Packing patterns in restricted permutations

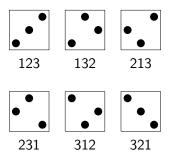
New York Combinatorics Seminar December 11, 2020

Permutations

Definition

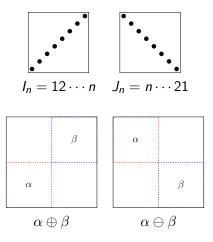
A permutation π of length n is an ordered list of the numbers 1, 2, ..., n. S_n is the set of all permutations of length n.

 π is often visualized by plotting the points (i, π_i) in the Cartesian plane.



-

Permutation Constructions



(日)

Permutation Patterns

Definition

 $\pi \in S_n$ contains $\rho \in S_m$ as a pattern if there exist $1 \leq i_1 < i_2 < \cdots < i_m \leq n$ such that $\pi_{i_a} < \pi_{i_b}$ iff $\rho_a < \rho_b$. If π doesn't contain ρ , we say π avoids ρ and we write $\pi \in S_n(\rho)$.

Example:

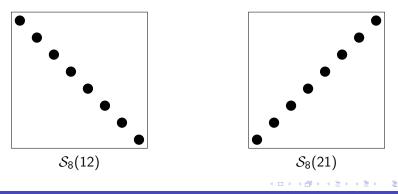
$$\pi = 2314 \in \mathcal{S}_4(321).$$

∃ ▶ ∢

Let
$$s_n(\rho) = |\mathcal{S}_n(\rho)|$$
.

Theorem

For
$$n \ge 0$$
, $s_n(12) = s_n(21) = 1$.



Pattern Avoidance Symmetries

$$s_n(123) = s_n(321)$$

$$s_n(132) = s_n(213) = s_n(231) = s_n(312)$$

Packing patterns in restricted permutations

イロト イボト イヨト イヨト

Theorem

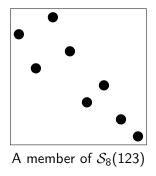
If
$$\rho \in S_3$$
, then $s_n(\rho) = \frac{\binom{2n}{n}}{n+1}$.

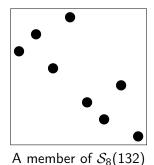
(0.)

< ロ > < 回 > < 回 > < 回 > < 回 >

Theorem

If
$$\rho \in S_3$$
, then $s_n(\rho) = \frac{\binom{2n}{n}}{n+1}$.



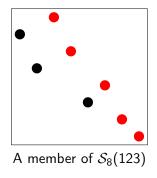


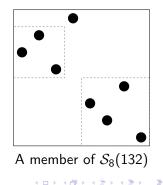
-

3

Theorem

If
$$\rho \in S_3$$
, then $s_n(\rho) = \frac{\binom{2n}{n}}{n+1}$.





Patterns

Definition

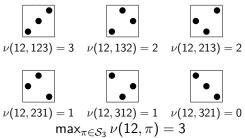
 $\pi \in S_n$ contains $\rho \in S_m$ as a pattern if there exist $1 \leq i_1 < i_2 < \cdots < i_m \leq n$ such that $\pi_{i_a} < \pi_{i_b}$ iff $\rho_a < \rho_b$.

Example:

 $\begin{aligned} \pi &= 2314 \text{ contains...} \\ 1 \text{ copy of } 123 \\ 2 \text{ copies of } 213 \\ 1 \text{ copy of } 231 \end{aligned}$

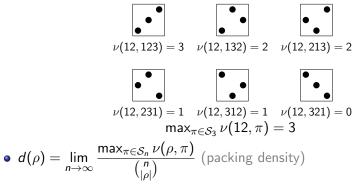
글 🕨 🖌 글

- $\nu(\rho, \pi)$ is the number of occurrences of ρ in π .
- Given *n* and ρ , consider $\max_{\pi \in S_n} \nu(\rho, \pi)$ Example: n = 3 and $\rho = 12$



★ 3 → < 3</p>

- $\nu(\rho, \pi)$ is the number of occurrences of ρ in π .
- Given *n* and ρ , consider $\max_{\pi \in S_n} \nu(\rho, \pi)$ Example: n = 3 and $\rho = 12$



★ Ξ → ★ Ξ

• $\nu(\rho, \pi)$ is the number of occurrences of ρ in π .

