
Pattern Avoidance in k-ary Heaps

Derek Levin
Department of Mathematics

University of Wisconsin – Eau Claire
Eau Claire, WI, USA

Lara K. Pudwell
Department of Mathematics and Statistics

Valparaiso University
Valparaiso, IN, USA

Lara.Pudwell@valpo.edu

Manda Riehl
Department of Mathematics

University of Wisconsin – Eau Claire
Eau Claire, WI, USA
RIEHLAR@uwec.edu

Andrew Sandberg
Department of Mathematics

University of Wisconsin – Eau Claire
Eau Claire, WI, USA

March 4, 2015

Abstract

In this paper, we consider pattern avoidance in k-ary heaps, where the permutation
associated with the heap is found by recording the nodes as they are encountered
in a breadth-first search. We enumerate heaps that avoid patterns of length 3 and
collections of patterns of length 3, first with binary heaps and then more generally
with k-ary heaps.

1 Introduction

In this paper, we continue a long line of research extending the notion of classical pattern
avoidance in permutations to other structures. Given permutations π = π1π2 · · · πn and
ρ = ρ1ρ2 · · · ρm we say that π contains ρ as a pattern if there exist 1 ≤ i1 < i2 < · · · < im ≤ n
such that πia < πib if and only if ρa < ρb. In this case we say that πi1πi2 · · · πim is order-
isomorphic to ρ and that πi1πi2 · · · πim reduces to ρ. If π does not contain ρ, then π is said
to avoid ρ. This classical definition of pattern avoidance in permutations has seen broad
application in areas ranging from the analysis of sorting algorithms to algebraic geometry.
Analogues of pattern avoidance have been developed for a variety of combinatorial objects
including Dyck paths [1], tableaux [5], set partitions [8], and more. In this paper, we are
interested in analogues of pattern avoidance in ordered graph structures. In 2010, Rowland
[7] introduced pattern avoidance in unlabeled binary trees. Essentially, tree T contains tree
t if t is a contiguous, rooted, ordered subgraph of T . This definition of tree pattern was

1

later generalized by the second author and coauthors to describe non-contiguous patterns
in binary and k-ary trees [2, 3]. Here, tree T contains tree t as a non-contiguous pattern
if there is a sequence of edge-contractions in T that produce t. More recently, in 2014,
Yakoubov studied pattern avoidance in linear extensions of posets [9]. In particular, she
considered specific classes of comb posets, which are essentially rooted, ordered, trees with
vertices labeled in one of two canonical ways. For each type of comb poset and each canonical
labeling, Yakoubov enumerated the linear extensions of the poset that produce permutations
avoiding given patterns. In this paper, we extend the notion of pattern avoidance to a special
kind of tree called a heap. Like work with comb posets, our heaps are labeled trees where
each vertex has a label larger than its parent. Like work with unlabeled trees, we seek to
determine the total number of heaps that avoid a given pattern, rather than work with linear
extensions. Furthermore, our results for pattern avoidance in heaps, like pattern avoidance
in unlabeled trees, can be translated into results for pattern-avoiding permutations where the
permutations satisfy some additional structural restrictions. Although our work is motivated
by previous work with pattern-avoiding trees and combs, our notion of pattern avoidance is
distinct from the definitions used in previous work.

A complete k-ary tree is a tree where each node has k or fewer children, all levels except
possibly the last are completely full (i.e. level i contains ki−1 vertices), and the last level has
all its nodes to the left side (i.e. for any two vertices in the penultimate level, if the right-
vertex has a positive out-degree, then the outdegree of the left vertex is k). A k-ary heap is
a complete k-ary tree labeled with {1, . . . , n} such that every child has a larger label than its
parent. We draw trees (resp. heaps) with the root at the bottom of the figure. An example of
a 2-ary (i.e. binary) heap on 10 vertices in shown in Figure 1. Let Hk

n denote the set of k-ary
n-vertex heaps. We see that the heap in Figure 1 is a member of H2

10. Notice that the heap
in Figure 1 has 5 leaves. The number of leaves in a given n-vertex heap will be important
throughout this paper, since many of our enumerations depend on the number of leaves.
In general, an n-vertex binary heap has

⌈
n
2

⌉
leaves. This is a straightforward computation:

if i is the number of internal vertices and ` is the number of leaves, we have i + ` = n.
Each internal vertex, except possibly the rightmost vertex on the penultimate level, has
outdegree 2 (in particular, when n is even the right-most internal vertex on the penultimate
level has out-degree 1). We know the number of edges in an n-vertex heap is n − 1, so,
depending on the degree of the last internal vertex we have either n − 1 = 2(i) = 2(n − `)
or n− 1 = 2(i− 1) + 1 = 2i− 1 = 2(n− `)− 1. In either case, after solving for `, we obtain⌈
n
2

⌉
. A similar argument shows that an n-vertex k-ary heap has

⌈
(k−1)n−(k−2)

k

⌉
leaves.

Given a heap H, we associate a permutation πH by recording the vertex labels as they
are encountered in a breadth-first search. For example, if H is the heap in Figure 1, then
πH = 142683579(10). We say that heap H contains (resp. avoids) ρ as a pattern if πH
contains (resp. avoids) ρ as a classical pattern, using the definition above. Let Hk

n(P) be the
set of members of Hk

n that avoid all patterns in list P . While the heap in Figure 1 contains
123, 132, 213, 231, and 312, it is a member of H2

10(321).
Throughout this paper, the main question is “how many elements are in Hk

n(P)?” In

2

1

2

53

4

8

10

6

97

Figure 1: A binary heap with 10 vertices

general we fix k = 2 and a set of patterns P and then determine a formula for the sequence{∣∣Hk
n(P)

∣∣}
n≥1, with key results shown in Table 1. The third column of the table gives entries

from the Online Encyclopedia of Integer Sequences [6]. The prevalence of sequences with
low reference numbers indicates that our results for pattern-avoiding heaps have connections
to other well-known combinatorial structures. Sequences A246747 and A246829, however,
are new results particular to this study of heaps.

