

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Compositions
Dyck Paths
Others?

Summary

Beautiful Bijections for Permutation Patterns

Lara Pudwell Valparaiso University

Joint Mathematics Meetings MAA Invited Paper Session on Clever Counting or Beautiful Bijection January 5, 2012

Outline

Beautiful Bijections for Permutation Patterns

Lara Pudwel

Pattern-Avoiding Permutations

Strateg

Beautiful Bijections Composition

Others?
...When All Els

- Pattern-Avoiding Permutations
- 2 Strategy
- 3 Beautiful Bijections
 - Compositions
 - Dyck Paths
 - Others?
 - ...When All Else Fails
- 4 Summary

Permutations

Beautiful Bijections for Permutation Patterns

Lara Pudwel

Pattern-Avoiding Permutations

Strateg

Beautiful Bijections

Dyck Paths
Others?
...When All Else
Fails

- A permutation of length n is an ordered list of the numbers $\{1, 2, ..., n\}$.
- There are n! permutations of length n.
- Example: the 6 permutations of $\{1, 2, 3\}$ are 123, 132, 213, 231, 312, 321.

Graphs of Permutations

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strateg

Beautiful Bijections

Dyck Paths Others?

...When All Els Fails

Summary

Consider the permutation $\pi=\pi_1\pi_2\cdots\pi_n$ as a function from $\{1,2,\ldots,n\}$ to $\{1,2,\ldots,n\}$.

Example, $\pi = 51342$

•
$$\pi_1 = 5$$

•
$$\pi_2 = 1$$

•
$$\pi_3 = 3$$

•
$$\pi_4 = 4$$

•
$$\pi_5 = 2$$

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Dyck Paths Others? ...When All Else

Summary

Containment/Avoidance

 $\pi = \pi_1 \cdots \pi_n$ contains $\rho = \rho_1 \cdots \rho_k$ as a pattern if there exist $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ such that $\pi_{i_a} < \pi_{i_b}$ if and only if $\rho_a < \rho_b$. Otherwise π avoids the pattern ρ .

Picture definition:

$$\pi = 51342$$
 contains

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Dyck Paths Others? ...When All Else

Summary

Containment/Avoidance

 $\pi = \pi_1 \cdots \pi_n$ contains $\rho = \rho_1 \cdots \rho_k$ as a pattern if there exist $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ such that $\pi_{i_a} < \pi_{i_b}$ if and only if $\rho_a < \rho_b$. Otherwise π avoids the pattern ρ .

Picture definition:

 $\pi = 51342$ contains

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Dyck Paths Others? ...When All Els

Summary

Containment/Avoidance

 $\pi = \pi_1 \cdots \pi_n$ contains $\rho = \rho_1 \cdots \rho_k$ as a pattern if there exist $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ such that $\pi_{i_a} < \pi_{i_b}$ if and only if $\rho_a < \rho_b$. Otherwise π avoids the pattern ρ .

Picture definition:

 $\pi = 51342$ contains 1, 12.

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Dyck Paths
Others?
...When All Els

Summary

Containment/Avoidance

 $\pi = \pi_1 \cdots \pi_n$ contains $\rho = \rho_1 \cdots \rho_k$ as a pattern if there exist $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ such that $\pi_{i_a} < \pi_{i_b}$ if and only if $\rho_a < \rho_b$. Otherwise π avoids the pattern ρ .

Picture definition:

 $\pi = 51342$ contains 1, 12, 21.

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Dyck Paths
Others?
...When All Els

Summary

Containment/Avoidance

 $\pi = \pi_1 \cdots \pi_n$ contains $\rho = \rho_1 \cdots \rho_k$ as a pattern if there exist $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ such that $\pi_{i_a} < \pi_{i_b}$ if and only if $\rho_a < \rho_b$. Otherwise π avoids the pattern ρ .

Picture definition:

 $\pi = 51342$ contains 1, 12, 21, 123.

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Dyck Paths Others? ...When All Else

Summary

Containment/Avoidance

 $\pi = \pi_1 \cdots \pi_n$ contains $\rho = \rho_1 \cdots \rho_k$ as a pattern if there exist $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ such that $\pi_{i_a} < \pi_{i_b}$ if and only if $\rho_a < \rho_b$. Otherwise π avoids the pattern ρ .