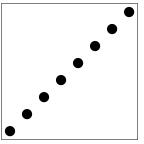
•
$$d(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in S_n} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$$
 (packing density)

(日)

• $\nu(\rho, \pi)$ is the number of occurrences of ρ in π . • $d(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in S_n} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$ (packing density)

Known:

•
$$d(12\cdots m) = 1$$
 (Pack $12\cdots m$ into $12\cdots n$.)



э

• $\nu(\rho, \pi)$ is the number of occurrences of ρ in π . • $d(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in S_n} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$ (packing density)

Known:

- $d(12\cdots m) = 1$ (Pack $12\cdots m$ into $12\cdots n$.)
- For all $\rho \in S_m$, $d(\rho)$ exists.

• • = • • = •

• $\nu(\rho,\pi)$ is the number of occurrences of ρ in π .

•
$$d(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in S_n} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$$
 (packing density)

Known:

•
$$d(12\cdots m) = 1$$
 (Pack $12\cdots m$ into $12\cdots n$.)

• For all
$$\rho \in \mathcal{S}_m$$
, $d(\rho)$ exists.

• If ρ is layered, then $\max_{\pi \in S_n} \nu(\rho, \pi)$ is achieved by a layered π .

Known: Since 132 is layered, then $\max_{\pi \in S_n} \nu(132, \pi)$ is achieved by a layered π .

$$\nu(132,\pi) = \nu(132,\alpha) + (n-i) \cdot \binom{i}{2}$$

(日)

Known: Since 132 is layered, then $\max_{\pi \in S_n} \nu(132, \pi)$ is achieved by a layered π .

$$\nu(132,\pi) = \nu(132,\alpha) + (n-i) \cdot \binom{i}{2}$$

•
$$\frac{\nu(132,\pi)}{\binom{n}{3}}$$
 is maximized when $i = \left(\frac{3}{2} - \frac{\sqrt{3}}{2}\right)n \approx 0.634n$

• Implies $d(132) = 2\sqrt{3} - 3 \approx 0.464$

• • = • • = •

• $\nu(\rho,\pi)$ is the number of occurrences of ρ in π .

•
$$d(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in S_n} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$$
 (packing density)

Known:

•
$$d(12\cdots m) = 1$$
 (Pack $12\cdots m$ into $12\cdots n$.)

- For all $\rho \in \mathcal{S}_m$, $d(\rho)$ exists.
- If ρ is layered, then $\max_{\pi \in S_n} \nu(\rho, \pi)$ is achieved by a layered π .
- $d(132) = 2\sqrt{3} 3 \approx 0.464$

Notation

• $\nu(\rho, \pi)$ is the number of occurrences of ρ in π . Previous work:

$$d(
ho) = \lim_{n o \infty} rac{\max_{\pi \in \mathcal{S}_n}
u(
ho, \pi)}{\binom{n}{|
ho|}}$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Notation

•
$$\nu(\rho, \pi)$$
 is the number of occurrences of ρ in π .
Previous work:

$$d(
ho) = \lim_{n o \infty} rac{\max_{\pi \in \mathcal{S}_n}
u(
ho, \pi)}{\binom{n}{|
ho|}}$$

In this talk:

$$d_{\sigma}(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in \mathcal{S}_n(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}} \qquad d_{\mathcal{A}}(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in \mathcal{A}_n} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$$

 A_n is the set of *alternating permutations*,

i.e. those that avoid consecutive 123 patterns and consecutive 321 patterns.

< ロ > < 同 > < 三 > < 三

Packing patterns of length 3

Recall:
$$d_{\sigma}(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in S_n(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
123							1
132							$2\sqrt{3}-3$

< ロ > < 回 > < 回 > < 回 > < 回 >

Packing patterns of length 3

Recall:
$$d_{\sigma}(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in S_n(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
123	0						1
132		0					$2\sqrt{3}-3$

< ロ > < 回 > < 回 > < 回 > < 回 >

Packing patterns of length 3

Recall:
$$d_{\sigma}(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in S_n(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
123	0	1	1	1	1	1	1
132		0					$2\sqrt{3}-3$

• $I_n = 12 \cdots n$ avoids $\sigma \in S_3 \setminus \{123\}$.

Packing patterns of length 3

Recall:
$$d_{\sigma}(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in S_n(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
123	0	1	1	1	1	1	1
132		0		$2\sqrt{3}-3$	$2\sqrt{3}-3$		$2\sqrt{3}-3$

- $I_n = 12 \cdots n$ avoids $\sigma \in S_3 \setminus \{123\}$.
- Layered permutations avoid 231 and 312.

