
de Bruijn arrays for L-fillings

Lara Pudwell
Valparaiso University

Valparaiso, Indiana 46383

Rachel Rockey
Valparaiso University

Valparaiso, Indiana 46383

Abstract

We use modular arithmetic to construct a de Bruijn array, a k×k2

array consisting of exactly one copy of each L (a 2× 2 array with the
upper right corner removed) with digits chosen from {0, . . . , k − 1}.

1 Introduction

Consider the sequence 00010111. If we take its values three at a time we
get 000, 001, 010, 101, 011, 111, 110, and 100 – all eight possible binary
sequences of length 3. (We consider the end of the sequence to be glued to the
beginning.) Such a sequence is called a de Bruijn sequence. More generally,
we may ask for a sequence made up from the k digits {0, 1, 2, . . . , k − 1}
that contains all possible subsequences of length n, i.e., a (k, n)-de Bruijn
sequence.

Such sequences are well-studied and have been used in applications rang-
ing from robotics to developing card tricks. Diaconis and Graham give a
delightful overview of such applications in [2]. Nicolaas Govert de Bruijn [1],
for whom such sequences are named, and I.J. Good [3] independently proved

that (k, n)-de Bruijn sequences exist for every k, n ≥ 2, and there are k!k
n−1

kn

of them.
More recently, mathematicians have analyzed a 2-dimensional general-

ization. Given k ≥ 2 and m,n, r, s ∈ Z+ a (k, r, s,m, n)-de Bruijn torus
is an r × s array that contains each of the kmn = rs fillings of an m × n
array with entries from {0, . . . , k − 1} exactly once. (Here, the left side of
the array is glued to the right side, and the top of the array is glued to
the bottom.) However, much is still unknown about general de Bruijn tori.
Hurlbert and Isaak [4] showed that (k, r, s,m, n)-de Bruijn tori always exist

1



0 0 1 0
1 1 1 0
0 1 1 1
0 1 0 0

Figure 1: A (2,4,4,2,2)-de Bruijn torus

0
0 0

0
0 1

0
1 0

0
1 1

1
0 0

1
0 1

1
1 0

1
1 1

Figure 2: All possible binary L fillings

when r = s > m = n. An example of a (2, 4, 4, 2, 2)-de Bruijn torus is shown
in Figure 1.

In this note, we consider a similar problem. Rather than compactly ar-
ranging all possible sequences or all possible rectangles, we consider using an
L-shape, that is, a 2 × 2 array with the upper right corner removed. Since
the L-shape has 3 entries, there are k3 fillings of the L with digits from
{0, . . . , k − 1}. The 23 = 8 fillings of an L with a binary alphabet are shown
in Figure 2. We wish to find a k × k2 array (with the left side glued to the
right side an the top glued to the bottom) that contains each of the k3 differ-
ent L’s exactly once. To distinguish from the tori in the previous paragraph,
we call such an array a k-de Bruijn L-array. An example of a 2-de Bruijn
L-array is shown in Figure 3.

It turns out that such arrays always exist. The rest of this note is aimed
constructing one.

Suppose the alphabet size is k, and consider a k × k2 array, numbering

0 0 1 0
0 1 1 1

Figure 3: A 2-de Bruijn L-array

2



0 0 1 1
0 1 1 0

0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 2 3 1 2 3 0 2 3 0 1 3 0 1 2
0 2 0 2 1 3 1 3 2 0 2 0 3 1 3 1
0 3 2 1 1 0 3 2 2 1 0 3 3 2 1 0

Figure 4: A 2-de Bruijn L-array, a 3-de Bruijn L-array, and a 4-de Bruijn
L-array

both the rows and columns starting with 0. Towards filling the array, define
the function f(r, c) = (s+re)%k where 0 ≤ r ≤ k−1 is the row, c = sk+e is
the column with 0 ≤ s, e,≤ k − 1, and %k means to take this value modulo
k. For example, suppose k = 4 and we wish to compute f(2, 13). Since
13 = 3 · 4 + 1, we have f(2, 13) = (3 + 2 · 1)%4 = 1. Our main result is:

Theorem 1. Placing the value f(r, c) into row r, column c in a k×k2 array
produces a k-de Bruijn L-array.

The 2-de Bruijn L-array, the 3-de Bruijn L-array, and the 4-de Bruijn
L-array produced by this formula are shown in Figure 4.

