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Introduction

A classic combinatorical problem, presented in nearly every introductory
text, is enumerating the number of distinct paths on an m x n rectangular
lattice. For the purposes of this paper, we let m denote the number of rows
and n denote the number of columns of rectangular cells in the lattice.

This problem is often modeled as walking along a rectangular grid of
square city blocks. Following Gillman [2], we say two paths are essentially
the same, or (k+1)-equivalent, if they share more than k steps (or, conversely
they are k-distinct if they share no more than k steps). Paths are denoted
as a sequence of m North steps and n East steps on the lattice (N and E
respectively). Also, WLOG, allow m > n due to the symmetry of the lattice.
For simplicity, we let C denote (m:”) and will let { Py, P,, ..., P} denote the
set of all paths on the m x n lattice, with paths listed in reverse lexicographic
order.

The set of all paths on the m x n lattice, denoted as L(m,n), can be
viewed as the vertices of a graph. The edges of the graph will connect those
paths that are (k + 1)-equivalent. This graph is denoted as G(m,n, k).

Barrier Paths

This section describes two complete subgraphs of G(m,n, k).



Definition 1 In L(m,n), we call the paths of the form N**1 En N™=(¢+1) gnd
EFINTE=®HYD barrier paths and denote them as P, and Py, respectively
when the set of paths of the m x n lattice are listed in reverse lexicographic
order.

Result 1 The index yy is found by

(m—l—n—k—l)
Yk = .
n

Proof: P, is of the form N**1Er N™=(+1) and encloses an (m — (k+1)) xn
sub-lattice of L(m,n). Since P,, is the final path in this sub-lattice,

e = (")

Result 2 The index xy is found recursively by

m—k+n-—1 , m-+n—1
Ty = + xp_1 with xg = + 1.
m—1 m— 1

Proof:  P,, immediately follows the path P,,. Since yy = (mt:‘_l) from
Result 1, it is easy to see that zg = (m+"_1) + 1.

P,, follows any path of the form E*NE"*N™~1 This means that P,, ,
and P,, 1 enclose an (m — k) x (n — 1) sub-lattice of L(m,n), and

_ (m—k+4+n—1 _ (m—k4n—1
Ty — Tp1 = ( 1 ) Thus, x; = ( 1 ) + zp_1. O

Theorem 1 The sets A ={P,...,P,} and B ={P,,, ..., Pc} induce com-
plete sub-graphs of G(m,n, k).

Proof:  Any path in A begins with (k + 1) N steps. Thus, it follows that
every path in A is adjacent to every other path in the set. Therefore, A forms
a complete sub-graph of G(m,n, k).

Likewise, any path in B begins with (k 4+ 1) E steps. Thus, it follows
that every path in B is adjacent to every other path in the set. Therefore,
B forms a complete sub-graph of G(m,n, k). O

It is important to note that neither of the induced sub-graphs on A or
B is necessarily maximal. Consider the paths P = E¥(NE)™ !N and Q =
NF(EN)"1E. P is adjacent to every path in B and @ is adjacent to every
path in A so neither sub-graph is maximal.
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Some Special Cases

Brewer et al [1] determined the size of G(m, 1, k) in the following theorem.

Theorem 2 If0 <k <m—1,

o= (7))

Since the size of G(m, 1, k) has been determined, we turn our attention to
the size of G(m, 2, k) and begin by considering the extreme cases.

Definition 2 Let p(m,n, k) denote the number of pairs of paths in L(m,n)
that share exactly k steps. For k > 1, we have

p(m7n7 k) = ]E(m,n,k;— 1)| - |E(m7n7 k)|

Theorem 3 Ifm > 2,

[E(m, 2,0) = 3(7”23) - <m2+ 1) —o(m—1).

