#### Statistics on hypercube orientations



joint work with Nathan Chenette and Manda Riehl (Rose-Hulman Institute of Technology)

AMS Special Session on Experimental and Computer Assisted Mathematics Joint Mathematics Meetings Denver, Colorado January 18, 2020

A B M A B M

# Hypercube Definition

#### Hypercube graph $(Q_n)$

Vertex set: binary words of length nEdge set:  $(u, v) \in E(Q_n)$  if u and v differ in exactly one bit



 $Q_1$ 

 $\bigcirc$ 

# Hypercube Definition

#### Hypercube graph $(Q_n)$

Vertex set: binary words of length nEdge set:  $(u, v) \in E(Q_n)$  if u and v differ in exactly one bit



 $\widehat{\mathcal{Y}}_1$ 

 $\bigcirc$ 

# Hypercube Construction

#### Hypercube graph $(Q_n)$

Alternate construction: take two copies of  $Q_{n-1}$ Connect "corresponding" vertices.



 $\widehat{\mathcal{Y}}_1$ 

 $\bigcirc$ 

# Hypercube Construction

#### Hypercube graph $(Q_n)$

Alternate construction: take two copies of  $Q_{n-1}$ Connect "corresponding" vertices.



# Hypercube Construction $Q_4$



#### Statistics on hypercube orientations

#### Lara Pudwell

э

 $Q_n$  has...

•  $2^n$  vertices

<□> <□> <□> <□> <=> <=> <=> <=> <</p>

 $Q_n$  has...

- 2<sup>n</sup> vertices
- $n \cdot 2^{n-1}$  edges (OEIS A001787)

イロト イ団ト イヨト イヨト

 $Q_n$  has...

- 2<sup>n</sup> vertices
- $n \cdot 2^{n-1}$  edges (OEIS A001787)
- $2^{n-3}(n-1)n$  cycles of size 4 (OEIS A001788)

• • = • • = •

 $Q_n$  has...

- 2<sup>n</sup> vertices
- $n \cdot 2^{n-1}$  edges (OEIS A001787)
- $2^{n-3}(n-1)n$  cycles of size 4 (OEIS A001788)
- $2^{n \cdot 2^{n-1}}$  orientations (OEIS A061301)

< E

< ∃ →

#### $Q_n$ has...

- 2<sup>n</sup> vertices
- $n \cdot 2^{n-1}$  edges (OEIS A001787)
- $2^{n-3}(n-1)n$  cycles of size 4 (OEIS A001788)
- $2^{n \cdot 2^{n-1}}$  orientations (OEIS A061301)
- χ(Q<sub>n</sub>)(-1) acyclic orientations (Stanley, 2006)
   2, 14, 1862, 193270310, ...

#### $Q_n$ has...

- 2<sup>n</sup> vertices
- $n \cdot 2^{n-1}$  edges (OEIS A001787)
- $2^{n-3}(n-1)n$  cycles of size 4 (OEIS A001788)
- $2^{n \cdot 2^{n-1}}$  orientations (OEIS A061301)
- χ(Q<sub>n</sub>)(-1) acyclic orientations (Stanley, 2006)
   2, 14, 1862, 193270310, ...
- Goal: Consider acyclic orientations of  $Q_n$ . Analyze joint distribution of two statistics motivated by theoretical biology.

Vocab:

- *genotype*: genetic makeup of an organism
- *wild type*: genotype of majority of a population represented by 0 · · · 0 vertex
- *mutant*: has one or more gene mutations compared to wild type represented by vertex with 1s
- mutational neighbor: genotypes differing by exactly one mutation



Vocab:

- *genotype*: genetic makeup of an organism
- *wild type*: genotype of majority of a population represented by 0 · · · 0 vertex
- *mutant*: has one or more gene mutations compared to wild type represented by vertex with 1s
- mutational neighbor: genotypes differing by exactly one mutation



Vocab:

- *genotype*: genetic makeup of an organism
- *wild type*: genotype of majority of a population represented by 0 · · · 0 vertex
- *mutant*: has one or more gene mutations compared to wild type represented by vertex with 1s
- mutational neighbor: genotypes differing by exactly one mutation



*Fitness landscapes* are represented by <u>acyclic</u> orientations of a hypercube. Simplifying assumption: Wild type is less fit than any mutant.



# Fitness Landscape Features

Fitness landscapes are represented by acyclic orientations of a hypercube.

#### Important features:

• peaks: vertex where all edges point inward



# Fitness Landscape Features

Fitness landscapes are represented by acyclic orientations of a hypercube.

