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1 INTRODUCTION

Experimental mathematics has gained increasing attention in the past
two decades, as evidenced by a series of books [1, 2, 3, 4], a research
journal [7] founded in 1992, and even the presence of the Institute for
Computational and Experimental Research in Mathematics (ICERM),
founded at Brown University in 2011 and initially funded by the Na-
tional Science Foundation. Certainly, mathematicians have always used
experimentation to make conjectures, but in recent decades, the com-
puter has played an increasingly visible role in developing mathematical
proofs, sometimes helping provide insights that were not apparent by
pencil-and-paper-computation.

Jonathan Borwein and Keith Devlin [4] write that “Experimental
Mathematics is the use of a computer to run computations, to look for
patterns, to identify particular numbers and sequences, and to gather
evidence in support of specific mathematical assertions that may them-
selves arise by computational means.” This is certainly only one possible
definition. Views of experimental mathematics in the research commu-
nity range from using the computer as “paper-and-pencil with power
steering” to using the computer as a coauthor capable of writing its own
conjectures and proofs.

Regardless of personal philosophy, a course in experimental mathe-
matics offers an opportunity to (i) teach basic programming, (ii) consider
the history of proofs that have used computation in nontrivial ways, (iii)
challenge students’ personal philosophy of mathematics, (iv) explore a



2 L. Pudwell

variety of problems that appear in disparate areas of the undergradu-
ate curriculum, if they appear there at all, and, most importantly (v)
teach students to explore their own questions. A course in experimental
mathematics is a venue for inquiry-based learning in its most funda-
mental form. Such a course could effectively be renamed Mathematical
Inquiry, since the focus of an experimental mathematics course is not
on a particular list of content, but on a methodology for approaching
new problems. Of course there is no single way to teach an experimental
methodology either. This paper discusses one such model, as taught at
Valparaiso University. Other Experimental Mathematics courses have
been taught at Dartmouth College, Grinnell College, Rutgers Univer-
sity, Tulane University, and more, and a growing number of colleges
have Introduction to Research courses that may include computer ex-
perimentation. One such course for first-year students at Ithaca College
is described in [5]. This paper describes such a course designed for upper
level undergraduate students, with the goal that interested faculty can
replicate or modify the key components to create their own experimen-
tal mathematics course. In it, we discuss specific ways to facilitate the
transition from students predicting patterns for specific assigned prob-
lems to students generating their own questions and conjectures in a
technology-oriented course.

The Experimental Mathematics course at Valparaiso University be-
gan in 2009 and runs every second spring. The course started as an
“advanced topics” course, but was sufficiently well-received in its first
two iterations, that it has now been assigned its own course number and
is recommended as an elective for mathematics majors. The class typi-
cally meets for three one-hour sessions per week in a computer lab. Each
student has access to a desktop computer on the perimeter of the room
equipped with appropriate software for the class (e.g., Maple). There
are also tables in the center of the room for group collaboration as well
as a white board and a projection screen where computer work can be
shared with the rest of the room. The capacity of the class is limited
by the number of computers in the room, and the course has run with
as many as 16 students. There are no experimental mathematics text-
books to choose from, so Valparaiso’s course is partly based on problems
chosen by the instructor and partly motivated by topics in Borwein and
Devlin’s The Computer As Crucible [4].

The course has several distinct components which will be discussed in
subsequent sections of this paper. First, students spend an introductory
period learning the basics of programming (Section 2). Then, for most
of the semester, a new problem is introduced each class period, and
students use the computer to explore the problem and make conjectures
(Section 3). Finally, throughout the semester, each student adopts an
individualized mathematical experiment and reports on their progress
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to the rest of the class at multiple points in the semester (Section 4).
Together these components expose students to an interesting collection
of mathematical material and hone student skills in computation and in
mathematical investigation.

2 BEGINNING PROGRAMMING

The prerequisites for Valparaiso’s Experimental Mathematics course are
either to take a proof-based course or a programming course. In other
words, it is expected that students have vocabulary for logical reasoning,
but it is not expected that they have previous programming experience.
In general, there is always one subset of students who are complete
novices at programming, and there is always another subset of students
who have a strong computational background. Any introductory pro-
gramming lectures done as a class will inevitably be too fast for some
students and too slow for others. Therefore, the first few meetings of
the course are presented as a series of explore-at-your-own-pace exer-
cises. Students are given problems in (i) arithmetic and algebra, (ii)
calculus and graphing, (iii) lists, sets, and programming, and (iv) more
programming.