Proof: Let |E'(B)| denote the number of pairs of paths, one in set A and
the other in set B, that do not share any edges. Note that the index of
the barrier paths y, = (mlﬂ) =m+1land zg =yp+1=m+ 2. So let

A={Py, .., Pnp1} and B = {Ppya, ..., P03},

There are (g) possible edges in G(m,n, k). Since
p(m,2,0) = |E(A)| + |E5(B)| + |E4(B)], that is, the total number of pairs
of paths in L(m,2) that are disjoint, then |E(m,2,0)| = (g) —p(m,2,0). Tt
is clear that |E’(A)| = |E%(B)| = 0 by Theorem 1, so we are left to find
|EL(B)].

P, does not share any steps with any path of the form EN*EN™"" for
0 <i¢ <m — 1. Therefore, |E)(P;)| = m.

For A* = {P,|2 <z <m}, P, is of the form N"**'EN*"1F.

P, does not share any steps with any path in the m — (x — 1) x 1 sub-
lattice of paths of the form E--- N™*F1 of L(m,2). Thus,



|EG(Py)] =m — 2+ 2 and

m

|E5(A)=> (m—xz+2)=(m—1)(m+2)— (m; 1) + 1.

=2
P,..1 does not share any steps with any path of the form N*E?N™"¢ for
1 <i¢<m—1. Therefore, |EG(Py11)] =m — 1.

The above cases have accounted for every path in A so

p(m,2,0) = |E}(B)|
m—+1

= m+(m—1)(m+2)—< 5

= <m+1>+2(m—1).

>+1+m—1

2

Since |E(m, 2,0)| = (g}) —p(m, 2,0), through algebraic manipulation we have

|E(m7270)|:3<m2_3>_<m;1>—2(m—1). O

Lemma 1 There are
(m37)-1
i=1

pairs of disjoint paths in an m X 2 lattice.

Proof:  There are (m;r 2) vertices in G(m,2,k). The complete graph on

these (m; 2) vertices has an edge for every pair of vertices, i.e. for all pairs
m+2 -1

of paths in L(m,2). There are Zfzf ) i edges in the complete graph on

m+2

9 ) vertices.

Further, |E(m,2,0)| is the number of edges in G(m,2, k) representing
pairs of paths that share at least 1 edge, i.e. not disjoint.



Therefore, the number of pairs of disjoint paths in L(m, 2) is the difference
of these which is equal to

()
> (i—|E(m,2,0)). O

=1

Theorem 4

|E(m,2,1)| = |E(m,2,0)| - 2(?) —2(3m — 5).

Proof:  Since |E(m,2,0)| is the number of pairs of paths that share at least
one step and |E(m,2,1)| is the number of pairs of paths that share at least
two steps in L(m,2), |E(m,2,0)] — |E(m,2,1)| is the number of pairs of
paths that share exactly one step. Consider all the ways two paths can share
exactly one edge in L(m,2). Notice that any path must begin with either a
N step or an E step and must end with either a N step or an E step. There is
exactly one pair of disjoint paths that share either their first or last N step.
Also, for every interior E step, of which there are m — 2, there are two pairs
of disjoint paths. Now we only have to find the number of pairs of disjoint
paths in the (m — 1) x 2 sublattices consisting of paths that either begin or
end with an E step. Combining this result with (4), we have

(ml 1
B(m,2,0)| - |E(m,2,1)| =2+2(m—2)+2[ 3 (i~ |E(m—1,2,0)])].
i=1

Through algebraic manipulation, we arrive at our final result
m
Bm2,1) = |Bn 2.0 ~2('y ) - 26m-5).

Theorem 5 Ifm > 2,

1
|E(m,2,m—1)|:2<m; )



Proof: Two vertices in G(m, 2, m — 1) share an edge iff their corresponding
paths in L(m,2) differ by exactly one N-E transposition. We will count all
such pairs of equivalent paths.

Case 1: P = EFEN™ or P = N"EFE. Each of these paths has exactly
one corner at which to make an N-E transposition. Therefore, these paths
yield two pairs of equivalent paths.

