	Containing/Chemistry 00000000	And More 000

Patterns in Permutations

MathPath 2022 plenary talk July 22, 2022

Permutations ●000		Containing/Chemistry 0000000	
Definition			

A permutation of length *n* is an ordered list of the numbers 1, 2, ..., n. S_n is the set of all permutations of length *n*.

$$\mathcal{S}_1 = \{1\}$$

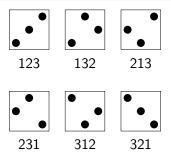
$$\mathcal{S}_2=\{12,21\}$$

$$S_3 = \{123, 132, 213, 231, 312, 321\}$$

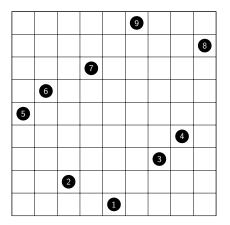
Permutations ●000		Containing/Chemistry 00000000	
Definition			

A permutation of length *n* is an ordered list of the numbers 1, 2, ..., n. S_n is the set of all permutations of length *n*.

$$\mathcal{S}_1 = \{1\}$$


$$\mathcal{S}_2=\{12,21\}$$

$$S_3 = \{123, 132, 213, 231, 312, 321\}$$

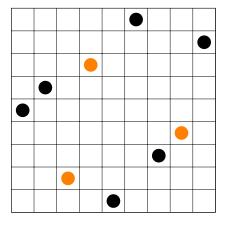

$$|\mathcal{S}_n| = n \cdot (n-1) \cdot (n-2) \cdots 1 = n!$$

Permutations 0●00	Counting 00000000000	Avoiding/Computer Science	Containing/Chemistry	And More 000
Note				

Permutation $\pi = \pi_1 \pi_2 \cdots \pi_n$ is often visualized by plotting the points (i, π_i) in the Cartesian plane.

Avoiding/Computer Science

 $\pi=\mathsf{562719348}$


<ロ> <同> <同> < 同> < 同> < 三> < 三> 三三

Permutations		Containing/Chemistry 00000000	

		lacksquare		

・ロト・西ト・ヨト・ヨー うらぐ

Permutations 000●		Containing/Chemistry 0000000	

・ロト・4回ト・4回ト・4回ト・4回ト・4回ト

Permutations	Counting 0000000000				Avoidi 0000	mpute	r Scier	ıce	Containing/Chemistry 0000000					And More
						 		1						
					lacksquare									
												-		

562719348 contains the pattern 132

Permutations 000●	Counting 0000000000				Avoid 0000		mpute	r Scier	nce	Containing/Chemistry 00000000				And More
]					
									1					
									1					

562719348 contains the pattern 1234

Permutations	Counting 0000000000				Avoidi 0000		mpute	r Scier	ıce	ntaining 000000	g/Chem	istry	And More 000
					_				1				
									1				
	-												
						-			1				

562719348 avoids the pattern 4321

Counting •0000000000	Containing/Chemistry	

Big question

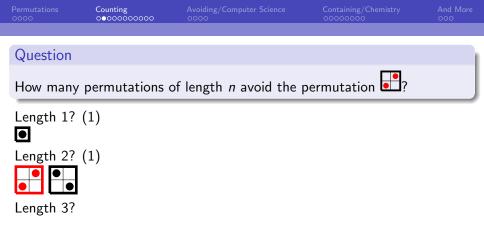
How many permutations of length *n* contain the permutation π ?

Or, alternatively...

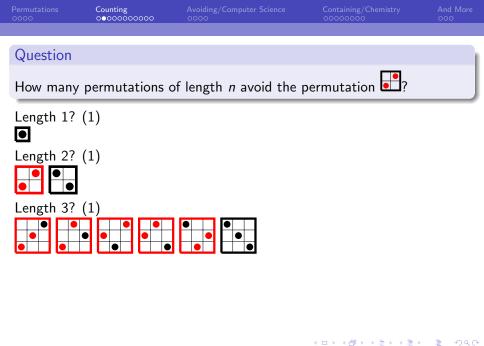
Big question

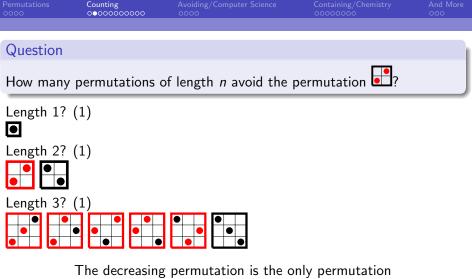
How many permutations of length n avoid the permutation π ?