Each exercise set contains a sampling of problems that expose stu-
dents to commands that will be used frequently in class and ends with
some open-ended applications of the new commands. Students who en-
tered the course comfortable with their computational and programming
skills are enabled to move quickly towards the open-ended material.
Some sample explorations include:

• Find a 10 digit prime number using Maple. This number must have
exactly 10 digits.

• It is well known that the sum of the first n integers is
∑n

i=1 i =(
n+1
2

)
= 1

2n(n+ 1) = 1
2n

2 + 1
2n, i.e. the sum of the integers 1 + 2 +

· · ·+ n can be written as polynomial with variable n. Compute the
polynomials

∑n
i=1 i,

∑n
i=1 i

2,
∑n

i=1 i
3, etc. in Maple and conjecture

patterns for the following:

– What is the leading term of
∑n

i=1 i
k?

– What is the second leading term of
∑n

i=1 i
k?

– What is the smallest exponent of n in
∑n

i=1 i
k?

By the end of these initial class meetings, students still have diverse
backgrounds, but as a cohort they now have some common programming
vocabulary to work with as they progress to new mathematical prob-
lems. Although Valparaiso’s course has used Maple because Valparaiso
owns a site license for the software; this work could easily be done in
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Mathematica, Sage, or any other software including mathematical con-
structs. Most importantly, these initial lessons give students a chance to
explore mathematical questions with the computer commands they have
just learned. Rather than spoon-feeding details to the class, students ex-
plore mathematics in the way that mathematicians explore mathematics
by exploring real (and sometimes unsolved) problems. They are encour-
aged to ask questions, look for new commands with the computer’s help
menu, and make conjectures about mathematical patterns from day one.

3 ASSIGNMENTS

Once students have some common programming vocabulary, the exper-
imental portion of the course begins in earnest. For the majority of
the semester, each class period begins with the instructor introducing a
new mathematical problem and discussing it long enough to make sure
students clearly understand the problem statement. Then, students are
provided with a list of exploration exercises to complete individually or
in groups. During the remainder of the class period, students work at the
computer, discuss problems with classmates, or usually both. At the end
of each class, students are given a week to produce reports of their work.
These reports include relevant computer code, data generated by code,
and an analysis of the data. Students are encouraged to present their
work in well-written paragraphs that would be readable to a student not
in the class, but with comparable mathematical background.

Whereas the experimental mathematics course at Ithaca College [5]
introduces a new lab every two weeks, the Valparaiso experimental math-
ematics course introduces a new topic every one to two days. There are
two reasons for this different pace. First, Valparaiso’s course is designed
for junior and senior majors who have more extensive background than
a first semester student. Second, Valparaiso’s course highlights exper-
imentation across the curriculum. Problems come from combinatorics,
number theory, algebra, analysis, geometry, and more, with an aim that
students see experimentation as something that permeates the discipline
of mathematics.

Here, we present two assignments that have been used successfully
in previous iterations in the course, one from early in the semester, and
one from later in the semester. These examples (a) highlight particular
problems that are reasonable for novice programmers, and (b) illustrate
the progression of experimentation skills cultivated in the course.
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3.1 THE COLLATZ PROBLEM

One exercise, from early in the semester explores the Collatz conjecture.
In particular, consider the function

f(n) =

{
3n+ 1 n odd
n

2
n even

.

The Collatz conjecture claims that for any positive integer n, there is
a positive integer k such that fk(n) = 1. For example, if n = 10, then
f(10) = 5, f2(10) = 16, f3(10) = 8, f4(10) = 4, f5(10) = 2, and
f6(10) = 1. It turns out that the smallest k such that fk(27) = 1 is
111. Although the Collatz conjecture has been verified for n ≤ 19 ·258 ≈
5.48 × 1018, there is no proof. In 1972, John Conway showed that a
generalization of this problem is undecidable, but his proof does not
apply to the original problem. Nonetheless, programming to explore
the Collatz conjecture provides a natural context to explore recursive
programming. Also, several nice generalizations of the Collatz problem
provide areas that are fertile for cultivating student conjectures.