In Section 2 we consider heaps that avoid a single pattern of length 3. In Section 3 we
consider heaps that avoid a pair of patterns of length 3, and in Section 4 we consider heaps
avoiding three or more patterns of length 3. In Section 5 we generalize the results of the
previous sections to k-ary heaps.

2 Heaps avoiding a pattern of length 3

Before we count pattern-avoiding heaps, it is instructive to enumerate all binary heaps. Let
an = |H2

n|. It is immediate that a0 = 1 and a1 = 1. Now, for n ≥ 2, notice that the root of
a heap must have label 1, and the rest of the vertices in the heap partition into two smaller
heaps. If we let

h = blog2(n+ 1)c − 1,

b = 2h − 1,

r = n− 1− 2b,

r1 = r −
⌊ r

2h

⌋
(r − 2h),

r2 = r − r1,

then the left subheap has b + r1 vertices and the right subheap has b + r2 vertices. This is
because h is the number of complete levels in the heap other than the root, b is the number

3

Patterns P {|H2
n(P)|}n≥1 OEIS Result

∅ 1, 1, 2, 3, 8, 20, 80, 210, 896, . . . A056971 Theorem 1

123 1, 1, 1, 0, 0, 0, 0, 0, 0, . . . A000004 Theorem 2
132 1, 1, 1, 1, 1, 1, 1, 1, . . . A000012 Theorem 3
213 1, 1, 2, 2, 5, 5, 14, 14, 42, . . . A208355 Theorem 4
231

1, 1, 2, 3, 7, 14, 37, 80, 222, . . . A246747
Theorem 5

312 Theorem 6
321 1, 1, 2, 3, 7, 16, 45, 111, 318, . . . A246829 OPEN

{213, 231}
1, 1, 2, 2, 4, 4, 8, 8, 16, . . . A016116

Theorem 7
{213, 312} Theorem 8
{213, 321} 1, 1, 2, 2, 4, 4, 7, 7, 11, . . . A000124(

⌈
n
2

⌉
) Theorem 9

{231, 312}
1, 1, 2, 3, 6, 11, 22, 42, 84, . . . A002083

Theorem 10
{231, 321} Theorem 11
{312, 321} Theorem 12

{213, 231, 312}
1, 1, 2, 2, 3, 3, 4, 4, 5, . . . A008619 Theorem 13{213, 231, 321}

{213, 312, 321}
{231, 312, 321} 1, 1, 2, 3, 5, 8, 13, 21, 34 . . . A000045 Theorem 14

{213, 231, 312, 321} 1, 1, 2, 2, 2, 2, 2, 2, 2, . . . A046698 Theorem 15

Table 1: Enumeration of pattern-avoiding binary heaps

4

of vertices on all complete levels in the left (resp. right) subheap, r is the number of vertices
in the incomplete level at the top of the heap, and r1 (resp. r2) is the number of vertices in
the incomplete level at the top of the left (resp. right) subheap. After choosing which of the
numbers {2, . . . , n} will appear in the left subheap, we have the following recursive formula
for an:

an =

(
n− 1

b+ r1

)
ab+r1ab+r2 .

Knuth provides an equivalent formula for the number of binary heaps on n vertices,
computed as a product.

Theorem 1 ([4], Exercise 5.1.20). Given a binary heap on n vertices, let si be the size of the
subtree whose root has label i, and let Mn be the multiset {s1, s2, . . . , sn} of all these sizes.
Then the number of heaps on n vertices is given by

n!

s1s2 · · · sn
=

n!∏
s∈Mn

s
.

When we consider pattern-avoiding heaps the algebra is more straightforward, but the
recursive process carries over. It turns out that heaps are more likely to contain lexicograph-
ically small patterns. This makes sense since the heap structure of H forces smaller digits
to appear near the beginning of πH . We consider all six patterns of length 3 in lexicographic
order in the subsections below.

2.1 The patterns 123, 132, and 213

First, we consider the three lexicographically least patterns of length 3: 123, 132, and 213.
Each of these allows for a simple and well-known enumeration sequence. The easiest pattern
of length 3 to contain is 123.

Theorem 2. Let n ≥ 1. Then, |H2
n(123)| =

{
1 n ≤ 3

0 n ≥ 4
.

Proof. For n ≤ 3, we show by exhaustion that there is exactly one heap avoiding 123. The
appropriate heaps are shown below.

1 1

2

1

23

On the other hand, if n ≥ 4, at the root our heap H contains the structure below where
a < b < d. Since abd is a subsequence of πH , H necessarily contains the pattern 123.

5

a

cb

d

The analysis of 132-avoiding binary heaps is even simpler.

Theorem 3. Let n ≥ 1. Then, |H2
n(132)| = 1.

Proof. Let H ∈ H2
n(132). We know that the root must have label 1. Then, for πH to avoid

132, all other labels must appear in increasing order. There is a unique heap where πH is
increasing for each n ≥ 1.

Finally, we consider heaps avoiding the pattern 213. This is our first non-trivial result,
and it depends on the fact that an n-vertex binary heap has

⌈
n
2

⌉
leaves.

Theorem 4. Let n ≥ 1 and let Cn =
(2n

n)
n+1

be the nth Catalan number. Then,∣∣H2
n(213)

∣∣ = Cdn2 e.

