcal{D}_n(\rho) \}_{n=1}^{10}$
1342, 2431,	1 2 6 12 15 15 15 15 15 15
3124, 4213	1, 2, 0, 12, 13, 13, 13, 13, 13, 13
2143, 3412	1, 2, 6, 12, 13, 14, 16, 18, 20, 22
1423, 2314,	1 2 6 12 17 23 27 30 33 36
3241, 4132	1, 2, 0, 12, 17, 23, 27, 30, 35, 30
1432, 2341,	1 2 6 12 17 23 31 40 50 61
3214, 4123	1, 2, 0, 12, 17, 23, 31, 40, 30, 01
1243, 2134,	1 2 6 12 10 25 34 44 55 67
3421, 4312	1, 2, 0, 12, 19, 29, 94, 44, 95, 07
2413, 3142	1, 2, 6, 12, 18, 29, 47, 76, 123, 199
1324, 4231	1, 2, 6, 12, 21, 38, 69, 126, 232, 427
1234, 4321	1, 2, 6, 12, 27, 58, 121, 248, 503, 1014

Contrast: For large *n*, $|S_n(1342)| < |S_n(1234)| < |S_n(1324)|$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $\mathcal{D}_n(1342)$ (1, 2, 6, 12, 15, 15, 15, 15, 15, 15, ...)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

 $\mathcal{D}_n(1234)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

(1, 2, 6, 12, 27, 58, 121, 248, 503, 1014,...) Picture of 1234-avoiding double lists:

 $\mathcal{D}_n(1234)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(1, 2, 6, 12, 27, 58, 121, 248, 503, 1014,...) Picture of 1234-avoiding double lists:

For $n \ge 4$, in OEIS, "Number of different permutations of a deck of *n* cards that can be produced by a single shuffle".

- **1.** Begin with ordered deck $n \cdots 1$.
- 2. Cut.
- 3. Each card either comes from upper or lower partial deck.

 $\mathcal{D}_n(1234)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(1, 2, 6, 12, 27, 58, 121, 248, 503, 1014,...) Picture of 1234-avoiding double lists:

For $n \ge 4$, in OEIS, "Number of different permutations of a deck of *n* cards that can be produced by a single shuffle".

- **1.** Begin with ordered deck $n \cdots 1$.
- 2. Cut.

3. Each card either comes from upper or lower partial deck.

There are 2^n strings on $\{U, L\}^n$, but the (n + 1) decks of the form $U \cdots UL \cdots L$ are all equivalent to the original deck.

$$|\mathcal{D}_n(1234)| = 2^n - n \text{ for } n \ge 4.$$

Summary

Pattern ρ	$ \mathcal{D}_n(ho) $ for sufficiently large n	OEIS	
1342, 2431,	15	A010854	
3124, 4213	10	/ 1010001	
2143, 3412	2n + 2	A005843	
1423, 2314,	$3n \mid 6$	A008585	
3241, 4132	511 + 0	A000303	
1432, 2341,	$\frac{1}{n^2}$ $\frac{3}{n}$ 1	A052005	
3214, 4123	$\frac{1}{2}n + \frac{1}{2}n - 4$	A032903	
1243, 2134,	$\frac{1}{n^2}$ $\frac{5}{n}$ 8	(seen!)	
3421, 4312	$\frac{1}{2}n + \frac{1}{2}n - 0$	(\$0011!)	
2413, 3142	L_{n+2}	A000032	
1324, 4231	(Tribonacci recurrence)	(soon!)	
1234, 4321	$2^{n} - n$	A000325	

Key Question

Our trees are:

- rooted (root vertex at top)
- ordered (left child and right child are distinct)
- full binary (each vertex has exactly 0 or 2 children)

 \mathbb{T}_n is the set of *n*-leaf binary trees.

Question: How many trees in \mathbb{T}_n avoid a given tree pattern?

イロト 不得 トイヨト イヨト

-

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Noncontiguous tree pattern

Tree T contains tree t if and only if there exists a sequence of edge contractions of T (by pairs) that produces t.

Example:

Noncontiguous pattern data

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

The Main Theorem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Notation

Let av_t(n) be the number trees in T_n that avoid t noncontiguously.

• Let
$$g_t(x) = \sum_{n=1}^{\infty} \operatorname{av}_t(n) x^n$$
.

Theorem

Fix $k \in \mathbb{Z}^+$. Let $t, s \in \mathbb{T}_k$. Then $g_t(x) = g_s(x)$.

