
Enumeration schemes for vincular patterns

Andrew M. Baxter
Mathematics Department

Pennsylvania State University
State College, PA 08902

Phone: 732-801-9133
Fax: 814-865-3735

baxter@math.psu.edu

Lara K. Pudwell
Department of Mathematics and Computer Science

Valparaiso University
Valparaiso, IN 46383
Phone: 219-464-5414

Fax: 219-464-5361
Lara.Pudwell@valpo.edu

January 26, 2012

Abstract

We extend the notion of an enumeration scheme developed by Zeil-
berger and Vatter to the case of vincular patterns (also called “generalized
patterns” or “dashed patterns”). In particular we provide an algorithm
which takes in as input a set B of vincular patterns and search parameters
and returns a recurrence (called a “scheme”) to compute the number of
permutations of length n avoiding B or confirmation that no such scheme
exists within the search parameters. We also prove that if B contains only
consecutive patterns and patterns of the form σ1σ2 · · ·σt−1 σt, then such
a scheme must exist and provide the relevant search parameters. The
algorithms are implemented in Maple and we provide empirical data on
the number of small pattern sets admitting schemes. We make several
conjectures on Wilf-classification based on this data. We also outline how
to refine schemes to compute the number of B-avoiding permutations of
length n with k inversions.

1 Introduction

Enumeration schemes are special recurrences which were originally de-
signed to compute the number of permutations avoiding a set of classical
patterns. In the current work we extend the tools of enumeration schemes
to compute the number of permutations avoiding a set of vincular pat-
terns.

1

Let [n] = {1, 2, . . . , n}. For a word w ∈ [n]k, we write w = w1w2 · · ·wk
and define the reduction red(w) to be the word obtained by replacing the
ith smallest letter(s) of w with i. For example red(839183) = 324132. If
red(u) = red(w), we say that u and w are order-isomorphic and write
u ∼ w.

Let Sn be the set of permutations of length n. We say that permutation
π ∈ Sn contains σ ∈ Sk as a classical pattern if there is some k-tuple 1 ≤
i1 < i2 < · · · < ik ≤ n such that red(πi1πi2 · · ·πik) = σ. The subsequence
πi1πi2 · · ·πik is called a copy (or occurrence) of σ. If π does not contain
σ, then π is said to avoid σ. Hence we see that π = 34512 contains 231
as a classical pattern witnessed by the subsequence π1π3π4 = 351, but
exhaustive checking shows π avoids 132. The subset of Sn consisting of
permutations avoiding σ is denoted Sn(σ). For a set of patterns B, π is
said to avoid B if π avoids all σ ∈ B, and we denote the set of B-avoiding
permutations by

Sn(B) :=
⋂
σ∈B

Sn(σ). (1)

We will denote the size of Sn(B) by sn(B) =
∣∣Sn(B)

∣∣.
Vincular patterns resemble classical patterns, with the constraint that

some of the letters in a copy must be consecutive. Formally, a vincular
pattern of length k is a pair (σ,X) where σ is a permutation in Sk and X ⊆
{0, 1, 2, . . . , k} is a set of “adjacencies.” A permutation π ∈ Sn contains
the vincular pattern (σ,X) if there is a k-tuple 1 ≤ i1 < i2 < · · · < ik ≤ n
such that the following three criteria are satisfied:

• red(πi1πi2 · · ·πik) = σ.

• ix+1 = ix + 1 for each x ∈ X \ {0, k}.
• i1 = 1 if 0 ∈ X and ik = n if k ∈ X.

In the present work we restrict our attention to patterns (σ,X) where
σ ∈ Sk and X ⊆ [k− 1], rendering the third containment criterion moot.1

The subsequence πi1πi2 · · ·πik is called a copy of (σ,X). In the permuta-
tion π = 162534, the subsequence 1253 is a copy of (1243, {3}), but the
subsequence 1254 is not a copy since the 5 and 4 are not adjacent in π.
The classical pattern σ is precisely the vincular pattern (σ, ∅) since no
adjacencies are required, while the consecutive pattern σ is the vincular
pattern (σ, [k − 1]) since all internal adjacencies are required.