Proof. First, notice that in a heap avoiding 213, we cannot have any descents on internal
nodes. If we had a descent beginning on an internal node, then the descent together with
the child of the internal node would create an occurrence of a 213.

Further, we cannot have nonconsecutive labels on consecutive internal nodes. Assume
we have nonconsecutive labels on a pair of consecutive internal nodes. Consider the first
such occurrence. We have a < b < c < d where a and c are labels on consecutive internal
nodes, label b occurs later than a and c, and d is the label on a child of c. Notice that b
must occur before d in the associated permutation, since each internal node after c is larger
than c, precluding b from being its child. Then the heap has subword acbd, which contains
the 213 pattern cbd.

Therefore, the labels on the internal nodes appear in consective increasing order. There
are no restrictions on the labels for the leaves, except that the permutation must avoid
213. Such permutations are well-known to be counted by the Catalan numbers. Since there
are

⌈
n
2

⌉
leaves in an n-vertex binary heap, the number of heaps avoiding 213 is given by

Cdn2 e.

6

2.2 The patterns 231 and 312

The next two patterns, 231 and 312, turn out to have the same enumeration. First, we
consider 231-avoiders.

Theorem 5. Let n ≥ 1 and let Cn =
(2n

n)
n+1

be the nth Catalan number. Then, |H2
1(213)| = 1

and for n ≥ 2, ∣∣H2
n(231)

∣∣ =

dn2 e−1∑
i=0

Ci ·
∣∣H2

n−i−1(231)
∣∣ .

Proof. Consider H ∈ H2
n(231). First, observe that the label n must appear on one of the⌈

n
2

⌉
leaves of H. That is πH = π1π2 · · · πn−i−1nπn−i+1 · · · πn where there are 0 ≤ i ≤

⌈
n
2

⌉
− 1

labels after n.
Further, since πH avoids 231, we know the elements π1π2 · · · πn−i−1 are smaller than

πn−i+1 · · · πn. The labels πn−i+1 · · · πn must avoid 231, and since these labels all appear on
leaves, there are Ci ways to arrange them so that they avoid 231. The elements π1π2 · · · πn−i−1,
on the other hand, must form another 231-avoiding heap. There are

∣∣H2
n−i−1(231)

∣∣ ways to
build a 231-avoiding heap with n − i − 1 vertices, so summing over all possible values for i
yields the result.

It turns out that |H2
n(312)| satisfies the same recurrence. However, we prove this with a

bijection rather than via direct enumeration.

Theorem 6. Let n ≥ 1. Then, ∣∣H2
n(231)

∣∣ =
∣∣H2

n(312)
∣∣ .

Proof. We define a bijection φ : H2
n(231) → H2

n(312). First, if H ∈ H2
n(231) ∩ H2

n(312),
φ(H) = H.

Now, let H ∈ H2
n(231) \ H2

n(312). Let M be the set of left-to-right maxima of πH . For
example, in the heap shown below, πH = 125349867 and M = {1, 2, 5, 9}.

1

5

89

2

43

76

Let p = |M | and order the elements of M such that m1 < m2 < · · · < mp. Let Mi be
the elements of πH after and including mi but before mi+1 for 1 ≤ i ≤ p− 1. Let Mp be the
subpermutation beginning with mp and continuing to the end of πH . We make the following
observations.

7

• The elements of M appear in πH in increasing order. This is by definition of left-to-right
maxima.

• If an element m ∈ M appears in a 312 pattern, it must play the role of ‘3’. If, on the
contrary, m plays the role of a ‘1’ or ‘2’ then there is an element to the left of m and
larger than m that plays the role of ‘3’ instead. This contradicts the fact that m is a
left-to-right maximum.

• All elements of Mi+1 are larger than all elements of Mi. If not, πH contains a 231
pattern where mi+1 plays the role of ‘3’.

• Two elements m∗,m′ ∈ Mi may not appear with m∗ above m′ in H. If there existed
two such elements, then there would be another element of Mi that appears above mi,
which is the largest element of Mi. This contradicts the definition of heap.

These observations imply that each Mi consists of a consecutive set of integers on con-
secutive vertices of H and that we may permute elements within an individual Mi without
destroying heap structure. We seek to transform a 231-avoiding heap with j copies of 312
into a 312-avoiding heap with j copies of 231. To this end, for each Mi let M∗

i be the set of
elements that play the role of ‘2’ in a 312 pattern where mi plays the role of ‘3’. Notice that
M∗

i is exactly the set of elements of Mi appearing after min(Mi). Move all these elements
before mi to create copies of 231. Do this on each Mi to obtain φ(H).

For example, the heap above with πH = 125349867 would map to φ(πH) = 124537986,
which corresponds to the heap shown below.

1

4

97

2

35

68

To produce φ−1 : H2
n(312)→ H2

n(231), again if H ∈ H2
n(231) ∩H2

n(312), φ−1(H) = H.
Now, suppose H ∈ H2

n(312)\H2
n(231) and let M be the set of right-to-left minima of πH .

Let p = |M | and order the elements of M such that m1 < m2 < · · · < mp. Let Mi be the
elements of πH before and including mi+1 but after mi for 2 ≤ i ≤ p. We make the following
observations.

• The elements of M appear in πH in increasing order. This is by definition of right-to-left
minima.

8

• If an element m ∈ M appears in a 231 pattern, it must play the role of ‘1’. If, on the
contrary, m plays the role of a ‘2’ or ‘3’ then there is an element to the right of m and
smaller than m that plays the role of ‘1’ instead. This contradicts the fact that m is a
right-to-left minimum.

