An Introduction to Enumeration Schemes

Lara Pudwell Valparaiso University Lara.Pudwell@valpo.edu

> AWM Workshop Washington, DC January 8, 2009

- Given a string of numbers $p = p_1 \cdots p_n$, the reduction of p is the string obtained by replacing the i^{th} smallest number of p with i.
- For example, the reduction of 26745 is

- Given a string of numbers $p = p_1 \cdots p_n$, the reduction of p is the string obtained by replacing the i^{th} smallest number of p with i.
- For example, the reduction of 26745 is 1 • •.

- Given a string of numbers $p = p_1 \cdots p_n$, the reduction of p is the string obtained by replacing the i^{th} smallest number of p with i.
- For example, the reduction of 26745 is 1 • 2 •.

Definitions

- Given a string of numbers $p = p_1 \cdots p_n$, the reduction of p is the string obtained by replacing the i^{th} smallest number of p with i.
- For example, the reduction of 26745 is 1●●23.

- Given a string of numbers $p = p_1 \cdots p_n$, the reduction of p is the string obtained by replacing the i^{th} smallest number of p with i.
- For example, the reduction of 26745 is 14•23.

- Given a string of numbers $p = p_1 \cdots p_n$, the reduction of p is the string obtained by replacing the i^{th} smallest number of p with i.
- For example, the reduction of 26745 is 14523.

Pattern Avoidance in Permutations

- Given $p \in S_n$ and $q \in S_m$, we say p contains q if there are $1 \le i_1 < \cdots < i_m \le n$ such that $p_{i_1} \cdots p_{i_m}$ reduces to q. Otherwise, p avoids q.
- p = 21354 contains 132.
 (since 21354 reduces to 132.)
- p = 21354 avoids 321.
 (since p has no decreasing subsequence of length 3.)

Two Questions

Easy: Given $p \in S_n$, what patterns does p contain?

Hard: Given $q \in S_m$,

- Let $S_n(q) = \{ p \in S_n \mid p \text{ avoids } q \}.$
- Find an expression for $|S_n(q)|$.

$$|S_n(1)| = \begin{cases} 1 & n=0 \\ 0 & n>0 \end{cases}$$

$$|S_n(1)| = \begin{cases} 1 & n = 0 \\ 0 & n > 0 \end{cases}$$

$$|S_n(12)| = |S_n(21)| = 1, n \ge 0$$

$$|S_n(1)| = \begin{cases} 1 & n=0 \\ 0 & n>0 \end{cases}$$

$$|S_n(12)| = |S_n(21)| = 1, n \ge 0$$

Graph of
$$p \in S_n(132)$$

$$|S_n(1)| = \begin{cases} 1 & n=0 \\ 0 & n>0 \end{cases}$$

$$|S_n(12)| = |S_n(21)| = 1, n \ge 0$$

Graph of
$$p \in S_n(132)$$

000000

$$|S_n(1)| = \begin{cases} 1 & n = 0 \\ 0 & n > 0 \end{cases}$$

$$|S_n(12)| = |S_n(21)| = 1, n \ge 0$$

Graph of
$$p \in S_n(132)$$

So,
$$|S_n(132)| = \sum_{i=1}^n |S_{i-1}(132)| \cdot |S_{n-i}(132)|$$

Patterns of length 1, 2, and 3

$$|S_n(1)| = \begin{cases} 1 & n = 0 \\ 0 & n > 0 \end{cases}$$

$$|S_n(12)| = |S_n(21)| = 1, n \ge 0$$

Graph of $p \in S_n(132)$

So,
$$|S_n(132)| = \sum_{i=1}^n |S_{i-1}(132)| \cdot |S_{n-i}(132)| = \frac{\binom{2n}{n}}{n+1} = C_n$$

In fact, $|S_n(q)| = C_n$ if q is any permutation of length 3.

Patterns of Length 4

There are 24 patterns of length 4.

Using several clever bijections, we can narrow our work to 3 cases:

 $S_n(1342), S_n(1234), \text{ and } S_n(1324).$

Patterns of Length 4

There are 24 patterns of length 4.

Using several clever bijections, we can narrow our work to 3 cases:

$$S_n(1342), S_n(1234), \text{ and } S_n(1324).$$

	1	2	3	4	5	6	7	8	
$ S_n(1342) $	1	2	6	23	103	512	2740	15485	$\sim 8^n$
$ S_n(1234) $	1	2	6	23	103	513	2761	15767	$\sim 9^n$
$ S_n(1324) $	1	2	6	23	103	513	2762	15793	$\sim 9.3^n$

For Permutations

- Most techniques studying $|S_n(q)|$ finds formulas for a specific q.
- 1998: Zeilberger's prefix enumeration schemes,
 i.e. a system of recurrences to count |S_n(q)|.
- 2005: Vatter's modified schemes automate the enumeration of $|S_n(q)|$ for even more patterns q.