→ < Ξ → <</p>

Packing patterns of length 3

Recall:
$$d_{\sigma}(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in S_n(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
123	0	1	1	1	1	1	1
132	?	0	?	$2\sqrt{3}-3$	$2\sqrt{3}-3$?	$2\sqrt{3}-3$

- $I_n = 12 \cdots n$ avoids $\sigma \in S_3 \setminus \{123\}$.
- Layered permutations avoid 231 and 312.
- New: $d_{123}(132)$, $d_{213}(132)$, and $d_{321}(132)$

→ < Ξ → <</p>

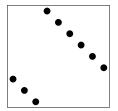
Introduction 000000000000000

Packing 132

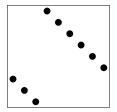
...and avoiding 123

< ロ > < 回 > < 回 > < 回 > < 回 >

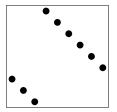
Introduction 00000000000000	Packing with Classical Restrictions	



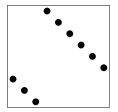
Introduction 00000000000000	Packing with Classical Restrictions	



Introduction 00000000000000	Packing with Classical Restrictions	



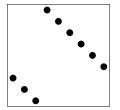
- J_i ⊕ J_{n-i} has i (ⁿ⁻ⁱ) copies of 132. (J_n = n · · · 21)
- Maximized when $i = \lfloor \frac{n}{3} \rfloor$.



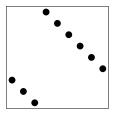
- J_i ⊕ J_{n-i} has i (ⁿ⁻ⁱ) copies of 132. (J_n = n · · · 21)
- Maximized when $i = \lfloor \frac{n}{3} \rfloor$.
- Implies $d_{123}(132) = \frac{4}{9}$.

Packing 132

...and avoiding 123

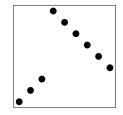


- J_i ⊕ J_{n-i} has i (ⁿ⁻ⁱ) copies of 132. (J_n = n · · · 21)
- Maximized when $i = \lfloor \frac{n}{3} \rfloor$.
- Implies $d_{123}(132) = \frac{4}{9}$.



- J_i ⊕ J_{n-i} has i (ⁿ⁻ⁱ) copies of 132. (J_n = n · · · 21)
- Maximized when $i = \lfloor \frac{n}{3} \rfloor$.
- Implies $d_{123}(132) = \frac{4}{9}$.

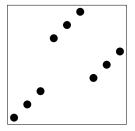
...and avoiding 213



- *I_i* ⊕ *J_{n-i}* has *i*⁽ⁿ⁻ⁱ⁾₂ copies of 132.
- Maximized when $i = \lfloor \frac{n}{3} \rfloor$.

• Implies
$$d_{213}(132) = \frac{4}{9}$$

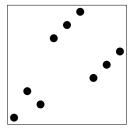
Packing 132 and Avoiding 321



• $I_a \oplus (I_b \ominus I_c)$ has $a \cdot b \cdot c$ copies of 132.

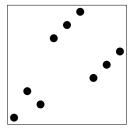
Packing patterns in restricted permutations

Packing 132 and Avoiding 321



- $I_a \oplus (I_b \ominus I_c)$ has $a \cdot b \cdot c$ copies of 132.
- Replace initial I_a with a 132-optimizer of length a to get more copies.

Packing 132 and Avoiding 321



- $I_a \oplus (I_b \ominus I_c)$ has $a \cdot b \cdot c$ copies of 132.
- Replace initial *l_a* with a 132-optimizer of length *a* to get more copies.
- Optimized when $a = \left(\frac{\sqrt{3}}{2} \frac{1}{2}\right)n$, $b = c = \left(\frac{3}{4} \frac{\sqrt{3}}{4}\right)n$.
- Implies $d_{321}(132) = \sqrt{3} \frac{3}{2}$.

Recap:

$$d_{\sigma}(
ho) = \lim_{n o \infty} rac{\max_{\pi \in \mathcal{S}_n(\sigma)}
u(
ho, \pi)}{\binom{n}{|
ho|}}$$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
123	0	1	1	1	1	1	1
132	$\frac{4}{9}$	0	$\frac{4}{9}$	$2\sqrt{3}-3$	$2\sqrt{3} - 3$	$\sqrt{3} - \frac{3}{2}$	$2\sqrt{3}-3$

・ロト ・四ト ・ヨト ・ヨト

Recap:

$$d_{\sigma}(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in \mathcal{S}_n(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
123	0	1	1	1	1	1	1
132	$\frac{4}{9}$	0	$\frac{4}{9}$	$2\sqrt{3}-3$	$2\sqrt{3}-3$	$\sqrt{3} - \frac{3}{2}$	$2\sqrt{3}-3$

Or approximately...