(depends on what π is!)

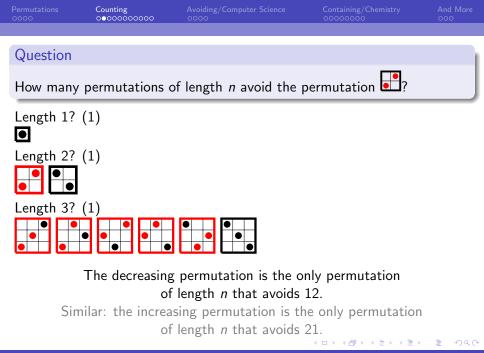

Permutations 0000	Counting ○●○○○○○○○○○	Avoiding/Computer Science	Containing/Chemistry 00000000	And More
Question				
How many	/ permutations	of length <i>n</i> avoid the _l	permutation ! ?	
Length 1?				

900


◆□ → ◆□ → ◆ □ → ◆ □ → ● □ □


	Counting ○●○○○○○○○○○		Containing/Chemistry 0000000	And More 000
Question				
How many	permutations of	of length <i>n</i> avoid the _l	permutation P ?	
Length 1?	(1)			
Length 2?				

・ロト・4回ト・4回ト・4回ト・4回ト・4回ト


イロト イ団ト イヨト イヨト

of length *n* that avoids 12.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Permutations 0000	Counting 0000000000	Avoiding/Computer Science	Containing/Chemistry 00000000	And More 000
Question				
How many	permutations of	of length <i>n</i> avoid the _l	permutation ? ?	

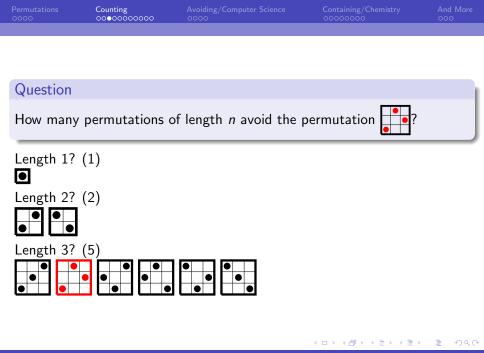
Length 1?

Permutations 0000	Counting 00●00000000	Avoiding/Computer Science	Containing/Chemistry 00000000	And More
Question				
How many	permutations of	of length <i>n</i> avoid the p	permutation ? ?	

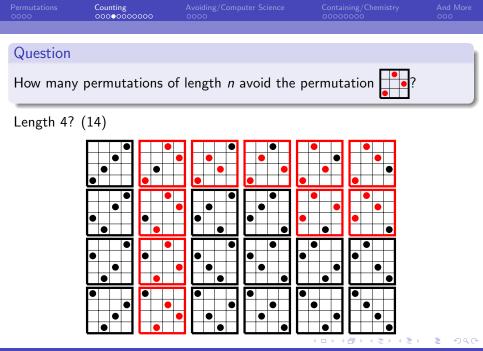
Length 1? (1)

Length 2?

	Counting 00●00000000		Containing/Chemistry 00000000	
Question				
How many	/ permutations (of length <i>n</i> avoid the _l	permutation .	
Length 1?	(1)			

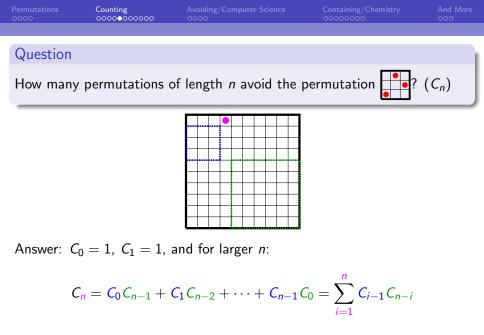


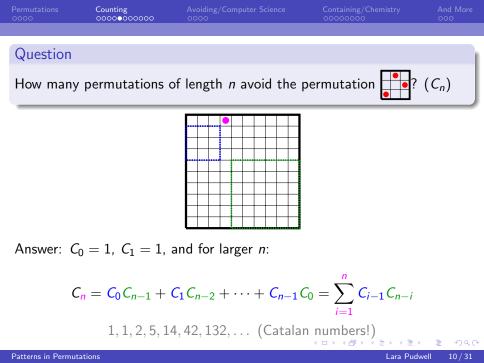
Length 3?