Together we write code for f(n) (above),

g(n, k) := [f(n), f2(n), . . . , fk(n)], and

h(n) := [f(n), f2(n), . . . , 1].

Here, square braces are computer notation for a list. In other words,
g(n, k) produces k iterations of f with the initial value n, while h(n)
iterates f until fk(n) = 1. For example, g(10, 2) = [5, 16], while h(10) =
[5, 16, 8, 4, 2, 1]. If the Collatz conjecture is true, h(n) should always
terminate, whereas g(n, k) gives the user control over how much work
the computer should do.

After writing code together, students explore questions such as:

1. Verify that it takes 111 steps to get the answer 1 if you start with
n = 27.

2. Try several other starting values for n.

3. Explore what happens when you try a 5n+1 rule. How many steps
does it take to get the answer 1 for n = 1, 2, . . . , 10? (Some of your
answers may be precise; others may be conjectures. Either way,
support your answers with data!)

4. Edit your code so that it explores the following sequence: if n is
prime then f(n) = 3n+ 1, and if n is composite, then f(n) = n/p,
where p is the smallest prime that divides n. We want to see what
happens when you apply f(n) repeatedly. What happens when you
start with n = 2, . . . , 10?
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5. Try inventing your own piecewise function f(n) that we haven’t
considered yet. What interesting behaviors can you produce by
repeatedly iterating your function?

The bulk of the programming happens as a class, but students exe-
cute the code and make appropriate edits for the new problems. Students
are pushed to start with small steps to verify that they understand the
initial problem well, and then they make conjectures about increasingly
open-ended problems. Starting with a relatively straightforward prob-
lem statement, students can quickly use tools they have built to explore
their own related questions.

3.2 INTEGER RELATIONS

Later in the semester, we visit the celebrated Borwein, Bailey, Plouffe
formula for π given by

π =

∞∑
k=0

1

16k

[
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

]
.

Unpacking this formula and why it is computationally important takes
several days of class. One of the first parts of the discussion is “How
did Borwein, Bailey, and Plouffe discover this formula?” The answer
is that they took several other known formulas that included a sum
with a 1

16k
and used an efficient integer-relation algorithm, known as

PSLQ (Partial Sum of Least sQuares). While PSLQ goes beyond the
scope of the course, understanding integer-relation algorithms does not.
An integer relation for a list of 3 numbers a, b, and c, is three integer
coefficients α, β, and γ such that αa+βb+γc = 0 and not all of α, β, and
γ are equal to zero. The restriction to integer solutions requires different
approaches than calculus optimization problems. An integer relation is
not always possible for given numbers a, b, and c, but we could still
ask “what set of integer coefficients produces a linear combination that
gets as close to zero as possible?” With this understanding, students
complete the following tasks:

1. Implement your own integer relation algorithm for 3 real numbers.

2. Compare your algorithm’s results against another classmate’s re-
sults and against PSLQ (implemented in Maple’s IntegerRelations
library).

3. What properties of a, b, and c make it easier to find an exact integer
relation? What properties make it more difficult? Are there any
sets of irrational numbers where you can guarantee exact integer
relations?
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Students often try to write code that makes special assumptions on
the kinds of values a, b, and c might be. For example, if a, b, and c
are integers, the task is trivial. On the other hand, when pushed to
consider three irrational numbers, students generally switch to a search
through −n ≤ α, β, γ ≤ n for some input integer n. At the end of the
exploration, students have a better appreciation for how efficient PSLQ
really is.

3.3 BUILDING SKILLS OVER TIME

These two lessons, taken from different parts of the semester, illustrate
problems for two different levels of student confidence. Each lesson in-
cludes three parts: (i) a problem statement, (ii) generating code for
exploration, and (iii) using data computed via the code to make conjec-
tures. Table 1 presents the planned trajectory of the course. Throughout
the semester, the instructor brings problems to class that will help stu-
dents grow their mathematical intuition and programming skills. At
the beginning, as in the Collatz exercise, students are capable of pro-
gramming with group input, but may feel lost if left to write such code
completely independently; however, they are able to make conjectures
about patterns they see in the computer output from the first day. As
the semester proceeds, students take increasing ownership of their code,
as in the integer relations exercises. By the end of the semester, stu-
dents complete a final project, as described in Section 4, where they take
ownership of all three aspects of a mathematical experiment, including
formulating the problem statement.