Picture definition:

 $\pi = 51342$ contains 1, 12, 21, 123, 132.

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Dyck Paths
Others?
...When All Els

Summary

Containment/Avoidance

 $\pi = \pi_1 \cdots \pi_n$ contains $\rho = \rho_1 \cdots \rho_k$ as a pattern if there exist $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ such that $\pi_{i_a} < \pi_{i_b}$ if and only if $\rho_a < \rho_b$. Otherwise π avoids the pattern ρ .

Picture definition:

 $\pi = 51342$ contains 1, 12, 21, 123, 132, 231,

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Dyck Paths
Others?
...When All Else

Summary

Containment/Avoidance

 $\pi = \pi_1 \cdots \pi_n$ contains $\rho = \rho_1 \cdots \rho_k$ as a pattern if there exist $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ such that $\pi_{i_a} < \pi_{i_b}$ if and only if $\rho_a < \rho_b$. Otherwise π avoids the pattern ρ .

Picture definition:

 $\pi = 51342$ contains 1, 12, 21, 123, 132, 231, 312,

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Dyck Paths
Others?
...When All Else

Summary

Containment/Avoidance

 $\pi = \pi_1 \cdots \pi_n$ contains $\rho = \rho_1 \cdots \rho_k$ as a pattern if there exist $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ such that $\pi_{i_a} < \pi_{i_b}$ if and only if $\rho_a < \rho_b$. Otherwise π avoids the pattern ρ .

Picture definition:

 $\pi = 51342$ contains 1, 12, 21, 123, 132, 231, 312, 321,

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Dyck Paths
Others?
...When All Els

Summary

Containment/Avoidance

 $\pi = \pi_1 \cdots \pi_n$ contains $\rho = \rho_1 \cdots \rho_k$ as a pattern if there exist $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ such that $\pi_{i_a} < \pi_{i_b}$ if and only if $\rho_a < \rho_b$. Otherwise π avoids the pattern ρ .

Picture definition:

 $\pi=51342$ contains 1, 12, 21, 123, 132, 231, 312, 321, 1342,

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Dyck Paths
Others?
...When All Else

Summary

Containment/Avoidance

 $\pi = \pi_1 \cdots \pi_n$ contains $\rho = \rho_1 \cdots \rho_k$ as a pattern if there exist $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ such that $\pi_{i_a} < \pi_{i_b}$ if and only if $\rho_a < \rho_b$. Otherwise π avoids the pattern ρ .

Picture definition:

 $\pi = 51342 \text{ contains} \\ 1, \\ 12, 21, \\ 123, 132, 231, 312, 321, \\ 1342, 4123,$

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Dyck Paths Others? ...When All Else

Summary

Containment/Avoidance

 $\pi = \pi_1 \cdots \pi_n$ contains $\rho = \rho_1 \cdots \rho_k$ as a pattern if there exist $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ such that $\pi_{i_a} < \pi_{i_b}$ if and only if $\rho_a < \rho_b$. Otherwise π avoids the pattern ρ .

Picture definition:

 $\pi = 51342$ contains 1, 12, 21, 123, 132, 231, 312, 321, 1342, 4123, 4132,

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Dyck Paths Others? ...When All Els

Summary

Containment/Avoidance

 $\pi = \pi_1 \cdots \pi_n$ contains $\rho = \rho_1 \cdots \rho_k$ as a pattern if there exist $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ such that $\pi_{i_a} < \pi_{i_b}$ if and only if $\rho_a < \rho_b$. Otherwise π avoids the pattern ρ .

Picture definition:

 $\pi = 51342$ contains 1, 12, 21, 123, 132, 231, 312, 321, 1342, 4123, 4132, 4231,

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Dyck Paths
Others?
...When All Else

Summary

Containment/Avoidance

 $\pi = \pi_1 \cdots \pi_n$ contains $\rho = \rho_1 \cdots \rho_k$ as a pattern if there exist $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ such that $\pi_{i_a} < \pi_{i_b}$ if and only if $\rho_a < \rho_b$. Otherwise π avoids the pattern ρ .