Case2: P=N'EEN™ % 0<i<mor P=EN™E. Each of these paths
has exactly two corners at which to make a N-E transposition. Further, notice
that there are m — 1 choices for ¢ and only one path of the form EFN™FE,
yielding 2m new pairs of equivalent paths.

Case 3: P = EN'EN™tor P = N'EN™'E 0 < i < m. Each of
these paths has exactly three corners at which to make a N-E transposition.
Since there are 2(m — 1) paths of this form, there are 6(m — 1) new pairs of
equivalent paths.

Case 4: Consider the remaining paths of the form P = N*EN/EN™~J

for i,7 > 0 and 7 + 7 < m. Each of these paths has exactly four corners at
which to make a N-E transposition. Further, since there are

(m;2) —2(m—1)—m—2 paths of this form, we have 4((7”;2) —2(m—1)—m—2)
new pairs of equivalent paths.

Thus, we have accounted for every path in L(m,2) in one of the cases
above, and for each path, we have counted all its equivalent paths. However,
each pair of paths has been counted exactly twice, one time for each path in
the pairing. Therefore, the size of G(m,2,m — 1) is exactly half the number
of pairs of equivalent paths counted above, i.e.

2
2|E(m,2,m — 1) :2+2m+6(m—1)+4(<m;r )—2(m—1)—m—2),
and

m + 2

|[E(m,2,m —1)] = 1+m+3(m—1)+2(< 5

- 2(””1). 0
2
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The Size of G(m, 2, k)

Now we are ready to develop a formula for the number of edges in G(m, 2, k)
for all values of k. We begin with the following definition.

Definition 3 The number of pairs of paths, Py and Py, in L(m,n) that share
exactly k steps given Py begins with a N step and Py begins with an E step
is found by the function g(m,n, k).

This definition gives us the following relationship.

Lemma 2
p(m,2,k) =p(m—1,2,k —1)+p(m, 1,k — 1)+ g(m,2,k).

Proof: p(m—1,2,k—1) is the number of pairs of paths that share exactly
k steps given both paths begin with a N step, p(m, 1,k — 1) is the number
of pairs of paths that share exactly k steps given both paths begin with a E
step, and by definition, g(m, 2, k) is the number of pairs of paths that share
exactly k steps given one path begins with a N step and the other begins
with E step. Thus, all pairs of paths have been accounted for. O

Lemma 3

g(m,2,k) =m + (2m — 1)(m — k — 1) —3<m_2k_ 1).

Proof:  Begin by noting that g(m — 1,2,k — 1) is the number of pairs of
paths in L(m, 2) sharing exactly k steps, with one beginning with an N step
and the other beginning with a E step, but both paths ending with a N step.
There are (m — k — 2) ways for two paths to share exactly k N steps on the
interior of the lattice, and each of these sets of N steps results in two pairs
of paths that share exactly & N steps and are disjoint elsewhere. Also, there
is one pair of paths that share exactly k steps such that they share a final £
step. This accounts for all possible paths in g(m, 2, k) and verifies that

g(m,2,k)=g(m—1,2,k—1)+2(m — k) — 3.



Also, from Lemma 2, Theorem 3, and Theorem 4,

g(m,2,1) = p(m,2,1) —p(m —1,2,0) — p(m, 1,0)
1
= m”+%m—M—§«m—1ﬂ+wm—1yﬂ@—1
1

= §(m2 + 7m — 14).

Thus, by back substitution on g(m,2,k) — g(m, 2,k — 1), we have

g(m,Q,k)—m+(2m—1)(m—k—l)—3<m_2k_1>. o

Theorem 6

E+1

p(m?27k): 2

(m*+5m — (k+ 1)(k + 4)).