Notation and Computation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

(More) Notation

► Given tree *t*,

- let t_{ℓ} be the subtree whose root is the left child of t's root.
- let t_r be the subtree whose root is the right child of t's root.

Notation and Computation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(More) Notation

► Given tree t,

- let t_{ℓ} be the subtree whose root is the left child of *t*'s root.
- let t_r be the subtree whose root is the right child of t's root.

Notice

$$g_t(x) = x + g_{t_\ell}(x) \cdot g_t(x) + g_t(x) \cdot g_{t_r}(x) - g_{t_\ell}(x) \cdot g_{t_r}(x)$$

Notation and Computation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(More) Notation

► Given tree t,

- let t_{ℓ} be the subtree whose root is the left child of *t*'s root.
- let t_r be the subtree whose root is the right child of t's root.

Notice

$$g_t(x) = x + g_{t_\ell}(x) \cdot g_t(x) + g_t(x) \cdot g_{t_r}(x) - g_{t_\ell}(x) \cdot g_{t_r}(x)$$

Solving...

$$g_t(x) = rac{x - g_{t_\ell}(x) \cdot g_{t_r}(x)}{1 - g_{t_\ell}(x) - g_{t_r}(x)}.$$

A special case...

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let c_k be the k-leaf left comb

(the unique k-leaf binary tree where every right child is a leaf).

$$c_1 = \cdot, c_2 = \Lambda, c_3 = \Lambda, c_4 = \Lambda, c_5 = \Lambda, \text{etc.}$$

A special case...

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let c_k be the k-leaf left comb

(the unique k-leaf binary tree where every right child is a leaf).

$$c_1 = \cdot, c_2 = \Lambda, c_3 = \Lambda, c_4 = \Lambda, c_5 = \Lambda, \text{etc.}$$

For $k \geq 2$, we have

$$g_{c_k}(x) = \frac{x - g_{c_{k-1}}(x) \cdot g_{\bullet}(x)}{1 - g_{c_{k-1}}(x) - g_{\bullet}(x)} = \frac{x}{1 - g_{c_{k-1}}(x)}.$$

Back to the main result

Theorem

Fix $k \in \mathbb{Z}^+$. Let t and s be two k-leaf binary tree patterns. Then $g_t(x) = g_s(x)$.

Proof sketch

Inductive step:

- ► Assume the theorem holds for tree patterns with *j* leaves where *j* < *k*.
- Any *j*-leaf tree has avoidance generating function $g_{c_i}(x)$.
- ► Consider tree t with j leaves to the left of its root and tree s with j 1 leaves to the left of its root.
- Do algebra with previous work to show that $g_t(x) = g_s(x)$.

k	$g_{c_k}(x)$	OEIS number
1	0	trivial
2	X	trivial
3	$\frac{x}{1-x}$	trivial
4	$\frac{x-x^2}{1-2x}$	A000079
5	$\frac{x-2x^2}{1-3x+x^2}$	A001519
6	$\frac{x-3x^2+x^3}{1-4x+3x^2}$	A007051
7	$\frac{x - 4x^2 + 3x^3}{1 - 5x + 6x^2 - x^3}$	A080937
8	$\frac{x-5x^2+6x^3-x^4}{1-6x+10x^2-4x^3}$	A024175
9	$\frac{x-6x^2+10x^3-4x^4}{1-7x+15x^2-10x^3+x^4}$	A080938

Coefficient sightings...

Coefficient sightings...

 $\frac{x}{1}$

									$\frac{x}{1-x}$
1									$x - x^2$
1	1								$\frac{x-x}{1-2x}$
1	2	1							× 2×2
1	3	3	1						$\frac{x-2x}{1-3x+x^2}$
1	4	6	4	1					2 2
1	5	10	10	5	1				$\frac{x-3x^2+x^3}{1-4x+3x^2}$
1	6	15	20	15	6	1			,
1	7	21	35	35	21	7	1		$\frac{x-4x^2+3x^3}{1-5x+6x^2-x^3}$
1	8	28	56	70	56	28	8	1	$1-5x+0x^2-x^3$

x -	$5x^{2}+$	$-6x^{3}$	$-x^4$
1 - 6	x+1	0x ² -	$-4x^{3}$

Coefficient sightings... Valparaiso University $\frac{x}{1}$ $\frac{x}{1-x}$ 1 $\frac{x-x^2}{1-2x}$ 1 1 1 2 1 $\frac{x-2x^2}{1-3x+x^2}$ 1 3 3 1 4 6 4 1 1 $\frac{x-3x^2+x^3}{1-4x+3x^2}$ 1 5 10 10 51 15 6 1 1 6 15 20 $\frac{x - 4x^2 + 3x^3}{1 - 5x + 6x^2 - x^3}$ 1 7 21 35 35 21 7 1 1 8 28 56 28 8 1 56 70

