Barred Patterns	Enumeration Schemes	Results	Summary

Enumeration Schemes for Permutations Avoiding Barred Patterns

Lara Pudwell Valparaiso University

Joint Mathematics Meetings Washington, DC January 5, 2009

Barred Patterns ●00000	Enumeration Schemes	Results 00000	Summary o
Definitions			
Reduction			

 Given a string of numbers q = q₁ ··· q_n, the reduction of q is the string obtained by replacing the *ith* smallest number of q with *i*.

Barred Patterns	Enumeration Schemes	Results 00000	Summary o
Definitions			
Reduction			

- Given a string of numbers q = q₁ ··· q_n, the reduction of q is the string obtained by replacing the *ith* smallest number of q with *i*.
- For example, the reduction of 26795 is

Barred Patterns	Enumeration Schemes	Results 00000	Summary o
Definitions			
Reduction			

- Given a string of numbers $q = q_1 \cdots q_n$, the reduction of q is the string obtained by replacing the *i*th smallest number of q with *i*.
- For example, the reduction of 26795 is 1 • •.

Barred Patterns	Enumeration Schemes	Results 00000	Summary o
Definitions			
Reduction			

- Given a string of numbers $q = q_1 \cdots q_n$, the reduction of q is the string obtained by replacing the *i*th smallest number of q with *i*.
- For example, the reduction of 26795 is 1•••2.

Barred Patterns	Enumeration Schemes	Results 00000	Summary o
Definitions			
Reduction			

- Given a string of numbers $q = q_1 \cdots q_n$, the reduction of q is the string obtained by replacing the *i*th smallest number of q with *i*.
- For example, the reduction of 26795 is 13••2.

Barred Patterns	Enumeration Schemes	Results 00000	Summary o
Definitions			
Reduction			

- Given a string of numbers $q = q_1 \cdots q_n$, the reduction of q is the string obtained by replacing the *i*th smallest number of q with *i*.
- For example, the reduction of 26795 is 134•2.

Barred Patterns	Enumeration Schemes	Results 00000	Summary o
Definitions			
Reduction			

- Given a string of numbers $q = q_1 \cdots q_n$, the reduction of q is the string obtained by replacing the *i*th smallest number of q with *i*.
- For example, the reduction of 26795 is 13452.

Barred Patterns o●oooo	Enumeration Schemes	Results 00000	Summary o
Definitions			
Pattern Avoida	nce/Containment		

Given permutations $p = p_1 \cdots p_n$ and $q = q_1 \cdots q_m$,

- *p* contains *q* as a pattern if there is 1 ≤ *i*₁ < · · · < *i_m* ≤ *n* so that *p_{i1}* · · · *p_{im}* reduces to *q*;
- otherwise *p* avoids *q*.

For example,

- 4576213 contains 312 (4576213).
- 4576213 avoids 1234.

Notation: $S_n(q) = \{\pi \in S_n | \pi \text{ avoids } q\}$. For example, $|S_n(12)| = 1$ for $n \ge 0$.

Barred Patterns oo●ooo	Enumeration Schemes	Results 00000	Summary o
Definitions			
Barred Patterns			

Consider *pairs* of permutations *q*_{*}, *q*^{*} such that *q*_{*} is contained in *q*^{*}.

e.g. $q_* = 123$ and $q^* = 15342$

- Choose one instance of *q*_{*} in *q*^{*}.
 e.g. *q*_{*} = 123 and *q*^{*} = 15342
- Write q by taking the letters of q* and putting a bar over letters not in q*.

For $q_* = 123$ and $q^* = 15342$, we have $q = 1\overline{5}34\overline{2}$.