$\rho \backslash \sigma$	123	132	213	231	312	321	-
123	0	1	1	1	1	1	1
132	0.444	0	0.444	0.464	0.464	0.232	0.464

Recall:
$$d_{\sigma}(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in S_n(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$$

$\rho \setminus \sigma$	123	132	213	231	312	321	-
1234							1
1432							α
2143							$\frac{3}{8}$
1243							38
1324							≈ 0.244
1342							pprox 0.19658
2413							pprox 0.10474
α is t	α is the real root of $x^3 - 12x^2 + 156x - 64 \ (\approx 0.42357)$						

Recall:
$$d_{\sigma}(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in S_n(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
1234	0						1
1432		0				0	α
2143		0	0				$\frac{3}{8}$
1243	0	0					38
1324	0	0	0				pprox 0.244
1342	0	0		0			pprox 0.19658
2413		0	0	0	0		pprox 0.10474
α is t	α is the real root of $x^3 - 12x^2 + 156x - 64$ (≈ 0.42357)						

Recall:
$$d_{\sigma}(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in S_n(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
1234	0	1	1	1	1	1	1
1432		0				0	α
2143		0	0				$\frac{3}{8}$
1243	0	0					38
1324	0	0	0				≈ 0.244
1342	0	0		0			pprox 0.19658
2413		0	0	0	0		pprox 0.10474
α is the real root of $x^3 - 12x^2 + 156x - 64$ (≈ 0.42357)							

Recall:
$$d_{\sigma}(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in S_n(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
1234	0	1	1	1	1	1	1
1432		0		α	α	0	α
2143		0	0	3 8 3	38		$\frac{3}{8}$
1243	0	0		<u>3</u> 8	38		38
1324	0	0	0	β	β		pprox 0.244 (eta)
1342	0	0		0			pprox 0.19658
2413		0	0	0	0		pprox 0.10474
α is the real root of $x^3 - 12x^2 + 156x - 64$ (≈ 0.42357)							

Recall:
$$d_{\sigma}(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in S_n(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
1234	0	1	1	1	1	1	1
1432		0		α	α	0	α
2143	$\frac{3}{8}$	0	0	3 8 3 8	$\frac{3}{8}$		$\frac{3}{8}$
1243	0	0	38	<u>3</u> 8	3 8 3 8		$\frac{3}{8}$
1324	0	0	0	β	β		pprox 0.244 (eta)
1342	0	0		0			pprox 0.19658
2413		0	0	0	0		pprox 0.10474
α is t	α is the real root of $x^3 - 12x^2 + 156x - 64$ (≈ 0.42357)						

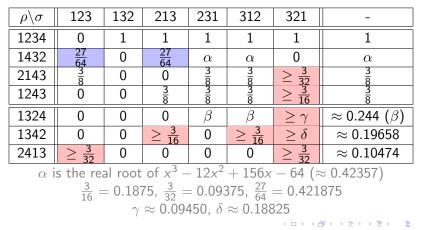
Recall:
$$d_{\sigma}(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in S_n(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$$

$\rho \backslash \sigma$	123	132	213	231	312	321	-
1234	0	1	1	1	1	1	1
1432		0		α	α	0	α
2143	$\frac{3}{8}$	0	0	$\frac{3}{8}$	$\frac{3}{8}$		$\frac{3}{8}$
1243	0	0	$\frac{3}{8}$	3 8 3 8	3 8 3 8		38
1324	0	0	0	β	β		pprox 0.244 (eta)
1342	0	0		0			pprox 0.19658
2413		0	0	0	0		pprox 0.10474
α is the real root of $x^3 - 12x^2 + 156x - 64 \ (\approx 0.42357)$							

Packing in Alternating Permutations

Packing patterns of length 4

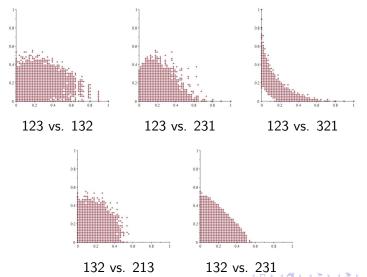
Recall:
$$d_{\sigma}(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in S_n(\sigma)} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$$



Packing with Classical Restrictions

Packing in Alternating Permutations

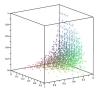
Joint Distributions

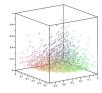


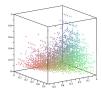
Packing in Alternating Permutations

22/36

More Joint Distributions



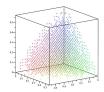




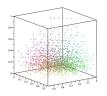
123, 312, 321

132, 213, 321

213, 231, 321



132, 213, 231



231, 312, 321

Alternating Permutations

 A_n is the set of permutations of length n avoiding 123 and 321 consecutively.