-≣->

・ロト ・回ト ・ ヨト・

	Counting 000●0000000		Containing/Chemistry 0000000	
Question				
How many	/ permutations (of length <i>n</i> avoid the _l	permutation .??	
Length 4?				


・ロト・4回ト・4回ト・4回ト・4回ト・4回ト


	Counting 0000000000	Avoiding/Computer Science 0000	Containing/Chemistry 00000000	And More 000
Question				
How many	permutations of	of length <i>n</i> avoid the p	permutation ?	(<i>C</i> _n)

■ _ _ _ へ (~

▲□▶ ▲圖▶ ▲屋▶ ▲屋▶

< ロ > < 同 > < 三 > < 三 >

Hints

< ロ > < 同 > < 三 > < 三 >

The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

⁰¹³⁶²⁷ THE ON-LINE ENCYCLOPEDIA SOF 13 23 JS 12 OF INTEGER SEQUENCES ®

founded in 1964 by N. J. A. Sloane

catalan	Search

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: catalan

Displaying 1-10 of 3978 results found. page 1 2 3 4 5 6 7 8 9 10 ... 398 Sort: relevance | references | number | modified | created Format: long | short | data A000108 Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!). 3438 (Formerly M1459 N0577) 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 18367353072152, 69533550916004, 263747951750360, 1002242216651368, 3814986502092304 (list; graph; refs; listen; history; text; internal format) OFFSET 0.3 COMMENTS Also called Segner numbers. The solution to Schröder's first problem. A very large number of combinatorial interpretations are known - see references, esp. Stanley, Enumerative Combinatorics, Volume 2. This is probably the longest entry in the OEIS, and rightly so.

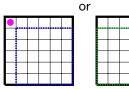
	Counting 000000●0000	Containing/Chemistry 0000000	
Question			

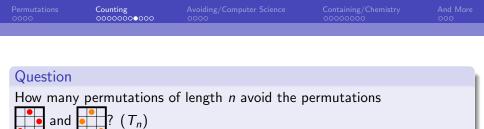
How many permutations of length n avoid the permutations

Patterns in Permutations

Permutations 0000	Counting 000000●0000	Avoiding/Computer Science	Containing/Chemistry 0000000	And More 000
Question				
How many	permutations c	of length <i>n</i> avoid the p	permutations	

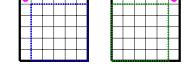
Ξ.


イロト イヨト イヨト イヨト


Counting 000000000000	Containing/Chemistry 00000000	And More 000

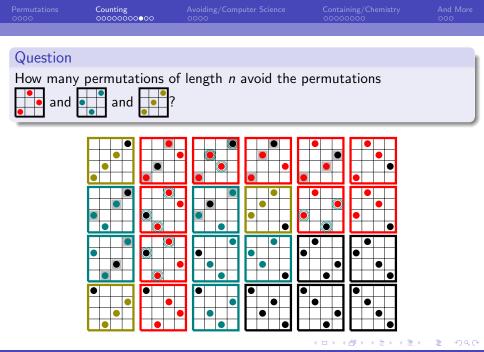
Question

How many permutations of length n avoid the permutations



< ロ > < 同 > < 回 > < 回 > < 回 > <

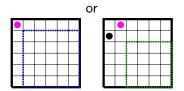
 $T_n=2^{n-1}.$


Answer: $T_1 = 1$ and $T_n = T_{n-1} + T_{n-1} = 2T_{n-1}$, so...

or

	Counting 00000000●00		Containing/Chemistry 00000000	
Question				
How many	/ permutations (of length <i>n</i> avoid the _l	permutations	
and	• and •	?		