Picture definition:

 $\pi = 51342 \text{ contains} \\ 1, \\ 12, 21, \\ 123, 132, 231, 312, 321, \\ 1342, 4123, 4132, 4231, \\ 51342.$

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Dyck Paths
Others?
...When All Els

Summary

Containment/Avoidance

 $\pi = \pi_1 \cdots \pi_n$ contains $\rho = \rho_1 \cdots \rho_k$ as a pattern if there exist $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ such that $\pi_{i_a} < \pi_{i_b}$ if and only if $\rho_a < \rho_b$. Otherwise π avoids the pattern ρ .

Picture definition:

 $\pi = 51342 \text{ contains} \\ 1, \\ 12, 21, \\ 123, 132, 231, 312, 321, \\ 1342, 4123, 4132, 4231, \\ 51342. \\ \pi = 51342 \text{ avoids all other} \\ \text{permutations}.$

A Family of Counting Problems

Beautiful Bijections for Permutation Patterns

Lara Pudwel

Pattern-Avoiding Permutations

Strateg

Beautiful Bijections

Dyck Paths Others? ...When All El

Summary

 $S_n(Q)$

 $S_n(Q)$ is the set of permutations of length n that avoid all permutations in Q.

 $s_n(Q)$

$$s_n(Q) = |S_n(Q)|$$

Problem

Given a list of permutations Q, describe the structure of $\pi \in \mathcal{S}_n(Q)$ and/or find an expression for $s_n(Q)$. (Generally Hard)

Strategy

Beautiful Bijections for Permutation Patterns

Lara Pudwel

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections Compositions Dyck Paths Others? ...When All El

- **①** Count (Find $s_n(Q)$ for as many Q as possible.)
- Compare (Where have I seen this sequence before?)
- Onnect (Why did I get the same sequence twice?)

Strategy

Beautiful Bijections for Permutation Patterns

Lara Pudwe

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections Compositions Dyck Paths Others?

Summary

- **①** Count (Find $s_n(Q)$ for as many Q as possible.)
- 2 Compare (Where have I seen this sequence before?)
- Onnect (Why did I get the same sequence twice?)

Argument 1

For a family of counting problems... clever counting says "these things are the same", but beautiful bijections explain "why things are the same".

Argument 2

Beautiful bijections allow us to translate what we know about one object to better understand another object.

Permutations and Compositions

Beautiful Bijections for Permutation Patterns

Lara Pudwel

Pattern-Avoiding Permutations

Strateg

Beautiful Bijections Compositions

Others?
...When All Els

Summary

Theorem

 $s_n(123, 132)$ is equal to the number of compositions of n.

Recall: a composition of n is an ordered list of positive integers whose sum is n.

Example:

Members of $S_4(123, 132)$ are:

3214, 3241, 3412, 3421, 4213, 4231, 4312, 4321

Compositions of 4 are:

$$4, 1+3, 3+1, 2+2, 2+1+1, 1+2+1, 1+1+2, 1+1+1+1$$

Beautiful Bijections for Permutation Patterns

Lara Buduo

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Compositions Dyck Paths Others?

...When All Els

Beautiful Bijections for Permutation Patterns

Lara Pudwe

Pattern-Avoiding Permutations

Strategy

Beautiful

Bijections
Compositions
Dyck Paths

Others?

Beautiful Bijections for Permutation Patterns

Lara Pudwe

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Compositions

Dyck Paths

Others?

Summarı

Beautiful Bijections for Permutation Patterns

Lara Pudwel

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Bijections Composition

Others?
When All F

C

Beautiful Bijections for Permutation Patterns

Lara Pudwel

Pattern-Avoiding Permutations

Strategy

Beautiful

Bijections Composition

Others?

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Bijections Composition

Dyck Paths Others? ...When All El

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding

Strategy

Beautiful Bijections

Bijections Compositions

Dyck Paths Others?

...When All El

$$\rightarrow 5+2+4+1$$

Permutations and Dyck Paths

Beautiful Bijections for Permutation Patterns

Lara Pudwel

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Composition Dyck Paths Others?