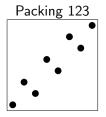
1324	1423	2314	2413	3412
4231	4132	3241	3142	2143

Goal: Find
$$d_A(\rho) = \lim_{n \to \infty} \frac{\max_{\pi \in A_n} \nu(\rho, \pi)}{\binom{n}{|\rho|}}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Packing in Alternating Permutations

Alternating packing densities



- $1 \oplus 21 \oplus \cdots \oplus 21 (\oplus 1)$
- Implies $d_A(123) = 1$.

• Use same ratios for "alternating layers" as 132-optimizer in S_n .

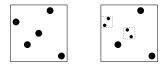
-

• Implies
$$d_A(132) = 2\sqrt{3} - 3.$$

Proposition

For all $\rho \in S_k$, $d(\rho) = d_A(\rho)$.

Fix τ_n such that $\lim_{n \to \infty} \frac{\nu(\rho, \tau_n)}{\binom{n}{k}} = d(\rho)$ and let $m \ge 1$.

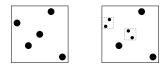


Proposition

For all $\rho \in S_k$, $d(\rho) = d_A(\rho)$.

Fix
$$au_n$$
 such that $\lim_{n \to \infty} rac{
u(
ho, au_n)}{\binom{n}{k}} = d(
ho)$ and let $m \ge 1$.

Let σ_n be obtained by inflating each point of τ_n with an alternating permutation of length *m* or m + 1.



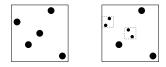
$$\nu(\rho, \tau_n) \cdot m^k \leq \nu(\rho, \sigma_n)$$

• • • • • • •

Proposition

For all $\rho \in S_k$, $d(\rho) = d_A(\rho)$.

Fix
$$au_n$$
 such that $\lim_{n \to \infty} rac{
u(
ho, au_n)}{\binom{n}{k}} = d(
ho)$ and let $m \geq 1$.

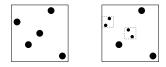


$$\lim_{n \to \infty} \frac{\nu(\rho, \tau_n) \cdot m^k \binom{n}{k}}{\binom{n}{k}} \leq \lim_{n \to \infty} \nu(\rho, \sigma_n)$$

Proposition

For all $\rho \in S_k$, $d(\rho) = d_A(\rho)$.

Fix
$$au_n$$
 such that $\lim_{n \to \infty} rac{
u(
ho, au_n)}{\binom{n}{k}} = d(
ho)$ and let $m \geq 1$.

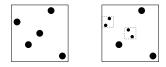


$$\lim_{n \to \infty} \frac{\nu(\rho, \tau_n) \cdot m^k \binom{n}{k}}{\binom{n}{k} \binom{mn}{k}} \leq \lim_{n \to \infty} \frac{\nu(\rho, \sigma_n)}{\binom{mn}{k} \frac{m}{k}}$$

Proposition

For all $\rho \in S_k$, $d(\rho) = d_A(\rho)$.

Fix
$$au_n$$
 such that $\lim_{n \to \infty} rac{
u(
ho, au_n)}{\binom{n}{k}} = d(
ho)$ and let $m \geq 1$.



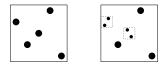
$$\lim_{n \to \infty} \frac{d(\rho) \cdot m^k \binom{n}{k}}{\binom{mn}{k}} \leq \lim_{n \to \infty} \frac{\nu(\rho, \sigma_n)}{\binom{mn}{k}}$$

Proposition

For all $\rho \in S_k$, $d(\rho) = d_A(\rho)$.

Fix
$$au_n$$
 such that $\lim_{n \to \infty} rac{
u(
ho, au_n)}{\binom{n}{k}} = d(
ho)$ and let $m \ge 1$.

Let σ_n be obtained by inflating each point of τ_n with an alternating permutation of length *m* or m + 1.



$$d(\rho) \leq \lim_{n \to \infty} \frac{\nu(\rho, \sigma_n)}{\binom{mn}{k}}$$

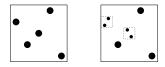
• • = • • =

Proposition

For all $\rho \in S_k$, $d(\rho) = d_A(\rho)$.