As an equivalent way to describe the entries, we index rows and columns
starting with 0, but now we partition the k2 columns of the array into k
squares. Columns 0, 1, . . . , k − 1 make up square 0; columns k, . . . , 2k − 1
make up square 1; in general, columns sk, . . . , (s+ 1)k−1 make up square s.
Like the row number, an entry’s square number s must have 0 ≤ s ≤ k − 1.
An entry in column c = sk + e is actually in the eth column of square s.

As an example, consider the 3×9 array in Figure 5. a is in position r = 0,
e = 0, s = 0. b is in r = 0, e = 0, s = 1. c is in r = 1, e = 0, s = 2. d
is in r = 2, e = 2, s = 2. This coordinate system uniquely identifies each
of the k3 entries in a k × k2 array with a 3-tuple in {0, . . . , k − 1}3, and the

3



a b
c

d

Figure 5: A 3× 9 array

definition of f(r, c) given above is equivalent to placing (s+ re)%k in row r,
column e of square s.

2 Proof of Theorem 1

Consider the k×k2 array with f(r, c) in row r, column c. To prove Theorem
1, we need to show that any two L-fillings in different positions in the array
are distinct.

So suppose
a1
b1 d1

and
a2
b2 d2

are two L-fillings in different locations.

Clearly if a1 6= a2 or b1 6= b2, then these fillings are distinct, so suppose
a1 = a2 = a and b1 = b2 = b. We must show d1 6= d2. To specify, say a1
is in row r, column c with c = sk + e and a2 is in row R, column C with
C = Sk + E. By construction, if b appears immediately below a in column
c = sk + e, then e = (b− a)%k. Thus, e = E.

If r = R we see that (s + re) mod k ≡ (S + Re) mod k and, after sub-
tracting re from both sides, s ≡ S mod k. This means both fillings have the
same row and column numbers, which contradicts these two fillings being in
different locations. It must be the case that r 6= R.

We now have two cases. If e = k − 1, we see by construction that s 6= S.
Hence d1 ≡ (s + 1) mod k and d2 ≡ (S + 1) mod k cannot be equal and the
fillings are distinct.

So suppose e 6= k − 1. Expanding d1 ≡ (s + (r + 1)(e + 1)) mod k and
substituting a ≡ (s + re) mod k shows d1 ≡ (a + e + r + 1) mod k. We
similarly see that d2 ≡ (a + e + R + 1) mod k. Because r 6= R, it must be
that d1 6= d2, and so again we have distinct fillings.

A similar computation shows that the array with f(r, c) in row r and
column c is a k-de Bruijn L-array for each of the other 3 orientations of the

L, namely: , , and .

4



3 For Further Exploration

Although we have constructed a k-de Bruijn L-array for every k ≥ 2, many
interesting questions remain for de Bruijn L-arrays.

For example, when k = 2, a case analysis shows that (up to rotation)
there are precisely two 2-de Bruijn L-arrays; one is shown in Figure 3 and
the other is shown in Figure 4. A computer search for other L-arrays when
k = 3 yields dozens more solutions. Some have evident symmetry while
others do not; two examples are given in Figure 6. A computer search for
other L-arrays when k ≥ 4 is prohibitive, so less naive approaches are needed.
In particular, for k > 2 it is unknown how many k-de Bruijn L-arrays exist.

0 0 0 1 1 1 2 2 2
1 0 0 2 1 1 0 2 2
1 2 1 2 0 2 0 1 0

0 1 1 1 0 1 2 2 1
0 0 1 1 2 1 0 0 2
0 2 0 0 2 2 1 2 2

Figure 6: Two 3-de Bruijn L-arrays

Other two-dimensional shapes merit further investigation. One could
explore de Bruijn arrays for fillings of staircase shapes or for fillings of the
intersection of a longer column with a longer row. The construction of this
paper is particular to the 3-square L discussed above, though, and it is not
easily generalized.

Acknowledgment This project was partially supported by the National
Science Foundation grant DUE-1068346.

References

[1] Nicolaas Govert de Bruijn, A Combinatorial Problem, Koninklijke Ned-
erlandse Akademie v. Wetenschappen 49 (1946) 758–764.

5



[2] Persi Diaconis and Ron Graham, Magical Mathematics: The Mathematics
that Animate Great Magic Tricks, Princeton University Press (2011).

[3] I.J. Good, Normal recurring decimals, Journal of the London Mathemat-
ical Society 21 (1946) 167–169.

[4] Glenn Hurlbert and Garth Isaak, On the de Bruijn torus problem, Journal
of Combinatorial Theory Series A 64 (1993), 50–62.

6


