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Abstract

In this paper, we discuss the enumeration of words avoiding patterns with repeated letters. More
specifically, we find recurrences (i.e. enumeration schemes) counting words avoiding any pattern of length
3 and words avoiding any monotone pattern.

1 Background

The enumeration of permutation classes has been accomplished by many beautiful techniques. One natural
extension of permutation classes is pattern-avoiding words. In [5], we adapted the method of enumeration
schemes, first introduced for permutations by Zeilberger [7] and extended by Vatter [6] to the case of enu-
merating words avoiding a permutation pattern. In this paper, we modify the enumeration scheme paradigm
further to enumerate words avoiding patterns with repeated letters.

First, we recall the following definitions:

Definition 1. Let w ∈ [k]n, w = w1 · · ·wn. The reduction of w, denoted red(w), is the unique word of
length n obtained by replacing the ith smallest entries of w with i, for each i.

Definition 2. Let w ∈ [k]n, w = w1 · · ·wn as above, and let q ∈ [k]m, q = q1 · · · qm. We say that w contains
q if there exist 1 ≤ i1 < i2 < · · · < im ≤ n so that red(wi1 · · ·wim

) = q. Otherwise w avoids q.

For example, the reduction of w = 2432 ∈ [4]3 is 1321. Also w contains the pattern 121 as evidenced by the
substring w1w2w4 = 242, which reduces to 121.

While it is straightforward to fix a word w and list all the patterns q which it contains, it is a more difficult
task to fix q and then enumerate the number of words w which do not contain q. To this end, we introduce
our main object of study:

Definition 3. A frequency vector is a vector a = [a1, . . . , ak] such that k ≥ 1 and ai ≥ 0 for 1 ≤ i ≤ k.
Denote ‖a‖ =

∑k
i=1 ai. Then, given a frequency vector a and a set of reduced words Q in [k]m for some

m > 0, we define

A(a, Q) := {w ∈ [k]‖a‖ | w avoids q for every q ∈ Q,w has ai i’s for 1 ≤ i ≤ k}.

Notice that if a1 = · · · = ak = 1, we reduce to the classical case of counting pattern-avoiding permutations.
Further, observe that if ai=0 for some i, then A([a1, . . . ai, . . . , ak], Q) = A([a1, . . . , ai−1, ai+1, . . . , ak], Q), so
in general, we may assume that a has positive entries. When the set of patterns Q is clear from context, we
may simply write A(a).
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Much of the work studying pattern avoidance in permutations and in words adapts techniques that are
dependent on what patterns are being avoided. However, ideally, we want to find a single technique that
enumerates many different classes of pattern-avoiding words. In 1998, Zeilberger [7] introduced prefix enu-
meration schemes to count pattern-avoiding permutations, giving a more universal framework for counting
these permutation classes. In 2005, Vatter [6] extended these schemes, completely automating the enu-
meration of many more permutation classes. Vatter’s work studies a symmetry of prefix schemes to ease
notation.

The method of Zeilberger’s prefix schemes has already been extended to pattern-avoiding words [5] with a
reasonable success rate. However, these prefix schemes for words fail completely if one wishes to enumerate
words avoiding patterns with repeated letters. First, I will review the limitations of Zeilberger and Vatter’s
enumeration schemes when they are extended to the case of pattern-avoiding words. Then, I will introduce
a new notion of schemes for words. I will use this new notion to find recurrences counting words avoiding
any pattern of length 3. The main result is that this new notion of scheme is guaranteed to work when
enumerating words avoiding any monotone pattern of arbitrary length.

2 Old Schemes for Permutations

In [5], I extended Zeilberger’s notion of prefix scheme to pattern avoiding words.

Suppose we would like to enumerate a set A(n). If we cannot find a closed-form formula for A(n), ideally, we
could find a recurrence which depends only on n. However, this is not always possible. Following Zeilberger,
we introduce the notion of refinement. Namely, parameterize A(n) =

⋃
i∈I B(n, i) for some parameter i,

so that A(n) is a disjoint union of the B(n, i)’s. If we can then find a recurrence for each B(n, i) in terms
of the A(n)’s and the B(n, i)’s, we then have a formula for A(n). If not, continue by parameterizing each
B(n, i) =

⋃
j∈J C(n, i, j).

Zeilberger’s schemes for pattern-avoiding permutations refine by looking at prefixes. That is if A(n) is the
set of words whose first l letters reduce to p, then B(n, i) is the set of words whose first l + 1 letters reduce
to some longer prefix p̂ = p1 · · · pl · i and such that red(p1 · · · pl) = p.