Barred Patterns 000●00	Enumeration Schemes	Results	Summary o
Definitions			
Barred Pattern	Avoidance/Containment		

Some nice examples include:

 $\left|S_n(\overline{1}32)\right| = (n-1)!$

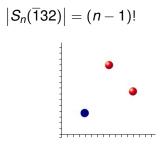
Barred Patterns 000●00	Enumeration Schemes	Results 00000	Summary o
Definitions			
Barred Pattern	Avoidance/Containment		

```
|S_n(\overline{1}32)| = (n-1)!
```

Barred Patterns 000●00	Enumeration Schemes	Results 00000	Summary o			
Definitions						
Barred Pattern Avoidance/Containment						

```
|S_n(\overline{1}32)| = (n-1)!
```

Barred Patterns 000●00	Enumeration Schemes	Results 00000	Summary o			
Definitions						
Barred Pattern Avoidance/Containment						



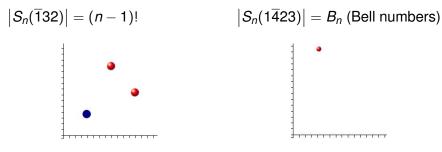
$$= |\{\pi \in S_n | \pi_1 = 1\}|$$

Barred Patterns	Enumeration Schemes	Results 00000	Summary o
Definitions			
Barred Pattern	Avoidance/Containmen	t	

$$|S_n(\overline{1}32)| = (n-1)!$$
 $|S_n(\overline{1}\overline{4}23)| = B_n$ (Bell numbers)

$$= |\{\pi \in S_n | \pi_1 = 1\}|$$

Barred Patterns ooo●oo	Enumeration Schemes	Results 00000	Summary o
Definitions			
Barred Pattern Avo	idance/Containment		

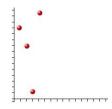


$$= |\{\pi \in S_n | \pi_1 = 1\}|$$

Barred Patterns ooo●oo	Enumeration Schemes	Results 00000	Summary o
Definitions			
Barred Pattern Avo	idance/Containment		

$$|S_n(\overline{1}32)| = (n-1)! \qquad |S_n(\overline{1}2)| = (n-1)!$$

$$S_n(1\overline{4}23) = B_n$$
 (Bell numbers)

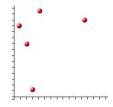


$$= |\{\pi \in S_n | \pi_1 = 1\}|$$

Barred Patterns ooo●oo	Enumeration Schemes	Results 00000	Summary o
Definitions			
Barred Pattern Avoi	dance/Containment		

$$S_n(\overline{1}32)| = (n-1)!$$

$$|S_n(1\overline{4}23)| = B_n$$
 (Bell numbers)

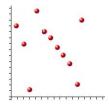


$$= |\{\pi \in S_n | \pi_1 = 1\}|$$

Barred Patterns ooo●oo	Enumeration Schemes	Results 00000	Summary o
Definitions			
Barred Pattern Avo	idance/Containment		

$$S_n(\overline{1}32) | = (n-1)!$$

$$|S_n(1\overline{4}23)| = B_n$$
 (Bell numbers)

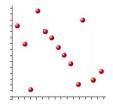


$$= |\{\pi \in S_n | \pi_1 = 1\}|$$

Barred Patterns ooo●oo	Enumeration Schemes	Results 00000	Summary o
Definitions			
Barred Pattern Avo	idance/Containment		

$$S_n(\overline{1}32) | = (n-1)!$$

$$|S_n(1\overline{4}23)| = B_n$$
 (Bell numbers)



$$= |\{\pi \in S_n | \pi_1 = 1\}|$$

Barred Patterns ooo●oo	Enumeration Schemes	Results 00000	Summary o
Definitions			
Barred Pattern Avo	idance/Containment		

$$S_n(\overline{1}32)| = (n-1)!$$

$$|S_n(1\overline{4}23)| = B_n$$
 (Bell numbers)



$$= |\{\pi \in S_n | \pi_1 = 1\}|$$

Barred Patterns	Enumeration Schemes	Results	Summary
000000			

Results

Previous work with Particular Barred Patterns

• West, 1990:

A permutation is 2-stack sortable if and only if it avoids 2341 and 35241.