problem statement code data
early classes in-class in-class independent
later classes in-class independent independent
final project independent independent independent

Table 1. Transitions in student skills

As an intermediate confidence-building exercise between assignments
and projects, students complete two midterm exams during the course.
The midterm exams explore problems that are new, but related to re-
cent assignment problems. Students may need to modify previous code
or generate new code. Each exam ends with a reflection essay, asking
students to analyze how their approach to doing mathematics has (or
has not) changed over time. Exams are given as independent takehome
explorations and are due within a week.

Students who are used to viewing math as a quest for a “final” answer
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are sometimes taken aback by open-ended questions in an experimental
course. One important recurring conversation is a reminder that ex-
perimental mathematics is focused not on a particular list of skills, but
on an overarching approach for tackling new problems. This conversa-
tion starts early, when students learn to write code. Often, students
who struggle with programming go immediately to the computer and
get frustrated when their buggy code fails to produce the desired re-
sponse. Breaking the job of writing code into two phases: careful plan-
ning (on paper) and execution (putting their paper-tested plan to work
in the computer) helps students more easily pinpoint their programming
issues. A similar analogy works with experimental exercises: if one fo-
cuses solely on execution to get a particular piece of data, she or he could
bypass a lot of helpful insight. Thinking carefully about why you plan
to do things raises more questions to explore and can result in a more
thoughtful implementation or more interesting result. Once students are
willing to separate planning and execution, they are often more willing
to adopt the inquisitive and exploring attitude that the course tries to
cultivate.

4 PROJECTS

The highlight of the Experimental Mathematics course is that students
complete a research project, taking ownership of all phases of inquiry
from selecting a problem, to writing code, to making conjectures from
the resulting data, and even to proving their own conjectures. In most
courses, students gain experience in answering someone else’s questions;
in Experimental Mathematics, students develop their own questions and
bring their own novel approaches to answering those questions.

The rest of this section provides one model of structuring project
requirements so that students have the tools to complete such an inquiry-
driven project, often for the first time in their mathematical education.
Staggering deadlines throughout the semester has produced projects of
higher quality than in the first iteration of the course. In particular, the
staggered deadlines include picking a project topic (early), giving oral
presentations (mid-semester and end-of-semester), and writing a project
report (one rough draft, and one end-of-semester final report).

In the Ithaca College experimental mathematics course for first year
students [5], the final three weeks of the semester are entirely devoted
to course projects. In Valparaiso’s course, students are expected to
start their project early and work on it side by with their other work.
Although their attention is divided between assignments and project
deadlines for most the semester, the longer span of 4 months to work
allows time for students to generate more possible avenues of indepen-
dent exploration early in the term. By the time the final few weeks of
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the semester approach, the students have a solid understanding of their
project’s background and can delve more deeply into their own questions
when the focus switches to projects at the end of the term.

4.1 PROJECT TOPICS

Students choose a project topic early so that they can think about how
to apply new programming ideas learned in other assignments to their
topic. Many natural projects arise from branches of discrete mathemat-
ics such as number theory or combinatorics. Two sample project areas
appear below:

• Variations on Fermat’s Last Theorem – It was proven by An-
drew Wiles in the early 1990s that there are no positive integers a,
b, and c such that an + bn = cn if n > 2. Experiment with n = 3
and possibly n = 4 and n = 5. Since we know that there are no
triples of integers where a3 + b3 = c3, you may try to find triples of
integers where a3 + b3 − c3 = m (and m is a fixed integer, m 6= 0),
or find 4 integers a, b, c, and d where a3 + b3 = c3 + d3, but a is not
equal to c or d. See what patterns you can find.

• Restricted permutations – A permutation is a list a1a2 · · · an
where each integer in {1, 2, . . . , n} appears exactly once. Up-down
permutations avoid the “patterns” {uu, dd} because there are no
three digits where ai < ai+1 < ai+2 (up-up) or ai > ai+1 > ai+2

(down-down). However, there are many other pattern sets one could
explore. What can you say about permutations of length n that
have no copies of a given subpattern? Are there some patterns that
force more predictable permutation structure than others?