• All elements of Mi+1 are larger than all elements of Mi. If not, πH contains a 312
pattern where mi+1 plays the role of ‘1’.

• Two elements m∗,m′ ∈ Mi may not appear with m∗ above m′ in H. If there existed
two such elements, then there would be another element of Mi that appears below
mi+1, which is the smallest element of Mi. This contradicts the definition of heap.

These observations imply that each Mi consists of a consecutive set of integers on con-
secutive vertices of H and that we may permute elements within an individual Mi without
destroying heap structure. We seek to transform a 312-avoiding heap with j copies of 231
into a 231-avoiding heap with j copies of 312. To this end, for each Mi let M∗

i be the set of
elements that play the role of ‘2’ in a 231 pattern where mi+1 plays the role of ‘1’. Notice
that M∗

i is exactly the set of elements of Mi appearing before max(Mi). Move all these
elements after mi+1 to create copies of 312. Do this on each Mi to obtain φ−1(H).

2.3 The pattern 321

Enumeration of 321-avoiding heaps remains open. We have computed {|H2
n(321)|}31n=1 as

shown in Table 2 using the recursive technique described below.

n |H2
n(321)| n |H2

n(321)| n |H2
n(321)|

1 1 11 2686 21 395303480
2 1 12 8033 22 1379160685
3 2 13 25470 23 4859274472
4 3 14 80480 24 17195407935
5 7 15 263977 25 61310096228
6 16 16 862865 26 219520467207
7 45 17 2891344 27 790749207801
8 111 18 9706757 28 2859542098634
9 318 19 33178076 29 10391610220375
10 881 20 113784968 30 37897965144166

31 138779392289785

Table 2: The number of 321-avoiding binary heaps for n ≤ 31

Notice that in any n-vertex heap, the label n must appear on a leaf. Further, in a 321-
avoiding heap, all labels after the n must appear in increasing order. Therefore, if n appears

9

in position i in πH , n − 1 may not appear in positions i + 1, . . . , n − 1, but it may appear
before the label n or in position n.

Our recursive technique begins with a binary tree with n vertices but with labels chosen
from {−2,−1, 0} as shown below. Leaves initially have label 0, which indicates that n may
be placed on that vertex without violating the creation of a 321-avoiding heap. The internal
vertices initially have label -2, which indicates that that vertex has children who have not
yet received a label. A label of -1 will be used in subsequent iterations to mark a leaf with
a labeled vertex to its left and unlabeled vertices to its right.

-2

-2

00

-2

0-2

00

The children of this tree consist of all choices where the largest unused label from
{1, . . . , n} has been placed on a 0 vertex, and the other vertices’ labels are updated to
the appropriate label from {−2,−1, 0}. For example, the tree above has 5 leaves and thus 5
children. They are shown below.

-2

-2

00

-2

0-2

90

-2

-2

00

-2

0-2

09

-2

-2

90

-2

0-2

0-1

-2

-2

-19

-2

0-2

0-1

-2

-2

-1-1

-2

9-2

0-1

By iterating this process, n times, we eventually obtain each heap in H2
n(321) exactly

once. Often, we iterate and produce a heap where the final i vertices have labels and the first
n− i vertices do not. In this case, we can recursively compute

∣∣H2
n−i(321)

∣∣ to determine the
number of children more quickly. While brute force techniques become time-consuming for
heaps with 10 or more vertices; the labeling conventions above have allowed us to compute
the number of 321-avoiding heaps with as many as 31 vertices.

Although we do have have a closed formula for |H2
n(321)|, we may place some bounds on

|H2
n(321)|.

Lemma 1. For n ≥ 9, 2n−1 < |H2
n(321)| < 4n.

10

Proof. For the upper bound, notice that H2
n(321) ⊆ Sn(321), and it is well-known that

|Sn(321)| = Cn < 4n, where Cn =

(
2n
n

)
n+ 1

is the nth Catalan number.

On, the other hand, for the lower bound we give a constructive argument. When n = 9,
we have 28 = 256 < 318 = |H2

9(321)|. Now, for n ≥ 9, we need only show that for
H ∈ H2

n(321), there exist at least two heaps H∗, H ′ ∈ H2
n+1(321) that can be generated from

H. First, given H ∈ H2
n(321), let H∗ be the heap obtained by adding (n + 1) as a new last

leaf vertex. Second, to generate H ′ ∈ H2
n+1(321), consider separate cases for if n+ 1 is even

or odd. If (n + 1) is odd, then the last two leaves of H share the same parent, so we may
also add (n + 1) as the penultimate leaf without creating a 321-pattern. If (n + 1) is even,
then consider three subcases to create H ′ from H. (i) If the first leaf i is smaller than the
last leaf j, then insert n+ 1 as the penultimate leaf, and i will become j’s parent. (ii) If the
first leaf i is larger than the last leaf j and i 6= n, then put (n+ 1) in n’s place and put n as
the new last leaf. (iii) If the first leaf is n, then the last leaf must be (n− 1). Exchange the
locations and n and (n − 1). Now the last 2 leaves are a and n for some a < n. Change a
to (n+ 1), change n to a, and add a new leaf above (n− 1) with label n.

We have generated ⋃
H∈H2

n(321)

{H∗, H ′} ⊆ H2
n+1(321)

where
∣∣∣⋃H∈H2

n(321)
{H∗, H ′}

∣∣∣ = 2 |H2
n(321)|, which shows that 2n−1 < |H2

n(321)| for n ≥
9.

It is clear, then, that |H2
n(321)| grows exponentially. It remains to determine c ∈ (2, 4)

such that |H2
n(321)| ∼ cn. Based on numerical data, we conjecture that c > 3.66.