- Bousquet-Melou and Butler, 2006: A permutation is forest-like if and only if it avoids 1324 and 21354.
- Claesson, Dukes, and Kitaev, 2008: (2+2)-free posets

are in bijection with permutations which avoid $3\overline{1}52\overline{4}$.

 Burstein and Lankham, 2006: A permutation is a reverse patience word if and only if it avoids 3-1-42.

Barred Patterns	Enumeration Schemes	Results	Summary
00000			

Observations

Patterns of length ≤ 5

Length	Bars	No. Sequences	Possible Sequences
2	0	1	1
3	1	2	1, (<i>n</i> – 1)!
4	2	2	1, (<i>n</i> – 2)!
5	3	2	1, (<i>n</i> – 3)!
3	0	1	Catalan
4	1	4	Catalan, Bell,
4	I	4	A051295, & A137533
5	2	17	A110447, A117106,
5	2	17	& 15 more
4	0	3	A005802, A061552,
4	0	5	A022558
			A006789, A047970,
5	1	13	A098569, A122993,
			& 9 more

Barred Patterns	Enumeration Schemes	Results	Summary
000000			

Observations

Patterns of length ≤ 5

Length	Bars	No. Sequences	Possible Sequences
2	0	1	1
3	1	2	1, (<i>n</i> – 1)!
4	2	2	1, (<i>n</i> – 2)!
5	3	2	1, (<i>n</i> – 3)!
3	0	1	Catalan
4	1	4	Catalan, Bell,
4		4	A051295, & A137533
5	2	17	A110447, A117106,
5	2	17	& 15 more
4	•	3	A005802, A061552,
4	0	3	A022558
			A006789, A047970,
5	1	13	A098569, A122993,
			& 9 more

There are at least 24 new sequences obtained by counting $S_n(q)$, where *q* is a barred pattern of length 5.

Barred Patterns	Enumeration Schemes	Results 00000	Summary o
Background			
Goals			

Main Goal

Automate a method to count $S_n(q)$.

The method of enumeration schemes is a divide-and-conquer approach to finding recurrences that has been applied to pattern-avoiding permutations (Vatter, Zeilberger), and to pattern-avoiding words (P.).

Barred Patterns	Enumeration Schemes	Results 00000	Summary o
Background			
Divide			

Notation

$$egin{aligned} S_nig(q; p_1 \cdots p_lig) &:= ig\{ \pi \in S_n ig| egin{aligned} \pi ext{ avoids } q \ \pi ext{ has prefix } p_1 \cdots p_l \end{aligned} ig\} S_nig(q; egin{aligned} p_1 \cdots p_l \ i_1 \cdots i_l \end{pmatrix} &:= igg\{ \pi \in S_n igg| egin{aligned} \pi ext{ avoids } q \ \pi ext{ has prefix } p_1 \cdots p_l \ \pi ext{ = } i_1 \cdots i_l \pi_{l+1} \cdots \pi_n \end{smallmatrix} igg\} \end{aligned}$$

For example,

$$S_3(132; 12) = \{123, 231\}$$

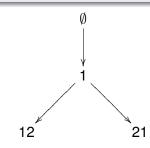
 $S_3\left(132; \frac{12}{23}\right) = \{231\}$

Barred Patterns	Enumeration Schemes	Results 00000	Summary o
Background			
Divide			

Notation

$$egin{aligned} S_nig(q;p_1\cdots p_lig) &:= ig\{\pi\in S_n\ \Big|\ egin{aligned} \pi ext{ avoids } q \ \pi ext{ has prefix } p_1\cdots p_l \ \end{bmatrix} \ S_nigg(q;egin{aligned} p_1\cdots p_l \ i_1\cdots i_l \end{pmatrix} &:= igg\{\pi\in S_n\ \Big|\ egin{aligned} \pi ext{ avoids } q \ \pi ext{ has prefix } p_1\cdots p_l \ \pi ext{ = } i_1\cdots i_l\pi_{l+1}\cdots\pi_n \end{aligned} igg) \end{aligned}$$

For any pattern q, we have $S_n(q) = S_n(q; 1)$ $= S_n(q; 12) \cup S_n(q; 21),$ etc.