For example, given prefix p, let Ap(a) be the set of words with alphabet vector a = [a1, . . . , ak] whose first
|p| letters reduce to p. We have:

A∅(a) = A1(a) = A12(a) ∪A11(a) ∪A21(a) = · · ·

Furthermore, we can deduce recurrences by knowing the prefix of a word. For example, if we want to avoid
the pattern 123, and a 123-avoiding word has prefix 21, the 2 can be deleted, because any possible way for
the 2 to be involved in a bad pattern implies that the 1 is also in a bad pattern. Therefore, if the role of 2
is played by a letter j, we have A21([a1, . . . , aj , . . . , ak]) = A1([a1, . . . , aj − 1, . . . , ak]).

While this method of refining based on prefixes and finding recurrences has a reasonable success rate for
words avoiding permutations, it was shown in [5] that it necessarily fails if the pattern to be avoided has a
repeated letter. Thus, we turn to a symmetric approach introduced by Vatter [6].

3 Old Schemes for Permutations: a Symmetry

Vatter’s schemes for permutations take a symmetry of this approach and look at the patterns formed by the
i smallest letters in a permutation instead of the initial i letters.



In his case, the notation Ap(a) denotes the set of words with alphabet vector a = [a1, . . . , ak] whose smallest
|p| letters form pattern p. For example, A132(a) denotes the set of words where 1 appears before 3, which
appears before 2. Still, we have:

A∅(a) = A1(a) = A12(a) ∪A11(a) ∪A21(a) = · · ·

The logic for finding recurrences is similar. For example, if we wish to avoid the pattern 123, and consider
the set A21([a1, . . . , ak]), we know that if 1 is involved in a 123 pattern, then 2 must also be involved in
a 123 pattern, so if the role of 1 is played by j, then we have A21([a1, . . . , aj , . . . , ak]) = A1([a1, . . . , aj −
1, . . . , ak]) = A1([a1, . . . aj−1, aj+1, . . . , ak]), where the last equality is because Vatter considers the special
case of permutations.

In essence, Vatter takes inverses of the permutations in Zeilberger’s schemes, and as the inverse map provides
an involution on the set of all permutations, this is an equivalent construction.

For words, however, the inverse map no longer exists. Enumerating words by considering the pattern formed
by the i smallest letters is no longer as straightforward. In general, to count pattern-avoiding words, the
chain of prefixes of smallest letters 1 → 11 → 111 → · · · forms an infinite chain of subsets of A([a1, . . . , ak])
without recurrences.

Clearly, while both Zeilberger’s and Vatter’s schemes are effective for enumerating permutations, they have
their drawbacks when extended to words. Thus, we must make more significant modifications.

4 New Schemes

Vatter’s approach can be modified in the following way. Instead of looking at the patterns formed by the
i smallest letters in a word by adding one letter at a time, refine by successively adding all copies of the
smallest letter at once. As we will see, this introduces new parameters into the enumeration scheme, but it
allows the enumeration of classes of words which were unable to be enumerated by previous methods.

For example, let A∅(a) be the set of words with alphabet vector a = [a1, . . . , ak] avoiding 112. Then, we can
refine A∅(a) = A11(a) ∪A1(a), where A11(a) = { the set of words with at least two 1s }, and A1(a) = {the
set of words with only one 1}. That is, A11(a) is the set of words with enough 1s to be the start of a
forbidden 112 pattern, and A1(a) is the set of words without enough 1s to start a forbidden 112 pattern.

Essentially, instead of tracking the patterns formed by the initial letters of the word (as in Zeilberger’s
method) or the patterns formed by the smallest letters of the word (as in Vatter’s method), we begin with
the empty word, and successively insert all copies of a letter at once, and keeping track of the maximal
possible subpattern of a forbidden 112 pattern. More explicitly, begin with an empty word and insert all a1

1s. Keep track of the earliest 11 pattern and insert all a2 2s. Keep track of the new first 11 pattern, and
insert all a3 3s. Repeat this process until all a1 + · · ·+ ak letters have been inserted into the word.

Here, we introduce a revised notion of Scheme.

Definition 4. Let S be a set of triples [Ai, Ci, Ri] where

• Ai is a set, possibly with extra parameters distinguishing elements of Ai.

• Ci is a set of pairs [Pi,1, Pi,2] where each Pi,1 is a set of Aj’s with j ≥ i, and the Pi,2’s are disjoint
conditions on the parameters of Ai.