Important features:

- peaks: vertex where all edges point inward
- reciprocal sign epistasis (RSE): 4-cycle with alternating direction edges



# Fitness Landscape Features

Fitness landscapes are represented by acyclic orientations of a hypercube.

Important features:

- peaks: vertex where all edges point inward
- reciprocal sign epistasis (RSE): 4-cycle with alternating direction edges

Known: RSEs are necessary for multi-peak landscapes (Poelwijk et. al., 2011)

Questions:

- What pairs of (number of peaks, number of RSEs) are possible?
- In a single peak landscape, what is the maximum possible number of RSEs?

글 🖌 🔺 글 🕨

## Dimension 2



э

э

## Dimension 3 (Exact count, 340 possible orientations)

| <b>RSE</b> s\peaks | 1  | 2  | 3 | 4 |
|--------------------|----|----|---|---|
| 0                  | 91 | 0  | 0 | 0 |
| 1                  | 84 | 42 | 0 | 0 |
| 2                  | 0  | 93 | 0 | 0 |
| 3                  | 0  | 12 | 8 | 0 |
| 4                  | 0  | 0  | 9 | 0 |
| 5                  | 0  | 0  | 0 | 0 |
| 6                  | 0  | 0  | 0 | 1 |

Statistics on hypercube orientations

## Extreme Constructions





# Standard Gluing

Take two copies of  $Q_{n-1}$ , connect corresponding vertices with up arrow.



Observe: If lower  $Q_{n-1}$  has  $p_1$  peaks and  $r_1$  RSEs, and upper  $Q_{n-1}$  has  $p_2$  peaks and  $r_2$  RSEs, then glued  $Q_n$  has  $p_2$  peaks and  $r_1 + r_2$  RSEs.

# Scaling up

#### **Dimension 3 options**

| RSEs∖ peaks | 1 | 2 | 3 | 4 |
|-------------|---|---|---|---|
| 0           | Х |   |   |   |
| 1           | Х | Х |   |   |
| 2           |   | Х |   |   |
| 3           |   | Х | Х |   |
| 4           |   |   | Х |   |
| 5           |   |   |   |   |
| 6           |   |   |   | Х |

| Dimen       | si | 0 | ۱ · | 4 | g | lu | in | g |
|-------------|----|---|-----|---|---|----|----|---|
| RSEs\ peaks | 1  | 2 | 3   | 4 | 5 | 6  | 7  | 8 |
| 0           | Х  |   |     |   |   |    |    |   |
| 1           |    | Х |     |   |   |    |    |   |
| 2           |    |   |     |   |   |    |    |   |
| 3           |    |   |     |   |   |    |    |   |
| 4           | Х  | Х | Х   |   |   |    |    |   |
| 5           |    |   |     |   |   |    |    |   |
| 6           |    |   |     | Х |   |    |    |   |
| 7           |    |   |     |   |   |    |    |   |
| 8           |    |   |     |   |   |    |    |   |
| 9           |    |   |     |   |   |    |    |   |
| 10          |    |   | Х   |   |   |    |    |   |
| 11          |    |   |     |   |   |    |    |   |
| 12          |    |   |     | Х |   |    |    |   |
| 13          |    |   |     |   |   |    |    |   |
| 14          |    |   |     |   |   |    |    |   |
| 15          |    |   |     |   |   |    |    |   |
| 16          |    |   |     |   |   |    |    |   |
| 17          |    |   |     |   |   |    |    |   |
| 18          |    |   |     |   |   |    |    |   |
| 19          |    |   |     |   |   |    |    |   |
| 20          |    |   |     |   |   |    |    |   |
| 21          |    |   |     |   |   |    |    |   |
| 22          |    |   |     |   |   |    |    |   |
| 23          |    |   |     |   |   |    |    |   |
| 24          |    |   |     |   |   |    |    |   |