Barred Patterns	Enumeration Schemes	Results 00000	Summary o
Reversibly Deletable			
Reversibly Dele	table		

Reversibly Deletable

Given q and p, a position r is said to be reversibly deletable if

- deleting p_r from a q-avoiding permutation beginning with $p_1 \cdots p_l$ always produces a q avoiding permutation and
- inserting *p_r* into a *q*-avoiding permutation beginning with *p*₁ · · · *p_{r-1}p_{r+1}* · · · *p_l* always produces a *q*-avoiding permutation.

If *r* is reversibly deletable, we have a natural bijection between $S_n(q; p_1 \cdots p_r \cdots p_l)$ and $S_{n-1}(q; p_1 \cdots p_{r-1} p_{r+1} \cdots p_l)$ so that:

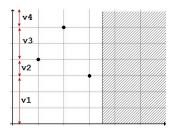
$$|S_n(q;p_1\cdots p_r\cdots p_l)|=|S_{n-1}(q;p_1\cdots p_{r-1}p_{r+1}\cdots p_l)|$$

Barred Patterns	Enumeration Schemes	Results 00000	Summary o
Gap Vectors			
Spacing Vectors			

Spacing Vectors

Given *q* and *p* (of length *l*) let *v* be a vector in \mathbb{N}^{l+1} . Then, $S_n(q; p; v)$ denotes the set of permutations of length *n*, avoiding *q*, beginning with prefix *p* with exactly v_1 letters smaller than "1", v_j letters greater than "*j* – 1" and smaller than "*j*", and exactly v_{l+1} letters greater than "*l*".

For example,

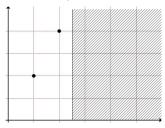


Barred Patterns	Enumeration Schemes	Results 00000	Summary o
Gap Vectors			
Spacing Vectors			

Spacing Vectors

Given *q* and *p* (of length *l*) let *v* be a vector in \mathbb{N}^{l+1} . Then, $S_n(q; p; v)$ denotes the set of permutations of length *n*, avoiding *q*, beginning with prefix *p* with exactly v_1 letters smaller than "1", v_j letters greater than "*j* – 1" and smaller than "*j*", and exactly v_{l+1} letters greater than "*l*".

For example,



$$S_n(132; 12; \langle 0, 1, 0 \rangle) = \{\}.$$

Barred Patterns	Enumeration Schemes	Results 00000	Summary o
Gap Vectors			
Gap Vectors			

Gap Vectors

A spacing vector v is a *gap vector* for [q, p] if there are no permutations avoiding q with prefix p and spacing vector $\geq v$ (componentwise).

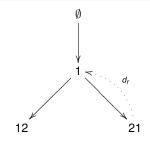
Gap vectors give a condition for which choices of i_1, \ldots, i_l yield

$$\left|S_n\left(q; \frac{p_1\cdots p_r\cdots p_l}{i_1\cdots i_r\cdots i_l}\right)\right|=0.$$

Barred Patterns	Enumeration Schemes	Results 00000	Summary o
Enumeration Schemes			
Conquer			

Objectives

Given q and p find r such that $|S_n(q;p_1\cdots p_r\cdots p_l)| = |S_{n-1}(q;p_1\cdots p_{r-1}p_{r+1}\cdots p_l)|$



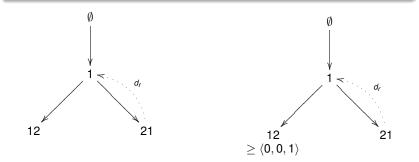
Barred Patterns	Enumeration Schemes	Results 00000	Summary o
Enumeration Schemes			