・ロト・4回ト・4回ト・4回ト・4回ト・4回ト


Permutations 0000	Counting 0000000000000	Avoiding/Computer Science	Containing/Chemistry 0000000	And More 000
Question				
How many	permutations of	of length <i>n</i> avoid the _l	permutations	
and	and	(F_n)		

・ロト・4回ト・4回ト・4回ト・4回ト・4回ト

Permutations 0000	Counting 0000000000000	Avoiding/Computer Science	Containing/Chemistry 0000000	And More 000			
Question							
How many permutations of length <i>n</i> avoid the permutations							
and \bullet and \bullet ? (F_n)							

Answer: $F_0 = F_1 = 1$ and for larger *n*,

$$F_n = F_{n-1} + F_{n-2}.$$


1, 1, 2, 3, 5, 8, 13, ... (Fibonacci numbers!)

Counting 0000000000	Containing/Chemistry 00000000	And More 000

How many permutations of length n avoid the pattern(s)...

- 12? 1
- 132? (Catalan)
- 132 and 231? 2^{n−1}
- 132 and 213 and 123? (Fibonacci)
- 1234? 1, 1, 2, 6, 23, 103, 513, 2761, ... (Gessel, 1990)
- 1342? 1, 1, 2, 6, 23, 103, 512, 2740, ... (Bóna, 1997)
- 1324? 1, 1, 2, 6, 23, 103, 513, 2762, ... (open question!)

Why avoid patterns?

▶ < E >

Image: A mathematical states and a mathem

Permutations 0000	Counting 00000000000	Avoiding/Computer Science	Containing/Chemistry 0000000	And More 000
Stack Op	erations			
• push	– first element	of input to top of stac	k	
 pop - 	- top element of	stack to end of output	ut	

◆ロ ▶ ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q @ ●

		Avoiding/Computer Science	Containing/Chemistry 00000000	
Stack Op	erations			
 push 	– first element	of input to top of stac	:k	
• pop –	top element of	f stack to end of outp	ut	
Input: 215	34 Input: 153	4		

Output: Output:

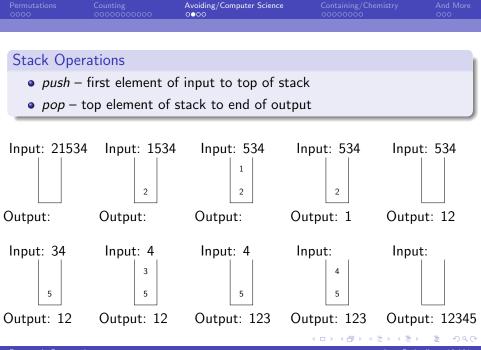
· 2 ·

< • • • **6**

		Avoiding/Computer Science	Containing/Chemistry 00000000	And More 000
Stack Op	erations			
o push	– first element	of input to top of stac	k	
• pop -	- top element o	f stack to end of outp	ut	
Input: 215	34 Input: 153	4 Input: 534		
		1		

Output: Output: Output:

< A

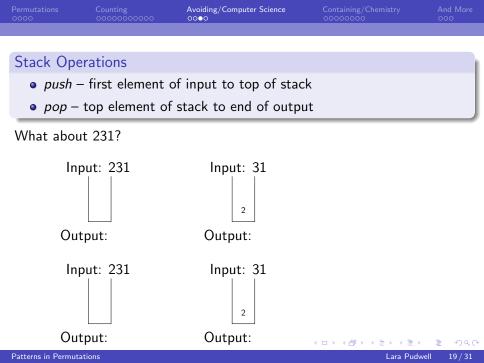

Permutations 0000	Counting 00000000000	Avoiding/Computer Science	ce Containing/Chemistry 00000000	And More 000
Stack Ope	rations			
 push – 	first element o	f input to top of	stack	
• pop –	top element of	stack to end of o	output	J
Input: 2153	4 Input: 1534	Input: 534	Input: 534	
	2	1	2	
Output:	Output:	Output:	Output: 1	