...When All Els

Summary

Theorem

 $s_n(321)$ is equal to the number of Dyck paths of length 2n.

Recall: a Dyck path of length 2n is

a path in the xy-plane from (0,0) to (n,n) that

- (a) only uses the steps $\langle 1,0 \rangle$ and $\langle 0,1 \rangle$ and
- (b) never goes above the line y = x.

Permutations and Dyck Paths

Beautiful Bijections for Permutation Patterns

Lara Pudwel

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections Composition Dyck Paths

Others? ...When All El

Summary

Theorem

 $s_n(321)$ is equal to the number of Dyck paths of length 2n.

Recall: a (shifted) Dyck path of length 2n is

a path in the xy-plane from (1,0) to (n+1,n) that

- (a) only uses the steps $\langle 1,0 \rangle$ and $\langle 0,1 \rangle$ and
- (b) never goes above the line y = x 1.

Lara Pudwell

Pattern-Avoiding Permutations

Strateg

Beautiful Bijections Compositions Dyck Paths Others? ...When All Els Fails

- Delete all left-to-right maxima
- 2 Add the point (n+1, n).
- 3 Start at (1,0). Move right until under a point, then up to the point, and repeat.

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections Compositions Dyck Paths Others? ...When All El Fails

- Delete all left-to-right maxima
- 2 Add the point (n+1, n).
- Start at (1,0). Move right until under a point, then up to the point, and repeat.

Lara Pudwell

Avoiding Permutations

Strateg

Beautiful Bijections Compositions Dyck Paths Others? ...When All El Fails

- Delete all left-to-right maxima
- 2 Add the point (n+1, n).
- 3 Start at (1,0). Move right until under a point, then up to the point, and repeat.

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections Compositions Dyck Paths Others? ...When All Els

- Delete all left-to-right maxima
- 2 Add the point (n+1, n).
- 3 Start at (1,0). Move right until under a point, then up to the point, and repeat.

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strateg

Beautiful Bijections Compositions Dyck Paths Others? ...When All E

Summary

- Delete all left-to-right maxima
- 2 Add the point (n+1, n).
- 3 Start at (1,0). Move right until under a point, then up to the point, and repeat.

Notice:

- All non-left-to-right-maxima are in increasing order.
- For any point non-left-to-right-maxima (i, π_i) , there are at least $1 + (\pi_i 1) = \pi_i$ points to the left of (i, π_i) , so $i > \pi_i + 1$, or $\pi_i < i 1$, as desired.

Other Bijections

Beautiful Bijections for Permutation Patterns

Lara Pudwel

Pattern-Avoiding Permutations

Strategy Beautiful

Bijections Compositions Dyck Paths

Dyck Paths Others? ...When All Else Fails

Summary

There exist bijections between various sets of pattern-avoiding permutations and...

- set partitions,
- trees,
- faces in certain geometric solids,

... and more!

Symmetry Bijections

Beautiful Bijections for Permutation Patterns

Lara Pudwel

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections Composition Dyck Paths

...When All Else Fails

Summar

Argument 3

There are times when *clever counting* fails, but *beautiful bijections* succeed!

Symmetry Bijections

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strateg

Beautiful Bijections Composition

Others? ...When All Else Fails

Summar

Argument 3

There are times when *clever counting* fails, but *beautiful bijections* succeed!

Symmetry Bijections

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Others?
...When All Else
Fails

Summary

Argument 3

There are times when *clever counting* fails, but *beautiful bijections* succeed!

$$s_n(51342) = s_n(24315) = s_n(15324) = s_n(25341)$$

The Recap

Beautiful Bijections for Permutation Patterns

Lara Pudwe

Pattern-Avoiding Permutations

Strategy Beautiful

Bijections
Compositions
Dyck Paths
Others?
When All F

Fails Summary While counting can be classy, bijections have some advantages. In particular...

- bijections explain "why".
- bijections allow knowledge about one object to help discover new properties of another object.
- bijections may succeed even when counting fails!

Beautiful Bijections for Permutation Patterns

Lara Pudwell

Pattern-Avoiding Permutations

Strategy

Beautiful Bijections

Compositions
Dyck Paths
Others?
...When All Else

Summar

Thank you for listening!