Fix
$$au_n$$
 such that $\lim_{n \to \infty} rac{
u(
ho, au_n)}{\binom{n}{k}} = d(
ho)$ and let $m \geq 1$.

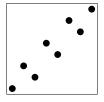
Let σ_n be obtained by inflating each point of τ_n with an alternating permutation of length *m* or m + 1.



$$d(\rho) \leq \lim_{n \to \infty} \frac{\nu(\rho, \sigma_n)}{\binom{mn}{k}} \leq d(\rho)$$

∃ ► < ∃ ►</p>

< 1 →



- $1 \oplus 21 \oplus \cdots \oplus 21 (\oplus 1)$
- Implies $d_A(123) = 1$.

(ⁿ₃) subsequences of length 3.
 ≈ c ⋅ (ⁿ₂) are not 123 patterns.

• • = • • =

Counting Sequences

Let $a_{123}(n)$ be the number of copies of 123 in $1 \oplus 21 \oplus \cdots \oplus 21 (\oplus 1)$.

$$a_{123}(n) = \begin{cases} 2(\frac{n}{2} - 1) + 8(\frac{n}{2} - 1) \\ 4(\frac{n-1}{2}) + 8(\frac{n-1}{3}) \\ n \text{ odd} \end{cases} n \text{ odd}$$

(日)

Counting Sequences

Let $a_{123}(n)$ be the number of copies of 123 in $1 \oplus 21 \oplus \cdots \oplus 21 (\oplus 1)$.

$$a_{123}(n) = \begin{cases} 2(\frac{n}{2}-1) + 8(\frac{n}{2}-1) + 8(\frac{n}{2}-1) \\ 4(\frac{n-1}{2}) + 8(\frac{n-1}{3}) & n \text{ odd} \end{cases}$$

 $2, 4, 12, 20, 38, 56, 88, 120, 170, 220, 292, 364, 462, 560, 688, 816, 978, \ldots$

< 同 > < 三 > < 三

Counting Sequences

Let $a_{123}(n)$ be the number of copies of 123 in $1 \oplus 21 \oplus \cdots \oplus 21 (\oplus 1)$.

$$a_{123}(n) = \begin{cases} 2(\frac{n}{2}-1) + 8(\frac{n}{2}-1) + 8(\frac{n}{2}-1) & n \text{ even} \\ 4(\frac{n-1}{2}) + 8(\frac{n-1}{3}) & n \text{ odd} \end{cases}$$

 $2, 4, 12, 20, 38, 56, 88, 120, 170, 220, 292, 364, 462, 560, 688, 816, 978, \ldots$

A099956	Atomic numbers of the alkaline earth metals.
4, 12, 20,	38, 56, 88 (list; graph; refs; listen; history; text; internal format)
OFFSET	1,1
LINKS	Table of n, a(n) for n=16.
EXAMPLE	12 is the atomic number of magnesium.
CROSSREFS	Cf. <u>A099955</u> , alkali metals; <u>A101648</u> , metalloids; <u>A101647</u> , nonmetals (except halogens and noble gases); <u>A097478</u> , halogens; <u>A018227</u> , noble gases; <u>A101649</u> , poor metals.
	Sequence in context: <u>A057317</u> <u>A008068 A008183</u> * <u>A301066</u> <u>A008092 A316299</u>
	Adjacent sequences: <u>A099953</u>
KEYWORD	nonn,fini,full
AUTHOR	Parthasarathy Nambi, Nov 12 2004
STATUS	approved

+20

Counting Sequences

Let $a_{123}(n)$ be the number of copies of 123 in $1 \oplus 21 \oplus \cdots \oplus 21 (\oplus 1)$.

$$a_{123}(n) = \begin{cases} 2(\frac{n}{2}-1) + 8(\frac{n}{2}-1) + 8(\frac{n}{2}-1) \\ 4(\frac{n-1}{2}) + 8(\frac{n-1}{3}) & n \text{ odd} \end{cases}$$

 $2, 4, 12, 20, 38, 56, 88, 120, 170, 220, 292, 364, 462, 560, 688, 816, 978, \ldots$