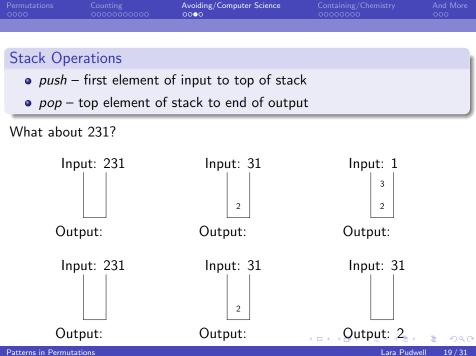
・ロト・4回ト・4回ト・4回ト・4回ト・4回ト

		0000		nistry And More 000
Stack Operat	tions			
• <i>push</i> – fi	rst element of	input to top of s	tack	
• <i>pop</i> – top	p element of st	ack to end of ou	itput	
Input: 21534	Input: 1534	Input: 534	Input: 534	Input: 534
Output:	Output:	Output:	Output: 1	Output: 12
Input: 34				
Output: 12			4 D > 4 A > 4 3	

Permutations 0000	Counting 0000000000	Avoiding/Computer Scienc	e Containing/Ch 00000000	emistry And More 000
Stack Opera	ations			
 push – f 	irst element of	input to top of	stack	
• <i>pop</i> – to	op element of s	tack to end of o	utput	
Input: 21534	Input: 1534	Input: 534	Input: 534	Input: 534
	2	1 2	2	
Output:	Output:	Output:	Output: 1	Output: 12
Input: 34	Input: 4			
			< D > < B > <	■ ▶ ▲ ■ ▶ ■ ● ��や

		Avoiding/Computer Science	e Containing/Ch 00000000	emistry And More 000
Stack Opera	tions			
● <i>push</i> – f	irst element of	input to top of s	stack	
• <i>pop</i> – to	p element of s	tack to end of o	utput	
Input: 21534	Input: 1534	Input: 534	Input: 534	Input: 534
Output:	Output:	Output:	Output: 1	Output: 12
Input: 34	Input: 4 3 5	Input: 4		
Output: 12	Output: 12	Output: 123		
			< d > <	토▶《토▶ 토 <u> </u>

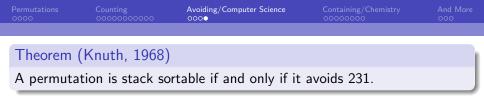


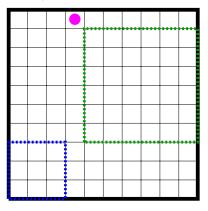

Patterns in Permutations

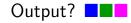
		Avoiding/Computer Science	Containing/Chemistry 0000000	
Stack Ope	erations			
 push – first element of input to top of stack 				
• pop –	top element of	f stack to end of outpu	ut	

21534 can be sorted after one pass through a stack.

Can you find a permutation that can't be sorted after one pass through a stack?



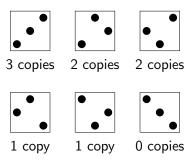

	Avoiding/Computer Science	Containing/Chemistry 00000000	


Theorem (Knuth, 1968)

A permutation is stack sortable if and only if it avoids 231.

Proof sketch: (by induction)

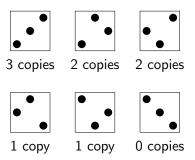
• • = • • = •


How many permutations of S_3 contain 12?

< ロ > < 回 > < 回 > < 回 > < 回 >

How many permutations of S_3 contain 12? How many times?

< ロ > < 回 > < 回 > < 回 > < 回 >


How many permutations of S_3 contain 12? How many times?

-

→ < Ξ → <</p>

How many permutations of S_3 contain 12? How many times?

The maximum number of copies of 12 in a member of S_3 is 3.

★ 3 → < 3</p>

Alternating Permutations

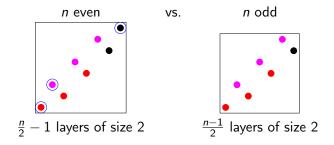
A permutation $\pi = \pi_1 \cdots \pi_n$ is alternating if $\pi_1 < \pi_2 > \pi_3 < \pi_4 \cdots$. Examples:

1324 1423 2314 2413 3412

Interesting(?) Counting Question

What is the largest possible number of copies of 123 in π if π is alternating?

• • = • • = •


Permutations 0000	Counting 00000000000	Avoiding/Computer Science	Containing/Chemistry 00●00000	And More
Packing	123			
		•		

1 32 54 76 \cdots is the alternating permutation of length *n* with the most copies of 123.