Although project ideas are provided, students quickly realize that
they must ask well-defined sub-questions to get started. Periodically
students propose their own project ideas. If they can state a clear math-
ematical question to answer, they are encouraged to explore it compu-
tationally.

It is less important for a student to choose a topic that is new in the
larger body of mathematics than it is to choose a project that is new
to that student. Indeed, students who have adopted the same general
project topic in different iterations of the course have often gone in very
different directions by the end of the semester. No two students in
the same iteration of the course can choose the same project, however,
and projects are given on a first-come, first-served basis, so students
must consider project topics early to guarantee their first choice area of
inquiry.
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4.2 PRESENTATIONS

By the midpoint of the semester, students have learned basic program-
ming skills and data structures so that they are ready to begin their
project in earnest. At this point, each student gives a 5-minute presen-
tation to the rest of the class. The students are not expected to have
solved their problem or to have done significant coding yet. However,
they should be able to clearly state a question they plan to begin inves-
tigating, give relevant definitions, and give an idea of how they plan to
use the computer in their project. These preliminary presentations serve
two purposes: (a) students are interested in one another’s projects, and
with some encouragement they ask questions that give the presenting
student additional avenues of exploration to consider as the semester
progresses, and (b) the presentations get the students jump-started on
the projects. The exercise of investigating their problems enough to
make a preliminary presentation to the class ensures that the students
have sufficiently organized their thoughts so that they can begin writing
code that is relevant to their projects.

A rubric for presentation grading is shared with the class ahead of
time, and considers organization, quality of material, and length of the
presentation. If the talk is not well-organized or is missing a clear ques-
tion to start experimenting with, this is the point where the student
receives detailed feedback, early enough in the semester that they have
ample time to correct their course of action before the final project pre-
sentation.

The final week of the course is a series of conference-length talks
from students about their projects. Students talk for 15–20 minutes and
are graded both by the instructor and their peers. The presentations
show evidence of all three phases of work indicated in Table 1. Students
reintroduce their topic and indicate how their questions evolved over the
course of their experimentation. Students may demonstrate code they
wrote during the course of the semester, especially if they chose a more
visual project. Finally, students highlight conjectures and proofs that re-
sulted from their experimentation. After staggered deadlines throughout
the semester, the final week of presentations is a celebration of owner-
ship in discovered results. Students also provide written feedback on
one another’s talks, exercising their ability to ask thoughtful questions
of others, and sometimes bringing to light interesting perspectives on
the material that the faculty instructor may not have considered.

4.3 PROJECT REPORTS

Along with oral presentations, each student is expected to write a report
explaining the question they explored, how they explored it, and what
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they learned. There is no specific page quota, but students are told
that the paper should give thorough evidence that they really did work
on the project throughout the semester. Students submit a rough draft
of their paper midway between the preliminary presentation and final
presentation so that they can get instructor feedback. While the rough
draft is a participation grade, the more seriously they take the writing
exercise, the better feedback they get to prepare for the final report.
The instructor can clear up misconceptions, point out conjectures that
should be provable before the semester is over, and suggest additional
threads of exploration for the final few weeks of the course.

5 STUDENT FEEDBACK

At the time of this writing, Valparaiso’s Experimental Mathematics
course has been through four iterations. Student feedback is informal,
either taken with permission from expository exam essays, or via anony-
mous course evaluations, and has been extremely positive. For math-
ematics majors, the transition from computation to abstract reasoning
can be a complicated jump, but a necessary one to truly get a sense of
the discipline. One math major who completed the course described his
change in approach during the semester as,

“I’m learning math isn’t just about memorizing formulas and
plugging in numbers, but building on what you know, asking your
own questions, and realizing not everything has a known answer
just yet.”

Yet other students take the course as an elective from other STEM dis-
ciplines. One engineering major described his personal transformation
in approach as,

“I was always taught: here is a concept, here is what it does, here
is how to do it. I figured stuff that I need to learn would always
just be given to me. This class has given me an appreciation
for actually getting to explore concepts and learn on my own,
which is something I would previously never thought would have
worked.”

Both are indications that by encouraging students to approach open-
ended questions daily and to conduct their own semester-long research
project, participants are learning the art of inquiry and leave the course
with greater confidence for future mathematics endeavors.
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