Conquer

Objectives

- Given q and p find r such that $|S_n(q; p_1 \cdots p_r \cdots p_l)| = |S_{n-1}(q; p_1 \cdots p_{r-1} p_{r+1} \cdots p_l)|$
- 2 Given q and p, find i_1, \ldots, i_l such that

$$\left|S_n\left(q; \frac{p_1 \cdots p_r \cdots p_l}{i_1 \cdots i_r \cdots i_l}\right)\right| = 0$$



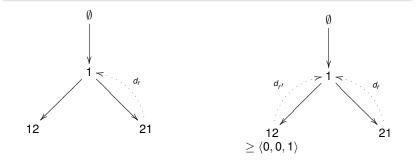
Barred Patterns	Enumeration Schemes	Results 00000	Summary o
Enumeration Schemes			

Conquer

Objectives

- Given q and p find r such that $|S_n(q; p_1 \cdots p_r \cdots p_l)| = |S_{n-1}(q; p_1 \cdots p_{r-1} p_{r+1} \cdots p_l)|$
- 2 Given q and p, find i_1, \ldots, i_l such that

$$\left|S_n\left(q; \frac{p_1 \cdots p_r \cdots p_l}{i_1 \cdots i_r \cdots i_l}\right)\right| = 0$$



Barred Patterns	Enumeration Schemes	Results	Summary o
Enumeration Schemes			
Enumeration Scher	ne		

An enumeration scheme is a set of triples $[p_i, R_i, G_i]$ such that for each triple

- *p_i* is a reduced prefix of length *n*
- *R_i* is a subset of {1,...,*n*}
- G_i is a set of vectors of length n + 1 and
- either *R_i* is non-empty or all refinements of *p_i* are also in the scheme.

Barred Patterns	Enumeration Schemes	Results	Summary o
Enumeration Schemes			
Enumeration Scher	ne		

An enumeration scheme is a set of triples $[p_i, R_i, G_i]$ such that for each triple

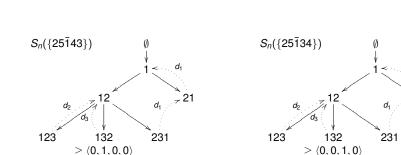
- *p_i* is a reduced prefix of length *n* (prefix)
- R_i is a subset of $\{1, \ldots, n\}$ (reversibly deletable positions)
- G_i is a set of vectors of length n + 1 (gap vectors) and
- either *R_i* is non-empty or all refinements of *p_i* are also in the scheme.

Barred Patterns	Enumeration Schemes	Results ●○○○○	Summary o
Statistics			

Success Rate

Pattern Lengths	Success Rate	Pattern Lengths	Success Rate
[2,1]	1/1 (100%)	[3,0],[3,0],[3,1]	43/45 (95.6%)
[2,1],[2,0]	2/2 (100%)	[3,0],[3,0],[3,2]	45/45 (100%)
[2,1],[2,1]	2/2 (100%)	[3,0],[3,1],[3,1]	135/138 (97.8%)
		[3,0],[3,1],[3,2]	280/280 (100%)
[3,1]	4/4 (100%)	[3,0],[3,2],[3,2]	138/138 (100%)
[3,2]	4/4 (100%)	[3,1],[3,1],[3,1]	115/118 (97.5%)
[3,0],[3,1]	18/20 (90%)	[3,1],[3,1],[3,2]	378/378 (100%)
[3,0],[3,2]	20/20 (100%)	[3,1],[3,2],[3,2]	378/378 (100%)
[3,1],[3,1]	27/28 (96.4%)	[3,2],[3,2],[3,2]	118/118 (100%)
[3,1],[3,2]	50/50 (100%)		
[3,2],[3,2]	28/28 (100%)	[4,1]	12/16 (75%)
		[4,2]	25/26 (96.2%)
[3,1],[4,0]	59/71 (83.1%)	[4,3]	16/16 (100%)
[3,1],[4,1]	229/240 (95.4%)		
[3,1],[4,2]	355/364 (97.5%)	[5,1]	15/89 (16.9%)
[3,0],[4,1]	84/88 (95.5%)	[5,2]	(in progress)
[3,0],[4,2]	133/136 (97.8%)		
[4,0],[5,1]	(in progress)		