 $\frac{x-5x^2+6x^3-x^4}{1-6x+10x^2-4x^3}$

 $\frac{x-6x^2+10x^3-4x^4}{1-7x+15x^2-10x^3+x^4}$

An explicit formula

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem

Let $k \in \mathbb{Z}^+$ and let $t \in \mathbb{T}_k$. Then

$$g_t(x) = \frac{\sum_{i=0}^{\lfloor \frac{k-2}{2} \rfloor} (-1)^i \cdot \binom{k-(i+2)}{i} \cdot x^{i+1}}{\sum_{i=0}^{\lfloor \frac{k-1}{2} \rfloor} (-1)^i \cdot \binom{k-(i+1)}{i} \cdot x^i}$$

Stack sorting

▲ロ▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ― 国 … のへで

Stack sorting

Theorem (Knuth)

 $\pi \in S_n$ is 1-stack-sortable if and only if π avoids the pattern 231.

Finite stacks

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Question: What if the stack has a finite capacity d?

Finite stacks

Question: What if the stack has a finite capacity d?

Theorem (Atkinson, Chow, West,...)

 $\pi \in S_n$ is 1-stack-sortable in a depth d $(d \ge 1)$ stack if and only if π avoids the patterns 231 and $(d+1)d\cdots 1$.

► a_d(n) is the number of permutations of length n sortable in a depth d stack.

•
$$f_d(x) = \sum_{n \ge 1} a_d(n) x^n$$
.

► a_d(n) is the number of permutations of length n sortable in a depth d stack.

•
$$f_d(x) = \sum_{n \ge 1} a_d(n) x^n$$
.

d	$f_d(x)$	OEIS number
1	$\frac{1}{1-x}$	trivial
2	$\frac{1-x}{1-2x}$	A000079
3	$\frac{1-2x}{1-3x+x^2}$	A001519
4	$\frac{1-3x+x^2}{1-4x+3x^2}$	A007051
5	$\frac{1-4x+3x^2}{1-5x+6x^2-x^3}$	A080937
6	$rac{1-5x+6x^2-x^3}{1-6x+10x^2-4x^3}$	A024175
7	$\frac{1-6x+10x^2-4x^3}{1-7x+15x^2-10x^3+x^4}$	A080938

► a_d(n) is the number of permutations of length n sortable in a depth d stack.

•
$$f_d(x) = \sum_{n\geq 1} a_d(n) x^n = \frac{g_{c_{d+2}}(x)}{x}$$
.

d	$f_d(x)$	OEIS number
1	$\frac{1}{1-x}$	trivial
2	$\frac{1-x}{1-2x}$	A000079
3	$\frac{1-2x}{1-3x+x^2}$	A001519
4	$\frac{1-3x+x^2}{1-4x+3x^2}$	A007051
5	$\frac{1-4x+3x^2}{1-5x+6x^2-x^3}$	A080937
6	$rac{1-5x+6x^2-x^3}{1-6x+10x^2-4x^3}$	A024175
7	$\frac{1\!-\!6x\!+\!10x^2\!-\!4x^3}{1\!-\!7x\!+\!15x^2\!-\!10x^3\!+\!x^4}$	A080938

(ロ)、(型)、(E)、(E)、 E) の(()

OEIS makes students more powerful!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

OEIS makes students more powerful!

Thanks to...

 Neil, for creating OEIS and making these kinds of problems reachable for undergraduates (and Happy Birthday!)

OEIS makes students more powerful!

Thanks to...

- Neil, for creating OEIS and making these kinds of problems reachable for undergraduates (and Happy Birthday!)
- team double lists (Charles Cratty, Sam Erickson, Frehiwet Negassi)
- team trees

(Mike Dairyko, Samantha Tyner, Casey Wynn)

team stacks

(Timothy Goodrich, Will Olson, Julia Yuan)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

OEIS makes students more powerful!

Thanks to...

- Neil, for creating OEIS and making these kinds of problems reachable for undergraduates (and Happy Birthday!)
- team double lists (Charles Cratty, Sam Erickson, Frehiwet Negassi)
- team trees

(Mike Dairyko, Samantha Tyner, Casey Wynn)

team stacks

(Timothy Goodrich, Will Olson, Julia Yuan)

you, for listening!

(slides at http://faculty.valpo.edu/lpudwell)