• Ri is a linear combination of sets Aj , j ≤ i, possibly with coefficients depending on the parameters of
Ai.



We say that S is an enumeration scheme if for each triple [Ai, Ci, Ri] in S, exactly one of Ci or Ri is
non-empty.

Notice that a scheme can be considered to be an encoding for a system of recurrences. Namely, Ci are the
children of Ai, so |Ai| =

∑
c∈Ci

|c|, and Ri is a recurrence for Ai in terms of earlier sets, so |Ai| = Ri.

A simple example is the following:

{[A∅([a1, . . . , ak]), {[A1([a1, . . . , ak]), (a1 = 1)] , [A11([a1, . . . , ak]), (a1 > 1)]} , ∅] ,[
A1([a1, . . . , ak]), ∅,

(
a2 + · · ·+ ak + 1

1

)
·A∅([a2, . . . , ak])

]
,

[A11([a1, . . . , ak]), ∅, 0]}

This scheme can be interpreted in the following way: Let A∅([a1, . . . , ak]) be the set of all words avoiding
11, A1([a1, . . . , ak]) the set of all words avoiding 11 with a1 = 1, and A11([a1, . . . , ak]) the set of all words
avoiding 11 where a1 > 1.

If a1 = · · · = ak = 1, we have

A∅([a1, . . . , ak]) = A1([a1, . . . , ak]) =
(

a2 + · · ·+ ak + 1
1

)
A∅([a2, . . . , ak])

=
(

a2 + · · ·+ ak + 1
1

)
·A1([a2, . . . , ak]) =

(
a2 + · · ·+ ak + 1

1

)
·
(

a3 + · · ·+ ak + 1
1

)
A∅([a3, . . . , ak])

= · · · =
(

a2 + · · ·+ ak + 1
1

)
·
(

a3 + · · ·+ ak + 1
1

)
· · ·

(
ak−1 + ak + 1

1

)
·
(

ak + 1
1

)
= k!.

Otherwise, let j be the smallest integer for which aj > 1, and let (k)j = k · (k − 1) · · · (k − j + 1). We have:

A∅([a1, . . . , aj , . . . , ak]) = · · · = (k)j−1 ·A∅([aj , . . . , ak]) = (k)j−1 ·A11([aj , . . . , ak]) = (k)j−1 · 0 = 0

both as expected.

5 Finding Schemes

In Vatter and Zeilberger’s schemes, we found recurrences by looking for letters that were reversibly deletable,
that is, letters that could be deleted from and reinserted into a word without causing a bad pattern. Now
we make the notion of reversibly deletable more general.

Definition 5. Let w ∈ [k]n be an arbitrary word and p ∈ [k]m a forbidden pattern written in reduced form.
Let si(p) denote the substring of p formed by the letters ≤ i, and set s0(p) = ε, the empty pattern. We say
that w is i-critical with respect to p (i ≥ 0) if w contains a copy of si(p) but avoids si+1(p).

For example, let w = 1431532231, and let p = 12324. Then s1(p) = 1, s2(p) = 122, s3(p) = 1232, and
s4(p) = 12324. w is 3-critical, since it contains s1(p), s2(p), and s3(p) as patterns while it avoids the pattern
12324.

Now, we have a more formal way to produce a scheme in the sense of Section 4. Given a forbidden pattern
p ∈ [k]m,



• The Ais are the sets of words that are i-critical for 0 ≤ i ≤ k− 1, plus Ak (the set of words containing
p) and A∅ (the set of ALL words avoiding p). Ai may include parameters to track the location of a
copy of si(p).

• If Ai is the set of i-critical words, then Ci consists of the pairs [Ai, ( conditions to insert new letters
while keeping an i-critical word i-critical )] and [Ai+1, ( conditions to insert new letters so that an
i-critical word becomes (i + 1)-critical )]

• Ri results from a case by case analysis of the structure of i-critical words. Namely, if there are letters
in an i-critical word that cannot possibly be involved in a forbidden pattern, they may be deleted.
Also, the parameters of Ai that keep track of the location of a copy of si(p) within a given word may
be adjusted.

As in the case of permutations, the operations of complement and reversal are involutions on the set of words
in [k]n with some useful properties. Namely, if p is a forbidden pattern, pc is its complement (formed by
replacing i → k + 1− i), and pr is its reversal, in the notation of section 1, we have:

A[a1,...,ak]({p}) = A[ak,...,a1]({p
c})

A[a1,...,ak]({p}) = A[a1,...,ak]({pr})

Let Av(p) denote the set of all words avoiding p. If, we can find a scheme for Av(p), then we have a system
of recurrences for counting Av(p), Av(pc), Av(pr), and Av(prc).