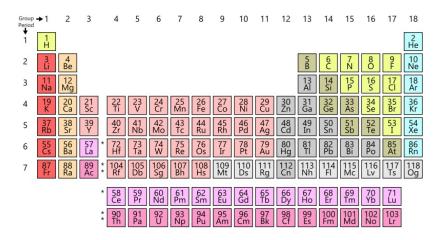
<u>A168380</u>	Row sums of <u>A168281</u> .
1340, 1540, 7788, 8436,	20, 38, 56, 88, 120, 170, 220, 292, 364, 462, 560, 688 , 816, 978, 1140, 1782, 2024, 2312, 2600, 2938, 3276, 3668, 4060, 4510, 4960, 5472, 5984, 6562, 7140, 9158, 9880, 10680, 11480, 12362, 13244, 14212, 15180, 16238, 17296, 18448, 19600,
-	0 (<u>list; graph; refs; listen; history; text; internal format</u>)
OFFSET	1,1
COMMENTS	The atomic numbers of the augmented alkaline earth group in Charles Janet's spiral periodic table are θ and the first eight terms of this sequence (see Stewart reference) <u>Alonso del Arte</u> , May 13 2011
LINKS	<pre>Vincenzo Librandi, <u>Table of n, a(n) for n = 110000</u> Stewart, Philip, <u>Charles Janet: unrecognized genius of the Periodic System</u>. Foundations of Chemistry (2010), p. 9.</pre>
2021 52 1	<pre>Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).</pre>
FORMULA	$\begin{split} a(n) &= 2^*\underline{A005993}(n-1), \\ a(n) &= (n+1)^*(3 + 2^*n^2 + 4^*n - 3^*(-1)^n)/12, \\ a(n+1) - a(n) &= \underline{A093907}(n) = \underline{A137583}(n+1), \\ a(2n+1) &= \underline{A03597}(n+1) \\ a(2n) &= \underline{A093797}(n+1) \\ a(2n) &= A0937$

Packing patterns in restricted permutations

Packing with Classical Restrictions

Packing in Alternating Permutations

Alkaline Earth Metals (Group 2)



(日)

A little chemistry...

• Quantum numbers describe trajectories of electrons.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A little chemistry...

- Quantum numbers describe trajectories of electrons.
 - n (principal number) determines the electron shell

 $n = 1, 2, 3, \dots$

★ Ξ → ★ Ξ

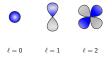
A little chemistry...

- Quantum numbers describe trajectories of electrons.
 - n (principal number) determines the electron shell

 $n = 1, 2, 3, \ldots$

• ℓ (orbital angular momentum) determines the shape of the orbital

 $0 \le \ell \le n-1$



• • = • • = •

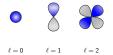
A little chemistry...

- Quantum numbers describe trajectories of electrons.
 - n (principal number) determines the electron shell

 $n = 1, 2, 3, \ldots$

 $\blacktriangleright~\ell$ (orbital angular momentum) determines the shape of the orbital

 $0 \le \ell \le n-1$



► *m* (magnetic number) determines number of orbitals and orientation within shell

$$-\ell \leq m \leq \ell$$

• • = • • = •

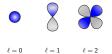
A little chemistry...

- Quantum numbers describe trajectories of electrons.
 - n (principal number) determines the electron shell

 $n = 1, 2, 3, \ldots$

 $\blacktriangleright~\ell$ (orbital angular momentum) determines the shape of the orbital

 $0 \le \ell \le n-1$



m (magnetic number) determines number of orbitals and orientation within shell

$$-\ell \leq m \leq \ell$$

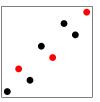
• Two possible spin numbers for each choice of (n, ℓ, m)

イロト イポト イヨト イヨト ニヨー

Notation for copies of 123 in $1 \oplus 21 \oplus \cdots \oplus 21 (\oplus 1)$

Observation: copies of 123 come in pairs.

 $1\oplus 21\oplus \cdots\oplus 21\oplus 1$

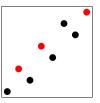


Given xyz embedding of 123 where y is even, x(y+1)z is also a 123. We will assign a tuple of integers to each such pair.

Notation for copies of 123 in $1 \oplus 21 \oplus \cdots \oplus 21 (\oplus 1)$

Observation: copies of 123 come in pairs.

 $1\oplus 21\oplus \cdots\oplus 21\oplus 1$



Given xyz embedding of 123 where y is even, x(y+1)z is also a 123. We will assign a tuple of integers to each such pair.

Copies of 123 mapped to tuples

xyz corresponds to the tuple (n, ℓ, m) where...

- |m| is the layer where x is found (count layers starting with 0).
- *m* is negative if we use the smaller entry in the layer as *x*, positive if we use the larger entry.
- ℓ is the layer of size 2 where y is found (count layers starting with 0).
- $n + \ell + 3 = z$.