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

## Dimension 4

#### Dimension 4 gluing All options from gluing two $Q_3$ s

| RSEs\ peaks | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|-------------|---|---|---|---|---|---|---|---|
| 0           |   |   |   |   |   |   |   |   |
| 1           |   |   |   |   |   |   |   |   |
| 2           |   |   |   |   |   |   |   |   |
| 3           |   |   |   |   |   |   |   |   |
| 4           |   |   |   |   |   |   |   |   |
| 5           |   |   |   |   |   |   |   |   |
| 6           |   |   |   |   |   |   |   |   |
| 7           |   |   |   |   |   |   |   |   |
| 8           |   |   |   |   |   |   |   |   |
| 9           |   |   |   |   |   |   |   |   |
| 10          |   |   |   |   |   |   |   |   |
| 11          |   |   |   |   |   |   |   |   |
| 12          |   |   |   |   |   |   |   |   |
| 13          |   |   |   |   |   |   |   |   |
| 14          |   |   |   |   |   |   |   |   |
| 15          |   |   |   |   |   |   |   |   |
| 16          |   |   |   |   |   |   |   |   |
| 17          |   |   |   |   |   |   |   |   |
| 18          |   |   |   |   |   |   |   |   |
| 19          |   |   |   |   |   |   |   |   |
| 20          |   |   |   |   |   |   |   |   |
| 21          |   |   |   |   |   |   |   |   |
| 22          |   |   |   |   |   |   |   |   |
| 23          |   |   |   |   |   |   |   |   |
| 24          |   |   |   |   |   |   |   |   |

# Dimension 4 heat map 10,000 randomly generated

#### orientations

| <b>RSEs</b> \peaks | 1  | 2                     | 3    | 4   | 5   | 6  | 7   | 8  |
|--------------------|----|-----------------------|------|-----|-----|----|-----|----|
| 0                  | 4  | 0                     | 0    | 0   | 0   | 0  | 0   | 0  |
| 1                  | 8  | 5                     | 0    | 0   | 0   | 0  | 0   | 0  |
| 2                  | 28 | 36                    | 1    | 0   | 0   | 0  | 0   | 0  |
| 3                  | 50 | 137                   | 8    | 0   | 0   | 0  | 0   | 0  |
| 4                  | 52 | 380                   | 59   | 0   | 0   | 0  | 0   | 0  |
| 5                  | 27 | 597                   | 369  | 7   | 0   | 0  | 0   | 0  |
| 6                  | 16 | 473                   | 792  | 47  | 0   | 0  | 0   | 0  |
| 7                  | 2  | 275                   | 1002 | 192 | 0   | 0  | 0   | 0  |
| 8                  | 1  | 213                   | 795  | 420 | 0   | 0  | 0   | 0  |
| 9                  | 0  | 55                    | 643  | 631 | 29  | 0  | 0   | 0  |
| 10                 | 0  | 17                    | 249  | 625 | 64  | 0  | 0   | 0  |
| 11                 | 0  | 0                     | 99   | 569 | 99  | 0  | 0   | 0  |
| 12                 | 0  | 4                     | 11   | 208 | 140 | 1  | 0   | 0  |
| 13                 | 0  | 0                     | 9    | 71  | 89  | 13 | 0   | 0  |
| 14                 | 0  | 0                     | 0    | 40  | 68  | 45 | 0   | 0  |
| 15                 | 0  | 0                     | 0    | 8   | 50  | 18 | 0   | 0  |
| 16                 | 0  | 0                     | 0    | 0   | 26  | 39 | 0   | 0  |
| 17                 | 0  | 0                     | 0    | 0   | 0   | 15 | 0   | 0  |
| 18                 | 0  | 0                     | 0    | 0   | 16  | 7  | 20  | 0  |
| 19                 | 0  | 0                     | 0    | 0   | 0   | 6  | 6   | 0  |
| 20                 | 0  | 0                     | 0    | 0   | 0   | 0  | 0   | 0  |
| 21                 | 0  | 0                     | 0    | 0   | 0   | 0  | 10  | 0  |
| 22                 | 0  | 0                     | 0    | 0   | 0   | 0  | 0   | 0  |
| 23                 | 0  | 0                     | 0    | 0   | 0   | 0  | 0   | 0  |
| 24                 | 0  | 0                     | 0    | 0   | 0   | 0  | 0   | 4  |
| Image: 1 million   |    | <ul> <li>A</li> </ul> | 1    | 10  | ÷ 1 |    | 6.3 | 67 |

Statistics on hypercube orientations

## Motivating Question

What is the largest number of RSEs in a single peak landscape? Strategy: Find a topological order of vertices with nice properties.

< ∃ →

#### Definition

A *topological order* of an oriented graph is a list of all the vertices such that each edge is directed from an earlier vertex to a later vertex in the list.

Example:



has topological order 00, 01, 11, 10.

#### Theorem

A directed graph is acyclic if and only if it has a topological order.

Statistics on hypercube orientations

Lara Pudwell

Observations:

• Topological orders aren't always unique!



has orders (00, 11, 01, 10), (11, 00, 01, 10), (00, 11, 10, 01), and (11, 00, 10, 01).

Statistics on hypercube orientations

Lara Pudwell

Observations:

• Topological orders aren't always unique!



has orders (00, 11, 01, 10), (11, 00, 01, 10), (00, 11, 10, 01), and (11, 00, 10, 01).