Proof: (by induction) p(m,2,1) = m? + 5m — 10 is a direct result of
Theorem 4. Now assume p(m,2,i — 1) = £(m? + 5m — (¢)(i + 3)). From
Lemma 2,

p(m,2,i) = p(m—1,2,i—1)+i+g(m,2,i)
i+ 1
ZZZ(mMﬁm—u+Uu+®

Thus,
k+1

p(m727k) = 2

(m® +5m — (k+1)(k+4)). O

This theorem leads directly to the result that we want, a general formula
for |E(m, 2, k)|, which we now present as a corollary.
Corollary 1 If m > 2 and k < m,

2k*(k +1) — k(k + 3)m(m + 5)
4

k43
(E(m, 2, k)| = |E(m,2,0)|—|—3< Z >+2k(k+2)+



Proof: From Theorem 6,
p(m,2,k) = B (m? 4+ 5m — (k + 1)(k + 4)). Thus,

B .2, 0] = [B(m, 2,0)| + X (52 4+ 5m = i+ 1)+ 4)
2k%(k + 1) — k(k + 3)m(m + 5)‘

O

k+3
—]E(m,2,0)!+3< Z >+2k(k+2)+ 1

A Small Generalization

The following theorem suggests the increasing complexity of the recursion
formula as n increases.

Theorem 7

|E(m, n,1)] = [E(m,n,0)]

(U5 ) e op 2O ) om0
> a(U)) < son (U ) s von

R G R ———

1 2

m—1n

m—2

3
|

7j=1 1

Proof:  Notice that |E(m,n,0)| — |E(m,n,1)| is the number of distinct
paths in L(m,n) that share exactly one edge.

In L(m,n), label an edge in terms of its distance from the lower left corner
(i.e. set the origin as the lower left corner).

First, we will count the pairs of paths that share exactly one E step.

(1). If two paths share an E step with label (0,7) and j > 0, they
necessarily share at least one N step as well. Thus, there are no pairs of
paths that share exactly one E step of this form. Similarly for sharing an E
step with label (n —1,j) and j < m and for (i, ) with (i # 0 or n — 1) and
(7 =0o0rm).



(2). Now, count all pairs of paths that share exactly the E step (0,0).
Clearly, this is the same as the number of disjoint paths in L(m,n—1). That
is, ("))~ 1B(m,n - 1,0)).

m4n—1 m+4n—1

) is the number of paths in L(m,n — 1), and (( m )) in

L(m,n —1). |E(m,n — 1,0)| is the number of pairs of paths that share at
least one step in L(m,n — 1). Thus, this difference is what we claim it is.
Similarly for pairs of paths that share the E step (n — 1,m). Thus, there
are 2(((m+§_1>) — |E(m,n — 1,0))) that share exactly the E step (0,0) or
(n—1,m).

(3). Now, count all pairs of paths that share exactly an E step (7, j) that
have not already been considered. There are m — 1 choices for i and n — 2
choices for j. Then, for each (i,7) pair, the number of pairs of paths that
share this E step is twice the number of disjoint pairs of paths in L(i, j) times

the number of disjoint pairs of paths in L(m — j,n —i — 1). Yielding
m—1n—2 (H—]) (m—j—&-nfi—l)

> 5e('y)) - mson U )) sen - - i< 100)
j=1 i=1

additional pairs of paths that share exactly one more E step.

Thus, there are
(m-l—n—l)
x((5 ) - 1m0

25 () - peaion (5 )) g i -i-1.0m)

i
j=1 i=1 2

pairs of paths that share exactly one E step.
A similar argument shows that there are exactly

2<<(m+§l)) ~ |B(m,n—1,0)

m—2n—1 (z’{rj) o (m—j+nfi—1) » _
23 (') - mason (V) e i - 1o
j=1 i=1
pairs of paths in L(m,n) that share exactly one N step.

Combining the above two statements with some algebraic manipulation
gives the stated theorem. O
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Conclusion

There are many other properties of these graphs that we could investigate,
but our immediate attention will be on finding |E(m, n, k)| in general and in
a closed form, and of the other invariants for this family of graphs. Of par-
ticular interest is the independence number, which was the original question
posed in Gillman [2].
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