To get a better understanding of |H2
n(321)|, we also consider the sequence

|H2
n+1(321)|
|H2

n(321)|
. A

sequence a1, a2, . . . is said to be log-convex if a2i ≤ ai−1ai+1 for i ≥ 2. In other words, a
sequence is log-convex if the sequence of ratios of consecutive terms is weakly increasing.

When we compute these ratios with the terms in Table 2, the only times when
|H2

n+1(321)|
|H2

n(321)|
>

|H2
n+2(321)|
|H2

n+1(321)|
are when n ∈ {2, 4, 6, 8, 10, 12, 14}. Because we are concerned with binary heaps, it

also makes sense to consider the sequences
{∣∣H2

2i+1(321)
∣∣}

i≥0 and {|H2
2i(321)|}i≥1 separately.

When we consider the ratio of consecutive terms in each of these sequences, the ratios are
always increasing for the data in Table 2.

To that end, based on the 31 terms in Table 2, we make the following conjectures.

Conjecture 1. The following are true for |H2
n(321)|:

1. |H2
n(321)| ∼ cn for some constant c ∈ (3.66, 4).

2. {|H2
n(321)|}n≥15 is log-convex.

3.
{∣∣H2

2i+1(321)
∣∣}

i≥0 is log-convex.

11

4. {|H2
2i(321)|}i≥1 is log-convex.

3 Heaps avoiding a pair of patterns of length 3

Next, we study pairs of patterns of length 3. While there are 15 such pairs of patterns, we
focus on the

(
4
2

)
= 6 pairs of patterns {σ, τ} where both |H2

n(σ)| and |H2
n(τ)| are non-trivial.

3.1 Heaps avoiding {213, 231} or {213, 312}
Just as |H2

n(231)| = |H2
n(312)|, these enumerations still agree when we add the extra restric-

tion of avoiding 213. First we consider heaps avoiding both 213 and 231.

Theorem 7. Let n ≥ 1. Then, ∣∣H2
n(213, 231)

∣∣ = 2d
n
2 e−1.

Proof. As we know from the proof of Theorem 5, to create a heap avoiding 231, we must
have n on a leaf and all labels before n must be less than all labels after n. Additionally, to
avoid 213, all labels before n must be in increasing order. Combining these two facts, we see
that all interior nodes must be labeled consecutively starting with 1. It remains to label the⌈
n
2

⌉
leaves of the heap with the labels

{
n−

⌈
n
2

⌉
+ 1, . . . , n

}
in a way that avoids 213 and

231. It is well known that the number of permutations of length i avoiding 213 and 231 is
given by 2i−1 (filling in the permutation from left to right, the next element must always be
either the smallest or the largest of the remaining elements), so replacing i with

⌈
n
2

⌉
gives

the theorem.

It turns out that heaps avoiding both 213 and 312 have the same enumeration.

Theorem 8. Let n ≥ 1. Then, ∣∣H2
n(213, 312)

∣∣ = 2d
n
2 e−1.

Proof. From the proof of Theorem 4 we know that the internal nodes of H ∈ H2
n(213, 312)

must be consecutive integers. We need only consider the number of ways to form a {213, 321}-
avoiding permutation with the

⌈
n
2

⌉
largest labels on on the leaves.

Given a permutation that avoids both 213 and 312 we see that after the first descent
all numbers must appear in decreasing order, lest we create a forbidden pattern. Therefore,
if ` =

⌈
n
2

⌉
is the number of leaves of H, we choose 0 ≤ i ≤ ` − 1 of the ` − 1 labels in

{n− `+ 1, . . . , n− 1} to appear in increasing order before n, and then the remaining labels
appear in decreasing order after n. Summing over all possible values of i yields

`−1∑
i=0

(
`− 1

i

)
= 2`−1

possible heaps, and replacing ` with
⌈
n
2

⌉
gives the theorem.

12

3.2 Heaps avoiding {213, 321}
It turns out that heaps avoiding 213 and 321 are enumerated by another simple combinatorial
formula.

Theorem 9. Let n ≥ 1. Then,

∣∣H2
n(213, 321)

∣∣ = 1 +

(⌈
n
2

⌉
2

)
.

Proof. Suppose H ∈ H2
n(213, 321). Then H has ` =

⌈
n
2

⌉
leaves. We observe the following:

• Because H is a heap, n appears on a leaf.

• Because H avoids 321, all labels after n are increasing.

• Because H avoids 213, all labels before n are increasing. Furthermore, all labels after
n form a consecutive set of integers. Otherwise, there exists b before n and labels a
and c after n where a appears before c, a < b < c, and bac forms a 213 pattern in πH .

• The n − ` internal vertices must have labels 1, 2, . . . , n − `. Otherwise, consider the
label i of the last internal vertex of H. If i > n− `, there is some label less than i that
is not used on an internal vertex. Let j be the largest such label. By the observations
above, the last `+ 1 digits of πH must be i(i+ 1)(i+ 2) · · ·n followed by a consecutive
increasing run of integers ending with j. Since i is the label of the last internal vertex,
and j is the label of the last leaf, j must be i’s child in H. But j < i, which contradicts
the definition of heap.

Therefore, with H ∈ H2
n(213, 321), the labels of the internal vertices are already deter-

mined, and it only remains to label the leaves with {n − ` + 1, . . . , n}. If n appears on the
last leaf, then πH must be the identity permutation. Otherwise, if there are i ≥ 1 leaves
after n, there are ` − i ways to choose which consecutive labels appear after n. Summing
over all possible values of i, we obtain 1+

∑`−1
i=1(`− i) = 1+

(
`
2

)
possible heaps avoiding both

213 and 321. Replacing ` with
⌈
n
2

⌉
gives the theorem.