	Containing/Chemistry	And More

Packing 123

Copies of 123 can use: three layers of size 2 two layers of size 2 one layer of size 2

three layers of size 2 two layers of size 2

	Containing/Chemistry	And More 000

Counting Sequences

Let a(n) be the number of copies of 123 in 1 32 54 76 \cdots .

$$a(n) = \begin{cases} 2(\frac{n}{2} - 1) + 8(\frac{n}{2} - 1) + 8(\frac{n}{2} - 1) \\ 4(\frac{n-1}{2}) + 8(\frac{n-1}{3}) & n \text{ odd} \end{cases}$$

 $2, 4, 12, 20, 38, 56, 88, 120, 170, 220, 292, 364, 462, 560, 688, 816, 978, \ldots$

	Containing/Chemistry	And More 000

Counting Sequences

Let a(n) be the number of copies of 123 in 1 32 54 76 \cdots .

$$a(n) = \begin{cases} 2(\frac{n}{2}-1) + 8(\frac{n}{2}-1) + 8(\frac{n}{2}-1) \\ 4(\frac{n-1}{2}) + 8(\frac{n-1}{2}) \\ n \text{ odd} \end{cases}$$

 $2, 4, 12, 20, 38, 56, 88, 120, 170, 220, 292, 364, 462, 560, 688, 816, 978, \ldots$

A099956	Atomic numbers of the alkaline earth metals.
4, 12, 20,	38, 56, 88 (list; graph; refs; listen; history; text; internal format)
OFFSET	1,1
LINKS	Table of n, a(n) for n=16.
EXAMPLE	12 is the atomic number of magnesium.
CROSSREFS	Cf. <u>A099955</u> , alkali metals; <u>A101648</u> , metalloids; <u>A101647</u> , nonmetals (except halogens and noble gases); <u>A097478</u> , halogens; <u>A018227</u> , noble gases; <u>A101649</u> , poor metals.
	Sequence in context: <u>A057317</u> <u>A008068</u> <u>A008183</u> * <u>A301066</u> <u>A008092</u> <u>A316299</u> Adjacent sequences: <u>A099953</u> <u>A099954</u> <u>A099955</u> * <u>A099957</u> <u>A099958</u> <u>A099959</u>
KEYWORD	nonn,fini,full
AUTHOR	Parthasarathy Nambi, Nov 12 2004
STATUS	approved

Permutations 0000	Counting 00000000000	Avoiding/Computer Science	Containing/Chemistry 00000●00	And More
Counting	Sequences			
Let $a(n)$ be	e the number c	of copies of 123 in 1 32	2 54 76 · · · .	
	$a(n) = \int 2(n) dn$	$(\frac{n}{2} - 1) + 8(\frac{n}{2} - 1) + 8(\frac{n}{2} + 8(\frac{n}{2} + 1))$	$\binom{n}{2} \binom{-1}{3}$ <i>n</i> even	
	$d(n) = \int 4($	$\left(\frac{n-1}{2}\right) + 8\left(\frac{n-1}{2}\right)$	<i>n</i> odd	
2, 4, 12, 2	0, 38, 56, 88, 12	20, 170, 220, 292, 364, 4	62,560,688,816,9	78,
<u>A168380</u>	Row sums of A16828	L.		+20 14
1340, 1540 7788, 8436 20850, 221 OFFSET	ð, 1782, 2024, 2312, 2 5, 9158, 9880, 10680, 100 (<u>list; graph; refs; listen; h</u> 1,1		, 4960, 5472, 5984, 6562, 714 , 16238, 17296, 18448, 19600,	0,
COMMENTS	periodic table	rs of the augmented alkaline earth are 0 and the first eight terms o Alonso del Arte, May 13 2011		
LINKS	Stewart, Philip, Foundations of	. <u>Table of n, a(n) for n = 1100</u> <u>Charles Janet: unrecognized geniu</u> Chemistry (2010), p. 9. <u>linear recurrences with constant</u>).	is of the Periodic System.	

FORMULA

$$a(n+1) - a(n) = A093907(n) = A137583(n+1).$$

$$a(2n+1) = A035597(n+1)$$
 $a(2n)=A002492(n)$.