Refinement Notation

Goal: Divide $S_n(q)$ into subsets.

$$S_n(q; p_1 \cdots p_l) := \left\{ \pi \in S_n \ \middle| egin{array}{l} \pi ext{ avoids } q \ \pi ext{ has prefix } p_1 \cdots p_l \end{array}
ight\}$$

and

$$S_n\left(q; egin{aligned} p_1 & \cdots & p_l \\ i_1 & \cdots & i_l \end{aligned}
ight) := \left\{\pi \in S_n \left| egin{array}{l} \pi ext{ avoids } q \\ \pi ext{ has prefix } p_1 & \cdots & p_l \\ \pi & = i_1 & \cdots & i_l \pi_{l+1} & \cdots & \pi_n \end{array}
ight.
ight\}$$

If $p_1 \cdots p_{l-1}$ reduces to $p_1^* \cdots p_{l-1}^*$, then $p = p_1 \cdots p_l$ is called a refinement if p^* .

e.g p = 2413 is a refinement of $p^* = 231$.

Refinement Example

For any pattern q, $S_n(q) = S_n(q; 1) = S_n(q; 12) \cup S_n(q; 21)$. or graphically:

Reversibly Deletable Positions

Reversibly Deletable Positions

Given a pattern q and a prefix p, position r is reversibly deletable if

- Deleting p_r from $\pi \in S_n(q; p_1 \cdots p_l)$ produces a q-avoiding permutation of length n-1, and
- Inserting p_r into $\pi \in S_{n-1}(q; p_1 \cdots p_{r-1} p_{r+1} \cdots p_l)$ produces a q avoiding permutation of length n.

In other words, deleting and re-inserting p_r gives a bijection between $S_n(q; p_1 \cdots p_l)$ and $S_{n-1}(q; p_1 \cdots p_{r-1} p_{r+1} \cdots p_l)$, and

$$|S_n(q; p_1 \cdots p_l)| = |S_{n-1}(q; p_1 \cdots p_{r-1}p_{r+1} \cdots p_l)|.$$

Conquer

Reversibly Deletable Example

Conquer

Reversibly Deletable Example

Gap Vectors

Gap vectors give a condition for which choices of i_1, \ldots, i_l yield

$$\left|S_n\left(q,\frac{p_1\cdots p_r\cdots p_l}{i_1\cdots i_r\cdots i_l}\right)\right|=0.$$

$$\begin{array}{c}
\emptyset \\
\downarrow \\
1 \\
21
\end{array}$$

Gap Vectors

Gap vectors give a condition for which choices of i_1, \ldots, i_l yield

$$\left|S_n\left(q,\frac{p_1\cdots p_r\cdots p_l}{i_1\cdots i_r\cdots i_l}\right)\right|=0.$$

Gap Vectors

Gap vectors give a condition for which choices of i_1, \ldots, i_l yield

$$\left|S_n\left(q,\frac{p_1\cdots p_r\cdots p_l}{i_1\cdots i_r\cdots i_l}\right)\right|=0.$$

Enumeration Schemes

Enumeration Scheme Definition

An enumeration scheme is a set of triples $[p_i, R_i, G_i]$ such that for each triple

- p_i is a reduced prefix of length n
- R_i a subset of $\{1,\ldots,n\}$
- G_i is a set of vectors of length n + 1 and
- either R_i is non-empty or all refinements of p_i are also in the scheme.

Enumeration Schemes

Enumeration Scheme Definition

An enumeration scheme is a set of triples $[p_i, R_i, G_i]$ such that for each triple

- p_i is a reduced prefix of length n (prefix)
- R_i a subset of $\{1, \ldots, n\}$ (reversibly deletable positions)
- G_i is a set of vectors of length n + 1 (gap vectors) and
- either R_i is non-empty or all refinements of p_i are also in the scheme.

Avoid(12) and Avoid(123)

Enumeration Schemes

Enumeration Schemes

Avoid(1234)

Summary

- There are few techniques to count large classes of pattern-avoiding permutations.
- Extending Zeilberger's and Vatter's schemes gives a good success rate for counting the elements of $S_n(q)$.
- Enumeration schemes have also been successfully used to count:
 - pattern-avoiding words (strings with repeated letters)
 - permutations avoiding barred patterns (permutations that avoid a particular pattern unless that pattern is part of an even larger specified pattern)

Summary

Contact Info

Lara Pudwell Lara.Pudwell@valpo.edu http://faculty.valpo.edu/lpudwell