3.3 Heaps avoiding {231, 312}, {231, 321}, or {312, 321}
Our remaining three pairs of patterns all yield the same enumeration. It turns out that with
an offset of one term, the sequence {|H2

n|}n≥1 is given by the Narayana-Zidek-Capell numbers
(OEIS A002083), which have appeared in problems involving single-elimination tournaments,
lattice paths, and trees. Our pattern-avoiding heaps give yet another appearance of this
recursive sequence.

Theorem 10. Let an = |H2
n(231, 312)|. Then, a1 = 1, a2 = 1, and for n ≥ 3, an = 2an−1

when n is odd, and an = 2an−1 − an−2
2

when n is even.

13

Proof. To count {231, 312}-avoiders, we make an insertion argument. We begin with a heap
on n− 1 nodes that avoids {231, 312}, insert n at some point in the permutation and move
all the node labels forward after it, but leave it an increasing tree. Below we show a heap
on 5 vertices where, after inserting the label 6, we obtain a non-increasing tree.

1

42

53

1

2

5

6

34

We make two key observations about insertion:

1. The vertex labeled n − 1 is always a leaf before insertion. After insertion, the vertex
labeled n is always a leaf.

2. In order for the associated permutation to avoid 231 and 312, n must be inserted
directly before n− 1 or at the end of the heap.

The first observation follows directly from properties of heaps, while the second obser-
vation takes more thought. If we insert n directly before n − 1, we have not created any
occurrences of 231 nor 312, or there already would have been one present before insertion.
If we insert n at the end, we have not created any occurrences of 231 nor 312. We cannot
insert n anywhere further before n− 1, or we will create a 312 pattern as shown below.

1

3

6

2

54

1

3

65

2

74

1

3

65

2

74

Further, we cannot insert n after n − 1 but not at the end or we have created a 231
pattern, as shown below.

1

3

5

2

64

1

3

57

2

64

1

3

57

2

64

14

Now, we consider two cases.
Case 1: n is odd.

Since n is odd, the new leaf added to the heap is the sibling of a current leaf. Thus
all nodes that were internal nodes before insertion stay internal nodes and their labels do
not change, and all leaves stay leaves, plus the new sibling of the final leaf is added. Since
n − 1 was on a leaf before insertion, n − 1 and n are both on leaves after insertion. Some
of the leaf labels may have shifted to be the children of a new root, and we should carefully
examine why our tree remains increasing after this shift. The only way we could have made
a non-increasing tree would be by shifting a right leaf label before insertion to be a left leaf
after insertion, and that its label is now smaller than its new parent. This cannot occur, for
if such a situation existed, then before insertion, the offending parent node, the node that
was labeled n − 1 and the node that will be shifted form a 231. Therefore our insertion
process cannot have created a tree that is not increasing. Then we have exactly two choices
for creating a heap of size n from each heap of size n− 1, so an = 2an−1.
Case 2: n is even.

In this case, the new leaf added to the heap is the child of a node which was a leaf before
insertion. As such this new parent node might have a large label since it was a leaf before
insertion. So unlike Case 1 above, there is the possibility that inserting n immediately before
n− 1 might create a tree that is no longer increasing. We examine each insertion (n at the
end of the permutation, n immediately before n− 1 but n− 1 was not on the first leaf, and
n immediately before n − 1 when n − 1 was on the first leaf) to see which options cause
forbidden labelings for our trees.

If we insert n at the end, it becomes the child of our former leaf, but the tree is still
increasing, no matter what the label of our new parent node was.

If we insert n immediately before n− 1, but not on the first leaf, we must consider if we
could have the situation pictured below, where because a is less than b, we no longer have a
heap. However, this situation is impossible, because we must already have had a 231 pattern
in our heap before insertion, namely b(n − 1)a. Thus all instances for this insertion form
legal heaps.

a

b

a < b

If we insert n immediately before n − 1 on the first leaf, then n becomes the parent of
a node with a (guaranteed) smaller label. We do not want to count these possibilities, even
though they may still avoid 231 and 312, because they are not heaps. Since n−1 was on the
first leaf before insertion, (and after insertion, as a matter of fact), all the labels after n− 1
are in decreasing order. The subtree obtained by removing all leaves needs to avoid 231 and

15

312, and there are n−2
2

nodes on that subtree. Thus there are an−2
2

ways to have inserted n

immediately before n− 1 on the first leaf and created trees that are no longer increasing.
Summing the possibilities from Case 1 and Case 2, of the 2an−1 ways to insert n while still

avoiding {231, 312}, an−2
2

create trees that are not increasing, so there are an = 2an−1−an−2
2

ways to create a heap on n vertices that avoids {231, 312}. Thus we have the same recurrence
relation and initial condition as the Narayana-Zidek-Capell numbers offset by a single starting
term, proving our theorem.

It turns out that {231, 321}-avoiding heaps and {312, 321}-avoiding heaps have the same
enumeration.

Theorem 11. Let n ≥ 1. Then,∣∣H2
n(231, 312)

∣∣ =
∣∣H2

n(231, 321)
∣∣ .

Proof. We wish to define a bijection φ : H2
n(231, 312)→ H2

n(231, 321).
Consider H ∈ H2

n(231, 312) and let M be the set of left-to-right maxima of πH . Let
p = |M | and label the elements of M such that m1 < m2 < · · · < mp. We observe the
following:

• All elements after mi and less than mi appear in decreasing order because πH avoids
312.

• All elements between mi and mi+1 are less than the set of elements after mi+1 because
πH avoids 231.