• The alternating construction has a topological order of the form (even vertices, odd vertices)



has order (000, 011, 101, 110, 001, 010, 100, 111)

Observations:

- If a topological order (v<sub>1</sub>,..., v<sub>n</sub>) corresponds to a single peak orientation, then for all v<sub>i</sub> with i < n, there exists v<sub>j</sub> with j > i such that v<sub>i</sub> is adjacent to v<sub>j</sub>.(\*)
- Goal: Find a topological order of the form:

(even vertices, odd vertices, connected cover(\*))

Example:



000, 011, <u>010</u>, <u>001</u>, <u>111</u>, 101, 110, <mark>100</mark>

Maximum number of RSEs in a *n*-dimensional single peak orientation

| Я |   |
|---|---|
| Ň | A |
|   |   |

| dimension | RSEs by gluing      | RSEs by search      |
|-----------|---------------------|---------------------|
|           | (% of all 4-cycles) | (% of all 4-cycles) |
| 2         | 0 (0)               | 0 (0)               |
| 3         | 1 (16.7)            | 1 (16.7)            |
| 4         | 7 (29.2)            |                     |
| 5         |                     |                     |
| 6         |                     |                     |
| 7         |                     |                     |

Maximum number of RSEs in a *n*-dimensional single peak orientation

| 7 | $\sim$ |
|---|--------|
|   | (      |
|   |        |

| dimension | RSEs by gluing      | RSEs by search      |
|-----------|---------------------|---------------------|
|           | (% of all 4-cycles) | (% of all 4-cycles) |
| 2         | 0 (0)               | 0 (0)               |
| 3         | 1 (16.7)            | 1 (16.7)            |
| 4         | 7 (29.2)            | 8 (33.3)            |
| 5         | 32 (40.0)           |                     |
| 6         |                     |                     |
| 7         |                     |                     |

Maximum number of RSEs in a *n*-dimensional single peak orientation

| 7 | $\sim$ |
|---|--------|
|   | (      |
|   |        |

| dimension | RSEs by gluing      | RSEs by search      |
|-----------|---------------------|---------------------|
|           | (% of all 4-cycles) | (% of all 4-cycles) |
| 2         | 0 (0)               | 0 (0)               |
| 3         | 1 (16.7)            | 1 (16.7)            |
| 4         | 7 (29.2)            | 8 (33.3)            |
| 5         | 32 (40.0)           | 36 (45.0)           |
| 6         | 116 (48.3)          |                     |
| 7         |                     |                     |

Maximum number of RSEs in a *n*-dimensional single peak orientation

| dimension | RSEs by gluing      | RSEs by search      |
|-----------|---------------------|---------------------|
|           | (% of all 4-cycles) | (% of all 4-cycles) |
| 2         | 0 (0)               | 0 (0)               |
| 3         | 1 (16.7)            | 1 (16.7)            |
| 4         | 7 (29.2)            | 8 (33.3)            |
| 5         | 32 (40.0)           | 36 (45.0)           |
| 6         | 116 (48.3)          | 119 (49.6)          |
| 7         | 359 (53.4)          |                     |

Maximum number of RSEs in a *n*-dimensional single peak orientation

| dimension | RSEs by gluing      | RSEs by search      |
|-----------|---------------------|---------------------|
|           | (% of all 4-cycles) | (% of all 4-cycles) |
| 2         | 0 (0)               | 0 (0)               |
| 3         | 1 (16.7)            | 1 (16.7)            |
| 4         | 7 (29.2)            | 8 (33.3)            |
| 5         | 32 (40.0)           | 36 (45.0)           |
| 6         | 116 (48.3)          | 119 (49.6)          |
| 7         | 359 (53.4)          | (in progress)       |



( )

# References

- K. Crona and E. Wiesner, Adaptation and Fitness Graphs in *Algebraic and Discrete Mathematical Methods for Modern Biology* (2015), 51–64.
- J.A.G.M. de Visser, S. F. Elena, I. Fragata, and S. Matuszewski, The utility of fitness landscapes and big data for predicting evolution, *Heredity* **121** (2018), 401-405.
- The On-Line Encyclopedia of Integer Sequences, published electronically at <a href="https://oeis.org">https://oeis.org</a>, 2020.
- F.J. Poelwijk, T-N. Sorin, D.K. Kiviet, and S.J. Tans, Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes, *J. Theor. Biol.* 272 (2011), 141–144.
- R. Stanley, Acyclic orientations of graphs, Discrete Math. 306 (2006), 905–909.

# Thanks for listening!

slides at faculty.valpo.edu/lpudwell email: Lara.Pudwell@valpo.edu