In the following sections, we illustrate the power of this method by finding recurrences to count Av(p), where
p is any pattern of length 3.

6 Avoiding the pattern 111

The simplest pattern of length 3 is 111. The scheme for Av(111) is very similar to the scheme for Av(11)
given in Section 4. Notice that s1(111) = 111, so a word is 1-critical if it contains 3 copies of the same letter.

Let w ∈ A∅([a1, . . . , ak]) be an arbitrary word in [k]||a||. Either a1 ≤ 2, i.e. w is 0-critical, or a1 ≥ 3,
in which case w is 1-critical. If a word is 0-critical, the letters in it cannot possibly be part of a bad
pattern after subsequent insertion of larger letters, so they may be inserted anywhere in the word, i.e.
|A1([a1, . . . , ak])| =

(
a1+···+ak

a1

)
· |A∅([a2, . . . , ak])|. We represent the situation graphically as follows:

Figure 1: Av(111)

A∅

A0 A1 = 0

(a1≤2)
yyrrrrrrrrrrrrr(a1+···+ak
a1

) 11

(a1≥3)
%%LLLLLLLLLLLL

The nodes in this graph are the sets Ai, the solid lines go from Ai to the sets in Ci, and are labelled with
the corresponding conditions. A labelled dotted arrow contains the information of Ri

Or, in the more familiar scheme notation, we have



{[A∅([a1, . . . , ak]), {[A0([a1, . . . , ak]), (a1 ≤ 2)], [A1([a1, . . . , ak]), (a1 ≥ 3)]}, ∅],

[A0([a1, . . . , ak]), ∅,
(

a1 + · · ·+ ak

a1

)
·A∅([a2, . . . , ak])],

[A1([a1, . . . , ak]), ∅, 0]}

We can read this scheme to obtain the following system of recurrences:

If ai ≤ 2 for all i, then

A∅([a1, . . . , ak]) = A0([a1, . . . , ak]) =
(

a1 + · · ·+ ak

a1

)
·A∅([a2, . . . , ak]) = · · ·

=
(

a1 + · · ·+ ak

a1

)
· · ·

(
ak−1 + · · ·+ ak

ak−1

)
·
(

ak

ak

)
=

(
a1 + · · ·+ ak

a1, . . . , ak

)
= {all words with alphabet vector a}

Otherwise, let j be the smallest integer for which aj ≥ 3. Then

A∅([a1, . . . , ak]) =
(

a1 + · · ·+ ak

a1

)
· · ·

(
aj−1 + · · ·+ ak

aj−1

)
·A∅([aj , . . . , ak])

=
(

a1 + · · ·+ ak

a1

)
· · ·

(
aj−1 + · · ·+ ak

aj−1

)
·A1([aj , . . . , ak]) =

(
a1 + · · ·+ ak

a1

)
· · ·

(
aj−1 + · · ·+ ak

aj−1

)
· 0 = 0

7 Avoiding the pattern 112

Now, we turn to the case of avoiding patterns of length 3 with 2 distinct letters. Taking into account the
symmetries of complement and reversal, once we can count Av(112), we may also count Av(211), Av(122),
and Av(221).

Consider the example of 112-avoiding words in more detail. As before, let A∅ be the set of all words avoiding
112, and let A0 and A1 be the sets of 0-critical and 1-critical words respectively. That is, A0 denotes words
without a repeated letter, and A1 denotes words with a 11 pattern but no 112 pattern.

We still write A∅([a1, . . . , ak]), and A0([a1, . . . , ak]) to denote words with a particular alphabet vector, but
for A1, we write A1([ai, . . . , ak], j), where j is the position of last letter of the first 11 pattern formed by the
letters 1, 2, . . . , i− 1 already in the word.

We have the following trivial base cases: If k = 1, then A0([a1]) = 1 (since there is only one word with
an alphabet vector [a1] and it avoids 112), and A1([ai], j) =

(
j−1+ai

ai

)
(since any letter inserted after the

repeated letter in position j forms a 112 forbidden pattern).