Therefore, to compute φ(πH), for 1 ≤ i ≤ p − 1 arrange the elements between mi and
mi+1 in increasing order. Then put the elements after mp in increasing order. φ is clearly
invertible.

For our last pair of patterns, we make another insertion argument.

Theorem 12. Let n ≥ 1. Then,∣∣H2
n(231, 312)

∣∣ =
∣∣H2

n(312, 321)
∣∣ .

Proof. Consider H ∈ H2
n−1(312, 321). To avoid 312, every label after n − 1 in H is in

decreasing order. Similarly, to avoid 321, every label after n− 1 in H must be in increasing
order. Thus H has n− 1 on the last or second-to-last leaf.

We will now insert n to create elements of H2
n(312, 321). We must insert n at the end of

the heap, or at the penultimate position. In either case, the heap still avoids 321 and 312.
But does the insertion leave us with a legal heap?
Case 1: n is odd.

In this case, the leaf added to insert n has a sibling, so whether we insert at the ultimate
or penultimate position, we still have a legal heap, because no parent-child relationships have

16

changed except that the parent of the last leaf has a new child labeled n. Thus each element
of H2

n−1(312, 321) yields 2 elements in H2
n(312, 321), so an = 2an−1 when n is odd.

Case 2: n is even.
In this case, when we add a new leaf to our heap, a node that was a leaf becomes an

interior node. When we insert n at the end, we create a legal heap. However, when we insert
n before the last element, we might end up with a leaf with a label smaller than that of its
parent, as pictured below.

v`−2

c

n a

b
v2 v3 v4

a < b

How many ways can such a situation happen? Let ` = n
2
, the number of leaves on the

heap. Label the vertices between a and b with v2 through v`−1. Then we know that v`−1 = n
and b > a. Additionally, we know that for all 1 < i < `− 1, we know vi > b, otherwise bvia
forms a 321 pattern.

Next, notice that all interior node labels are less than b, otherwise combined with b and
a we would form a 321 pattern. But in fact, significantly more is true, because all interior
nodes labels are less than a, though this is a bit more subtle! The penultimate interior node
(labeled c in the diagram above) is less than a since a was its child before insertion. Then
all nodes before c are also less than a, otherwise we would form a 312 pattern with c and a.
The vi’s are in increasing order. If they were not, consider the first descent vivi+1, and see
that vivi+1a forms a 321 pattern.

Now, a = n
2
, b = a + 1, v2 = b + 1, and for all 2 ≤ i ≤ ` − 2, vi = vi−1 + 1. All leaf

labels are completely determined in this situation, so we need only ensure that we had the
subheaps obtained by removing all the leaves (including the former leaf b) avoiding 312 and
321. There are an−2

2
such heaps. So when n is even, an = 2an−1 − an−2

2
.

4 Heaps avoiding three or four patterns of length 3

There are only five nontrivial cases to examine when we avoid a triple or quadruple of
patterns of length 3:

{213, 231, 312}, {213, 231, 321}, {213, 312, 321}, {231, 312, 321}, and {213, 231, 312, 321}.

It turns out three of the four triples of patterns yield the same enumeration.

Theorem 13. For n ≥ 1,∣∣H2
n(213, 231, 312)

∣∣ =
∣∣H2

n(213, 231, 321)
∣∣ =

∣∣H2
n(213, 312, 321)

∣∣ =
⌈n

2

⌉
.

17

Proof. We consider each pattern set in turn. If πH avoids 213, 231, and 312 then πH =
12 · · · in(n− 1)(n− 2) · · · (i + 1) for some i. Therefore, choosing the location of n uniquely
determines the permutation. Since n may only appear on one of the

⌈
n
2

⌉
leaves of H, there

are
⌈
n
2

⌉
heaps avoiding this pattern set.

Next, if πH avoids 213, 231, and 321, then πH = 12 · · · in(i+ 1)(i+ 2) · · · (n− 1). Again,
choosing the location of n uniquely determines the permutation. Placing n on one of the⌈
n
2

⌉
leaves of H gives the desired enumeration.

Finally, if πH avoids 213, 312, and 321 we know that either πH = 12 · · ·n, or there exists
some j < n such that πH = 12 · · · (j − 1)(j + 1) · · ·nj. There are

⌈
n
2

⌉
− 1 values that may

play the role of j without placing a larger value on j’s parent, so together with the heap
corresponding to the identity permutation there are again

(⌈
n
2

⌉
− 1
)

+ 1 =
⌈
n
2

⌉
possible

heaps.

The final triple of patterns, {231, 312, 321} gives a more interesting enumeration.

Theorem 14. Let n ≥ 1. Then, ∣∣H2
n(231, 312, 321)

∣∣ = Fn,

where Fn is the nth Fibonacci number, with F1 = 1, F2 = 1.

Proof. Each heap avoiding 312 and 321 must have n as the ultimate or penultimate label.
Furthermore, since the heap avoids 231, every label before n is smaller than every label after
n, so the heap ends in n or n(n− 1). This gives us a recursive manner with which to build
larger heaps. Take a heap of size n − 1 which avoids {231, 312, 321}, add a new leaf, and
label it n. Or, take a heap of size n − 2 which avoids {231, 312, 321}, add two new leaves,
and label them n and n − 1. Our sequence follows the Fibonacci recurrence, and it is easy
to check the base cases hold.

Finally, we count heaps avoiding the 4-tuple {213, 231, 312, 321}.

Theorem 15. ∣∣H2
n(213, 231, 312, 321)

∣∣ =

{
1 n = 1 or n = 2

2 n ≥ 3.