New Results: L	ength 5 with 1 Bar		
Examples			
Barred Patterns	Enumeration Schemes	Results ○●ooo	Summary o

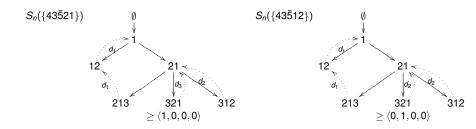


both give the sequence 1, 2, 6, 23, 104, 532, 3004, 18426, 121393, 851810, 6325151, 49448313, 405298482, 3470885747, 30965656442 for $1 \le n \le 15$.

21

Barred Patterns	Enumeration Schemes	Results ○o●oo	Summary o
Examples			

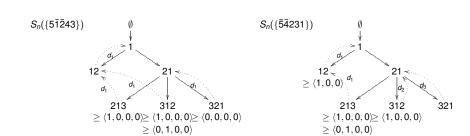
New Results: Length 5 with 1 Bar



both also give the sequence

1, 2, 6, 23, 104, 532, 3004, 18426, 121393, 851810, 6325151, 49448313, 405298482, 3470885747, 30965656442 for $1 \le n \le 15$.

Barred Patterns	Enumeration Schemes	Results ○○○●○	Summary o
Examples			
New Results: L	ength 5 with 2 Bars		



gives the new sequence 1, 2, 5, 14, 43, 143, 511, 1950, 7903, 33848, 152529, 720466, 3555715, 18285538, 97752779

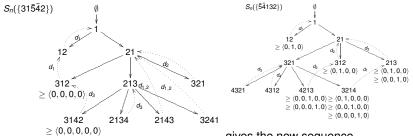
for $1 \le n \le 15$.

gives the new sequence 1, 2, 5, 14, 43, 146, 561, 2518, 13563, 88354, 686137, 6191526, 63330147, 720314930, 8985750097

for $1 \le n \le 15$.

Barred Patterns	Enumeration Schemes	Results ○○○○●	Summary O
Examples			

New Results: Length 5 with 2 Bars



gives the new sequence 1, 1, 2, 5, 14, 43, 144, 522, 2030, 8398, 36714, 168793, 813112, 4091735, 21451972, 116891160 for $1 \le n \le 15$. gives the new sequence 1, 1, 2, 5, 14, 43, 147, 575, 2648, 14617, 96696, 754585, 6794015, 69116493, 781266266, 9688636317 for $1 \le n \le 15$.

Barred Patterns	Enumeration Schemes	Results 00000	Summary ●
Summary			
Summary			

- The method of enumeration schemes confirms many known results for barred patterns and generates new results for S_n(25143), S_n(25134), S_n(43521), S_n(43512), S_n(51243), S_n(54231), S_n(31542), S_n(54132).
- It remains to find other ways to count permutations avoiding barred patterns.
- There are at least 24 new sequences obtained by counting $S_n(q)$, where q is a barred pattern of length 5.

Barred Patterns	Enumeration Schemes	Results 00000	Summary ●
Summary			
Summary			

- The method of enumeration schemes confirms many known results for barred patterns and generates new results for S_n(25143), S_n(25134), S_n(43521), S_n(43512), S_n(51243), S_n(54231), S_n(31542), S_n(54132).
- It remains to find other ways to count permutations avoiding barred patterns.
- There are at least 19 new sequences obtained by counting $S_n(q)$, where q is a barred pattern of length 5.