Now, consider what happens when k > 1. In general, we start with the empty word, and insert all a1 copies
of 1 into the word. Next, we insert all a2 copies of 2 into the word. At each iteration, the word composed of
all letters 1, 2, . . . , i is called the “old word”, and the word composed of 1, 2, . . . , i, i + 1, immediately after
all copies of the letter i + 1 have been inserted is called the “new word”.

If k > 1 and a1 = 1, there is no way for a single smallest letter to be part of a 112 pattern, so we may
find the number of words with alphabet vector [a2, . . . , ak], and insert the smallest letter anywhere. Thus,
A0([a1, . . . , ak]) =

(
a2+···+ak+1

1

)
·A∅([a2, . . . , ak]).



If k > 1 and a1 > 1, the first repeated letter in a string of identical letters 1 . . . 1︸ ︷︷ ︸
a1

is in position 2, so we have

A∅([a1, . . . ak]) = A1([a2, . . . , ak], 2).

Now, we move on to considering the sets A1([a1, . . . , ak], j).

If k > 1 and a1 = 1, we may not insert the new (larger) letter after position j. There are j choices for where
to insert this letter into the word before position j. Moreover, inserting this letter in the beginning of the
word moves the first repeated letter to position j+1 (see figures 2 and 3). Thus, we have A1([a1, . . . , ak], j) =
j ·A1([a2, . . . , ak], j + 1).

Figure 1: Old word, before inserting a1 2s

j − 1 old letters 1

position j

Figure 2: New word, after inserting a1 2s

j − 1 old letters 1
+1 new letter

position j + 1

If k > 1 and a1 > 1, again we know that none of the a1 (larger) letters to be inserted may appear after
position j. Since there are at least two identical letters to insert before position j, the new first repeated
letter will be one of the newly inserted letters. Thus, let the new first repeated letter be in position l (as in
figure 5). There are l − 2 old letters and 1 new letter before position l, and there are (j − 1) − (l − 2) old
letters and a1−2 old letters between position l and the old first repeated letter in position j. Thus, summing
over all posibilities for position l, A1([a1, . . . , ak], j) =

∑j+1
l=2 (l − 1)

(
(i−1)+(l−2)+(a1−2)

(a1−2)

)
A1([a2, . . . , ak], j).

Figure 4: Old word, before inserting a1 2s

(j − 1) old letters 1

position j

Figure 5: New word, after inserting a1 2s

l − 2 old letters 2 (j − 1)− (l − 2) old letters 1
+1 new letter +(a1 − 2) new letters

position l j + a1

Graphically, we have

Figure 6: Av(112)

A∅

A0 A1(i)

(a1=1)
yyrrrrrrrrrrrrr(a1+···+ak
a1

) 11

(a1>1) i:=2 %%LLLLLLLLLLLL

a1=1 =⇒ i·A1(i+1)
99

a1>1 =⇒
∑j+1

l=2 (l−1)((j−1)−(l−2)+(a1−2)
a1−2 )A1(l)

jj



Which is the same as:

A([a1, . . . , ak]) =


1 k = 1(
a2+···+ak+1

1

)
A([a2, . . . , ak]) k > 1, a1 = 1

B([a2, . . . , ak], 2) k > 1, a1 > 1

B([a1, . . . , ak], j) =


(
j−1+a1

a1

)
k = 1

j ∗B([a2, . . . , ak], j + 1) a1 = 1∑j+1
l=2 (l − 1)

(
(j−1)−(l−2)+(a1−2)

a1−2

)
B([a2, . . . , ak], l) a1 > 1

This recurrence is uniquely satisfied by

A[a1,...,ak] =
k∏

i=2

(ai + · · ·+ ak + 1)

This is a new proof of a result given by Heubach and Mansour [4]. More significantly it can be easily
generalized, as we will see.

8 Avoiding the pattern 121

To completely count all patterns of length 3 with at most 2 letters, it remains to count Av(121) (which will
allow us to enumerate Av(212)).

We can do this easily by adding a new parameter. The algorithm remains the same. Begin with an empty
word, and insert all copies of the smallest letter. Then, consider how many ways to insert the next largest
letter, keeping track of the maximal bad pattern. Since 121 is not a monotone pattern, however, it no longer
suffices to keep track of the earliest 11 pattern in 1-critical words.