Proof. Suppose πH avoids the four given patterns. Since πH avoids 312 and 321, nmust either
be the last or the penultimate digit of πH . If n is last, then since πH avoids 213, everything
before n is increasing and we have the identity permutation. If n is the penultimate digit,
because πH avoids 231, the last digit must be n − 1, and because πH avoids 213, all digits
before n must be increasing so we have the permutation 12 · · · (n − 2)n(n − 1). Both of
these permutations can be written on any heap with n ≥ 3 vertices, so there are exactly 2
pattern-avoiding heaps for n ≥ 3.

18

Patterns P
∣∣Hk

n(P)
∣∣ (where ` =

⌈
(k−1)n−(k−2)

k

⌉
)

123

{
1 n ≤ k + 1

0 n ≥ k + 2

132 1
213 C`

231 {
1 n = 1∑`−1

i=0 Ci ·
∣∣Hk

n−i−1(231)
∣∣ n ≥ 2

312

321 OPEN

{213, 231}
2`−1

{213, 312}
{213, 321}

(
`
2

)
+ 1

{231, 312} 
1 n ≤ 2

2an−1 k - n− 2

2an−1 − an−2
k

k | n− 2.

{231, 321}
{312, 321}

{213, 231, 312}
`{213, 231, 321}

{213, 312, 321}
{231, 312, 321} Fn

{213, 231, 312, 321}

{
1 n ≤ 2

2 n ≥ 3

Table 3: Enumeration of pattern-avoiding k-ary heaps

5 Generalization to k-ary heaps

At this point we have enumerated binary heaps avoiding any set of patterns of length 3
other than the singleton pattern 321. Enumeration of 321-avoiders was already challenging
for binary heaps and their enumeration remains an open problem for k-ary heaps as well.
However, the rest of our results generalize nicely to k-ary heaps. We know that the number

of leaves in a k-ary heap with n vertices is given by ` =
⌈
(k−1)n−(k−2)

k

⌉
. Since Theorems 4,

5, 6, 7, 8, 9, and 13 depend on the number of leaves in the heap rather than the number of

vertices, replacing
⌈
n
2

⌉
with ` =

⌈
(k−1)n−(k−2)

k

⌉
gives the corresponding generalized results

seen in Table 3. Theorems 2, 3, 14, and 15 generalize similarly. It remains to find a formula
for
∣∣Hk

n(231, 312)
∣∣ =

∣∣Hk
n(231, 321)

∣∣ =
∣∣Hk

n(312, 321)
∣∣, which we present in Theorem 16.

Lemma 2. Let n > 2. In a k-ary heap, if k | n − 2, there is a leaf with no siblings, in
particular it is the last leaf. Otherwise if k - n− 2, every leaf has a sibling.

19

Theorem 16. Let an =
∣∣Hk

n(231, 312)
∣∣. Then

an =


1 n ≤ 2

2an−1 k - n− 2

2an−1 − an−2
k

k | n− 2.

Proof. In an effort to be concise, we note that the argument used in Theorem 10 is exactly
the argument required here. In Theorem 10, the differentiation of the cases was only based
on whether the new leaf added was added to a node that was already a parent node, or
whether it was added as the first child to a node that was formerly a leaf. By Lemma 2, we
see that those two cases are covered by k | n− 2 and k - n− 2 when we generalize to k-ary
trees, and thus the same recurrence holds.

Many of the results in Table 3 rely on the number of leaves in the heap rather than the
number of vertices. It turns out that this is merely an artifact of avoiding the pattern 213.
We showed in Theorem 4 that if h avoids 213 then the i internal vertices of h must have the
labels 1, 2, . . . , i in increasing order. This phenomenon does not change when h avoids a set
of patterns including 213. However, in general, avoiding sets of patterns of length m ≥ 4
does not produce sequences that depend on the number of leaves. On the other hand, we
note that if ρ ∈ Sm such that ρ1 6= 1, then heap H avoids ρ if and only if H avoids 1 ⊕ ρ,
so |H2

n(213)| = |H2
n(1⊕ 213)| = |H2

n(1324)|; that is, 1324 is the unique pattern of length 4
that produces an enumeration sequence depending on the number of leaves.

Acknowledgement

The authors are grateful to two anonymous referees for a number of insightful comments
that improved the presentation of this paper.

References

[1] A. Bernini, L. Ferrari, R. Pinzani, and J. West. Pattern-avoiding Dyck paths. Discrete
Math. Theor. Comput. Sci. Proc. AS:683–694, 2013.

[2] M. Dairyko, L. Pudwell, S. Tyner, and C. Wynn. Non-contiguous pattern avoidance in
binary trees. Electron. J. Combin 19(3):#P22, 2012.

[3] N. Gabriel, K. Peske, L. Pudwell, and S. Tay, Pattern avoidance in ternary trees, J.
Integer Seq. 15:12.1.5, 2012.

[4] D.E. Knuth. The Art of Computer Programming, Vol. 3: Sorting and Searching. Reading,
MA: Addison-Wesley, 1973.

20

[5] J.B. Lewis. Pattern avoidance for alternating permutations and reading words of
tableaux. Department of Mathematics MIT (2012):1–69. Web. 22 August 2013.

[6] The On-Line Encyclopedia of Integer Sequences, published electronically at http://

oeis.org, 2014.

[7] E. S. Rowland. Pattern avoidance in binary trees. J. Combin. Theory Ser. A, 117:741–
758, 2010.

[8] B. Sagan. Pattern avoidance in set partitions. Ars Combin., 94:79-96, 2010.

[9] S. Yakoubov. Pattern avoidance in extensions of comb-like posets. arXiv:1310.2979.

21