Patterns in Permutations

Permutations 0000	Count 0000	ing 00000000						Containing/Chemistry 000000●0				An OC	d More O		
Alkaline Earth Metals (Group 2)															
Group → 1 Period	2 3	4	5 6	78	9	10	11	12	13	14	15	16	17	18	
1 <mark>1</mark>]													2 He	
2 <mark>3</mark> Li	4 Be								5 B	6 C	7 N	8 0	9 F	10 Ne	
3 11 Na	12 Mg								13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	
4 19 K	20 21 Ca Sc	22 Ti	23 24 V Cr	25 Mn Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	
5 37 Rb	38 Sr Y	40 Zr	41 42 Nb Mo	43 Tc Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe	
6 55 Cs	56 57 Ba La	* 72 Hf	73 74 Ta W	75 Re Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	
7 87 Fr	88 89 Ra Ac	* 104 * Rf	105 106 Db Sg	107 108 Bh Hs	3 109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og	
		* 58 Ce	59 60 Pr Nd	61 62 Pm Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
		* 90 * Th	91 92 Pa U	93 94 Np Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr		
					7	Cini	Dit	C.	23		ind				

・ロト・4回ト・4回ト・4回ト・4回ト・4回ト

A little chemistry...

• Quantum numbers describe trajectories of electrons.

n (principal number) determines the electron shell

$$n = 1, 2, 3, \ldots$$

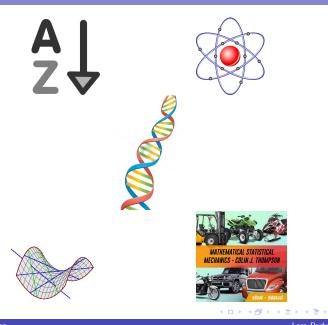
 $\blacktriangleright~\ell$ (orbital angular momentum) determines the shape of the orbital

$$0 \le \ell \le n-1$$

$$\ell=0 \qquad \ell=1 \qquad \ell=2$$

m (magnetic number) determines number of orbitals and orientation within shell

$$-\ell \leq m \leq \ell$$


• Two possible spin numbers for each choice of (n, ℓ, m)

.

Avoiding/Computer Science

Containing/Chemistry

And More ●00

Permutations 0000	Counting 000000000		Avoiding/Com 0000	Containin 0000000	And More 0●0					
	StatisticsDataba	se							Login	
Navigation	All Collections All Maps	All Statistics	Contribute Map	Contribute Statistic	Usage	Contributors	Citations	Interface		
	365 statistics on Permu			e are possibly som	e more	waiting for v	erification			
	2 The number of occurr			permutation						
	4 The major index of a			Sofficiation.						
	7 The number of salian		nutation.							
	8 The number of invers									
St00001	9 The cardinality of the	support of a p	ermutation.							
St00002	0 The rank of the permi	utation.								
St00002	1 The number of desce	nts of a permu	itation.							
St00002	2 The number of fixed p	oints of a perr	mutation.							
St00002	St000023 The number of inner peaks of a permutation.									
St00002	St000028 The number of stack-sorts needed to sort a permutation.									
St00002	St000029 The depth of a permutation.									
St00003	St000030 The sum of the descent differences of a permutations.									
St00003	St000031 The number of cycles in the cycle decomposition of a permutation.									
St00003	3 The number of permu	tations greate	r than or equal t	o the given permut	ation in	(strong) Bru	hat order.			

・ロト・4回ト・4回ト・4回ト・4回ト・4回ト

For further reading...

- Miklos Bóna, Combinatorics of Permutations, Chapman & Hall, 2004.
- Donald Knuth, *The Art of Computer Programming: Volume 1*, Addison Wesley, 1968.
- Lara Pudwell, From permutation patterns to the periodic table, Notices of the American Mathematical Society. **67.7** (2020), 994–1001.
- Lara Pudwell, The hidden and surprising structure of ordered lists, *Math Horizons.* **29.3** (February 2022), 5–7.
- The On-Line Encyclopedia of Integer Sequences at oeis.org.
- FindStat at findstat.org

Thanks for listening!

slides at faculty.valpo.edu/lpudwell email: Lara.Pudwell@valpo.edu