More specificially, when we consider all copies of a letter l in a 121-avoiding word, we know that there can
be no larger letters between the first l and the last l in the word. Thus, this first l, last l, and all letters in
between act as if they were only one letter. Instead of parameterizing our scheme in terms of locations of
letters, it suffices to keep track of the number of such “blocks” of letters in the word. Notice that a word
may be either 0-critical or 1-critical from our previous notation and still have any number of blocks. Thus,
for 1-critical words, we define the following:

A1(a, i) := {1-critical words with alphabet vector a and exactly i blocks of letters }

so A∅([a1, . . . , ak]) := {all 121-avoiding words} = A1([a2, . . . , ak], 1). i.e., a word consisting of a1 1s consists
of a single block.

Now, consider a word with i blocks. We may not insert new letters into the middle of a block, but we may
insert letters anywhere between blocks. Moreover, if the new letters are not all adjacent, the first new letter
and the last new letter form the beginning and end of a new block.

For example, suppose the current 121-avoiding word is 33211222 and we wish to insert 2 4s. The current
word has 2 blocks: 33, and 211222. So we may put the 4s together: 4433211222, 3344211222 or 3321122244,
or we may separate them 4334211222, 4332112224, 3342112224.



In general, suppose we have a word w ∈ A([a1, . . . , al−1]) with i blocks, and we wish to insert al copies of
the letter l. The position of the first new l and the last new l determine a new block. Suppose that between
these two new letters there were b old blocks. Then there are

(
(al−2)+(b)

b

)
ways to arrange the other new

letters inside this new block. Moreover this turned b blocks into 1 block for a net loss of b− 1 blocks. So if j
is the new number of blocks after letter insertions, there are j = i− (b− 1), i.e. b = i + 1− j. Now there are
j ways to pick which consecutive b blocks will become one single new block, so there are j ·

(
(al−2)+(i+1−j)

(i+1−j)

)
ways to get j blocks from i blocks by inserting al letters.

This is represented graphically in figure 7, and can be written as:

Figure 7: Av(121)

∅

A1(i)

(i:=1)

��

∑i+1
j=1 j·((a1−2)+(i+1−j)

(i+1−j) )·A1(j)

WW

A1(i)[a1, . . . , ak] =
i+1∑
j=1

j ·
(

(a1 − 2) + (i + 1− j)
(i + 1− j)

)
A1(j)[a2, . . . , ak]

Together with the base case of A1(i)[] = 1, for the empty word, we have a recurrence completely counting
all words avoiding the pattern 121 which yields the unique solution:

A∅[a1, . . . , ak] =
k∏

i=2

(ai + · · ·+ ak + 1)

This result was also given by Heubach and Mansour [4], but was shown in a different way.

9 Avoiding the pattern 213

We now move on to words avoiding patterns of length 3 with 3 letters, i.e. words avoiding permutations.
This case can be taken care of by prefix schemes, as noted in [5], but for the sake of completeness, we describe
an alternate enumeration using the method of this paper.

Again, by the symmetries of complement and reversal, an enumeration scheme for Av(213) allows us to count
Av(312), Av(132), and Av(231).

We return to our original notation of i-critical words, and add a few parameters.

Let:
A∅([a1, . . . , ak]) = {all words}

A1([a1, . . . , ak], p) = { all 1-critical words with p letters after the left-most 1 pattern}

A2([a1, . . . , ak], p) = { all 2-critical words with leftmost 21 pattern ending in position p}



Trivially, by inserting a1 identical letters into the empty word, we have A∅([a1, . . . , ak]) = A1([a2, . . . , ak], a1−
1).

Now consider an arbitrary 1-critical word. Since this word contains a 1 pattern, but not a 21 pattern, all
letters must be in increasing order.

Consider a generic member of A1([a1, . . . , ak], p), as in figure 8. When we insert a1 new letters into this
word, either (a) we do not create a new 21 pattern (i.e. all new letters are appended to the end of the word),
as in figure 9, or (b), we do create a new 21 pattern, and keep track of where the leftmost such pattern ends,
as in figure 10.

Figure 8: Generic member of A1([a1, . . . , ak], p)

1 p old letters

position 1

Figure 9: Case a: no new 21 pattern

1 p old letters a1 new letters
(old letter)

position 1

Figure 10: Case b: new 21 pattern induced
j old letters 2 l − 1 new letters 1 p− j old letters

(new letter) (old letter) +a1 − l new letters
position j + 1 j + l + 1

Thus, A1([a1, . . . , ak], p) = A1([a2, . . . , ak], p + a1) +
∑a1

l=1

∑p
j=0

(
(p−j)+(a1−l)

a1−l

)
·A2([a2, . . . , ak], j + l + 1).

Finally, consider all 2-critical words, that is, words that contain a 21 pattern, but not a 213.