A B M A B M

Copies of 123 mapped to tuples

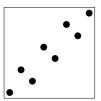
xyz corresponds to the tuple (n, ℓ, m) where...

- |m| is the layer where x is found (count layers starting with 0).
- *m* is negative if we use the smaller entry in the layer as *x*, positive if we use the larger entry.
- ℓ is the layer of size 2 where y is found (count layers starting with 0).
- $n + \ell + 3 = z$.

Example: $1 \oplus 21 \oplus 21 \oplus 21 = 1$ 32 54 76

copies	tuple	copies	tuple	copies	tuple
124,134	(1, <mark>0,0</mark>)	146,156	(2,1, <mark>0</mark>)	147,157	(3,1, <mark>0</mark>)
125,135	(2, <mark>0,0</mark>)	246,256	(2,1,-1)	247,257	(3,1,-1)
126,136	(3, <mark>0,0</mark>)	346,356	(2,1,1)	347,357	(3,1,1)
127,137	(4, <mark>0,0</mark>)		. ,		

These tuples are valid quantum numbers



Layer 0 contains 1. Layer L contains 2L and 2L + 1. (For even length, the last layer has one point.)

Construction: *xyz* is a 123 occurrence with...

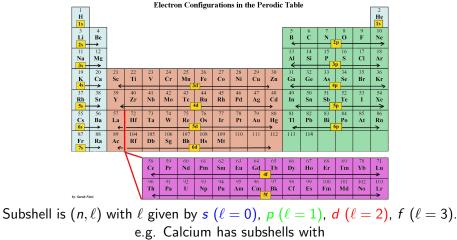
• x in layer |m|, y in layer $\ell + 1$, and z in layer $\ell + 2$ or higher.

Consequences:

- $z \ge 2(\ell+2)$ and $n = z \ell 3$ imply $n \ge \ell + 1 \ge 1$ and so $\ell \le n 1$.
- x in an earlier layer than y implies $|m| + 1 \le \ell + 1$ and so $|m| \le \ell$.
- A new ℓ value is introduced for each even permutation length.

Packing in Alternating Permutations

Periodic Table, Take 2



 $(n, \ell) \in \{(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (4, 0)\}.$

Packing patterns in restricted permutations

Lara Pudwell 34 / 36

123s to electrons

e.g. Calcium has subshells with

 $(n, \ell) \in \{(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (4, 0)\}.$

Subshell: Know *n* and ℓ . Need all tuples (n, ℓ, m) where $-\ell \leq m \leq \ell$

.

123s to electrons

e.g. Calcium has subshells with

 $(n, \ell) \in \{(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (4, 0)\}.$

Subshell: Know *n* and ℓ . Need all tuples (n, ℓ, m) where $-\ell \leq m \leq \ell$

We saw the copies of 123 in $1 \oplus 21 \oplus 21 \oplus 21 = 1325476$ are:

copies	tuple	copies	tuple	copies	tuple
124,134	(1,0,0)	146,156	(2,1,0)	147,157	(3,1,0)
125,135	(2,0,0)	246,256	(2,1,-1)	247,257	(3,1,-1)
126,136	(3,0,0)	346,356	(2,1,1)	347,357	(3,1,1)
127,137	(4,0,0)				

• • = • • =

Future Directions

- Determine $d_{\sigma}(\rho)$ for other patterns.
- Joint distributions of patterns.
- Bijections between pattern embeddings and other combinatorial objects.

∃ → ∢

References

- Michael H. Albert, M. D. Atkinson, C. C. Handley, D. A. Holton, and W. Stromquist, On packing densities of permutations, *Electronic Journal of Combinatorics* **9** (2002), R5.
- Reid Barton, Packing Densities of Patterns, *Electronic Journal of Combinatorics* 11 (2004), R80.
- Cathleen Battiste Presutti and Walter Stromquist, Packing rates of measures and a conjecture for the packing density of 2413, in Permutation Patterns (2010), S. Linton, N. Ruskuc, and V. Vatter, Eds., vol. 376 of London Mathematical Society Lecture Note Series, Cambridge University Press, pp. 287–316.
- Alkes Price, Packing densities of layered patterns, Ph.D. thesis, University of Pennsylvania, 1997.
- Lara Pudwell, From permutation patterns to the periodic table, *Notices of the American Mathematical Society* **67.7** (2020), 994–1001.
- The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org, 2020.

Thanks for listening!

slides at faculty.valpo.edu/lpudwell email: Lara.Pudwell@valpo.edu

• • = • • = •