Say that the leftmost 21 ends in position p. Then no new (larger) letters may be inserted after position p
without creating a forbidden 213 pattern. Again, either (a) the letter that plays the role of 1 in the current
leftmost 21 pattern stays the same, as in figure 11, or (b) the newly inserted letters create an earlier 21
pattern, as in figure 12.

Figure 11: case a: 2-critical word with same leftmost 21 pattern

p− 1 old letters a1 new letters 1

position p + a1

Figure 12: case b: 2-critical word with new leftmost 21 pattern

j old letters 2 l − 1 new letters 1 (p− 1)− (j + 1) old letters old 1
(new letter) (old letter) +a1 − l new letters

position j + 1 j + l + 1

Thus, A2([a1, . . . , ak], p) = A2([a2, . . . , ak], p+a1)+
∑a1

l=1

∑p−2
j=0

(
(p−1)−(j+1)+(a1−l)

a1−l

)
·A2([a2, . . . , ak], j+l+1).

We can represent this in the more compact graphical notation, as in figure 13.

Figure 13: Av(213)



∅

A1(p)

A2(p)

(p:=a1−1)

��

∑a1
k=1

∑p
j=0 ((p−j)+(a1−k)

a1−k )·A2(j+k+1)

%%LLLLLLLLLLL
p:=p+a1

99

i·A1(i+1)+
∑a1

k=1

∑p−2
j=0 ((p−1)−(j+1)+(a1−k)

a1−k )·A2(j+k+1)

WW

Although this does not readily yield a nice closed formula as in the previous examples, we have now deduced
a system of recurrences that completely enumerates all words avoiding 213. This is an alternative way to
enumerate these words from Burstein [2].

10 Avoiding the pattern 123

To complete our classification of words avoiding patterns of length 3, we examine words avoiding the per-
mutation 123. The analysis of Av(123) turns out to be very similar to the analysis of Av(213).

Let:
A∅([a1, . . . , ak]) = {all words}

A1([a1, . . . , ak], p) = { all 1-critical words with p letters after the left-most 1 pattern}
A2([a1, . . . , ak], p) = { all 2-critical words with leftmost 12 pattern ending in position p}

Trivially, by inserting a1 identical letters into the empty word, we have A∅([a1, . . . , ak]) = A1([a2, . . . , ak], a1−
1).

Now consider an arbitrary 1-critical word. Since this word contains a 1 pattern, but not a 12 pattern, all
letters must be in decreasing order, as in figure 14. Notice, that we keep the leftmost 1 pattern separate for
further analysis.

When we insert a1 new letters into this word, either (a) we do not create a new 12 pattern (i.e. all new
letters are appended to the beginning of the word), as in figure 15, or, (b), we do create a new 12 pattern,
and keep track of where leftmost such pattern ends, as in figure 16.

Figure 14: Generic member of A1([a1, . . . , ak], p)

1 p old letters

position 1

Figure 15: Case a: no new 12 pattern

1 (a1 − 1) new letters old 1 p old letters
(new letter)

position 1 a1 + 1

Figure 16: Case b: new 12 pattern is induced



l − 1 new letters 1 j old letters 2 p− j old letters
(old letter) new letter +a1 − l new letters

position l j + l + 1

Thus, A1([a1, . . . , ak], p) = A1([a2, . . . , ak], p + a1) +
∑a1

l=1

∑p
j=0

(
(p−j)+(a1−l)

a1−l

)
·A2([a2, . . . , ak], j + l + 1).

Finally, consider all 2-critical words, that is, words that contain a 12 pattern, but not a 123. A generic
2-critical word is shown in figure 17.

Say that the leftmost 12 ends in position p. Then no letters may be inserted after position p without creating
a forbidden 123 pattern. Again, either (a) the letter that plays the role of 2 in the current leftmost 12 pattern
stays the same, as in figure 18, or (b) the newly inserted letters create an earlier 12 pattern, as in figure 19.

Figure 17: generic 2-critical word

p− 1 old letters 2 remaining old letters
including “1” (from leftmost 12 pattern)

position p

Figure 18: Case a: same leftmost 12 pattern

a1 new letters p− 1 old letters 2
(old letter)

position p + a1

Figure 19: Case b: earlier leftmost 12 pattern is induced

l − 1 new letters 1 j old letters 2 (p− 1)− (j + 1) old letters old 2
(old letter) (new letter) +a1 − l new letters

position l j + l + 1

Thus, A2([a1, . . . , ak], p) = A2([a2, . . . , ak], p+a1)+
∑a1

l=1

∑p−2
j=0

(
(p−1)−(j+1)+(a1−l)

a1−l

)
·A2([a2, . . . , ak], j+l+1).

This can be represented using the more compact graphical notation as in figure 20.

Figure 20: Av(123)

∅

A1(p)

A2(p)

(p:=a1−1)

��

∑a1
k=1

∑p
j=0 ((p−j)+(a1−k)

a1−k )·A2(j+k+1)

%%LLLLLLLLLLL
p:=p+a1

99

i·A1(i+1)+
∑a1

k=1

∑p−2
j=0 ((p−1)−(j+1)+(a1−k)

a1−k )·A2(j+k+1)

WW

The fact that Av(123) and Av(132) are equinumerous, as noted by Burstein [2], can be illustrated in a new
way via these identical schemes.

Now that we have used our divide and conquer method of finding schemes for words avoiding any pattern
of length 3, we turn to the main theorem of this paper.



11 Avoiding Monotone Patterns

The results of this paper, to this point, have previously been shown using other methods. As the case by
case analysis involved in finding schemes for pattern-avoiding words seems to be quite tedious at times, one
may wonder what the advantage of the present method is.

To date, there had been no infinite family of classes of pattern avoiding words (or permutations) which have
been shown to each have a finite enumeration scheme. This new kind of scheme has the advantage that there
provably exists a scheme for words avoiding any monotone pattern.

For ease of notation, consider the monotone pattern p = 1b1 · · ·mbm . Let A∅([a1, . . . , ak]) be the set of all
words avoiding p with frequency vector [a1, . . . , ak]. As before, Ai([a, . . . , ak]) is the set of i-critical words
with respect to p.

If a1 < b1, then we have A∅([a1, . . . , ak]) =
(
a2+···+ak+1

a1

)
A∅([a2, . . . , ak]), and also Ai([]) = 1 for any i.

For Ai, we also keep track of the positions of the end of the leftmost 1b1 , 1b12b2 , 1b12b23b3 , . . . , 1b12b2 · · · ibi

patterns.

Now, to find a recurrence equation for each Ai, one must only complete a case by case counting exercise, as
in the examples above. That is, consider the cases:

• the insertion of new (larger) letters does not affect any of the existing 1b1 , 1b12b2 , 1b12b23b3 , . . . ,
1b12b2 · · · ibi patterns

• the new letters create a new leftmost 1b12b2 pattern, but do not affect any of the 1b12b23b3 , . . . ,
1b12b2 · · · ibi patterns

• the new letters create a new leftmost 1b12b23b3 pattern, but do not affect any of the 1b12b23b34b4 ,. . . ,
1b12b2 · · · ibi patterns

• . . .

• the new letters create new leftmost 1b12b2 , 1b12b23b3 , . . . , 1b12b2 · · · ibi patterns

Although the counting and notation may get quite hairy, there are no added subtleties: to count words
avoiding a monotone pattern, one must only take sums of combinations of old sets as shown above.

Theorem 1. The set of words avoiding the monotone pattern 1b1 · · ·mbm has a scheme consisting of at most
m triples [Ai, Ci, Ri].

Proof. For each Ai above, Ai can clearly be written as a combination of Ais (either adding new letters
does not create an (i + 1)-critical pattern) and Ai+1s (adding new letters creates at worst an (i + 1)-critical
pattern). Since Ai = 0 for i ≥ m, the scheme ends with state Am−1, which has no new children (because
words in Am contain pattern p) thus giving a scheme of m triples.

It should be noted that this is the first method that guarantees a way to count a non-trivial family of
classes of pattern-avoiding words of arbitrary length. It should also be noted that the case of enumerating
pattern avoiding permutations avoiding a monotone pattern is a special case of this theorem, given by setting
a1 = · · · ak = b1 · · · bm = 1.



12 Future Work

The new version of enumeration schemes described in this paper gives a way to count words avoiding any
pattern of length up to 3. Further, the simple structure of monotone patterns makes it easy to track
occurences of subpatterns. Thus, words avoiding any monotone pattern are guaranteed to be counted by
this method.

Together with the method of prefix schemes for words given in [5], one can find recurrences counting many
classes of pattern-avoiding words. However, the following questions still remain:

• Can this method of schemes for monotone patterns be modified to count words avoiding non-monotone
patterns?

• What are other methods to count many classes of pattern-avoiding words?
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