In practice we write (σ,X) as a permutation with a dash between σj
and σj+1 if j 6∈ X. Thus we will often refer to “the vincular pattern
σ” without explicitly referring to X. For example, (1243, {3}) is written
1 2 43.

If the permutation π does not contain a copy of the vincular pattern σ,
then π is said to avoid σ. We will use the same notation Sn(σ) to denote
the set of permutations avoiding the vincular pattern σ, and similarly
Sn(B) denotes those permutations avoiding every vincular pattern σ ∈ B.

Observe that a vincular pattern (σ,X) of length k exhibits similar
symmetries to those of permutations. The reverse is given by (σ,X)r =

1We enact this restriction partly for simplicity. It is plausible that the prefix-focused
arguments below extend to patterns (σ,X) with 0 ∈ X with few modifications, but it is
unlikely such an approach could work if k ∈ X.

2

(σr, k − X) where k − X = {k − x : x ∈ X}. The complement is
(σ,X)c = (σc, X). It follows that that π avoids σ if and only if πr avoids
σr. Similarly, π avoids σ if and only if πc avoids σc. To consider inverses,
one must generalize to the bivincular patterns introduced in [5] which in-
corporate adjacency restrictions on not only the indices of letters forming
a forbidden pattern, but on the values of the offending letters as well.
Since the inverse of a vincular pattern is not itself a vincular pattern, we
will disregard inverses.

Vincular patterns were introduced as “generalized patterns” by Bab-
son and Steingŕımsson in [1] as a generalization of classical patterns as
part of a systematic search for Mahonian permutation statistics. They
soon took on a life of their own spawning numerous papers, including
[8, 9, 12, 13]. They have also been called “dashed patterns” to distinguish
them from other generalizations of classical patterns [6], but Claesson has
since dubbed them “vincular patterns” to connect them with the bivin-
cular patterns introduced in [5]. See Steingŕımssson’s survey for a fuller
history in [21]. They have been linked to many of the common combi-
natorial structures such as the Catalan and Bell numbers as well several
rarer or as-yet unseen structures.

The present work focuses on enumeration schemes, which were intro-
duced by Zeilberger in [23] as an automated method to compute sn(B)
for many different B. Vatter improved schemes in [22] with the introduc-
tion of gap vectors, and Zeilberger provided an alternate implementation
in [24]. The greatest feature of schemes is that they may be discovered
automatically by a computer: the user need only input the set B (along
with bounds to the computer search) and the computer will return an
enumeration scheme (if one exists within the bounds of the search) which
computes sn(B) in polynomial time. The second author extended these
methods to consider pattern avoidance in permutations of a multiset in
[17, 19], as well as barred-pattern avoidance in [18].

Section 2 provides an overview of how enumeration schemes work and
constructs a scheme for 23 1-avoiding permutations by hand. Section
3 outlines how the discovery of schemes can be done via a finite com-
puter search. Section 4 demonstrates instances where we are guaranteed
a successful search for a scheme. Section 5 is divided into three subsec-
tions. The first provides an analysis of the algorithm’s success rate in
discovering schemes automatically, the second outlines the implications
for Wilf-classification of vincular patterns, and the third gives an exam-
ple of how enumeration schemes for vincular patterns may be adapted to
count according to inversion number as per [4].

2 An Overview of Enumeration Schemes

Broadly, enumeration schemes are succinct encodings for a system of re-
currence relations to compute the cardinalities for a family of sets. The
enumerated sets are subsets of Sn(B) determined by prefixes. For a pat-
tern p ∈ Sk, let Sn(B)[p] be the set of permutations π ∈ Sn(B) such that
red(π1π2 . . . πk) = p. For further refinement, let w ∈ {1, 2, . . . , n}k and

3

define the set

Sn(B)[p;w] = {π ∈ Sn(B)[p] : πi = wi for 1 ≤ i ≤ k}.

For an example, consider

S5(1 2 3)[21; 53] = {53142, 53214, 53241, 53412, 53421}.

Clearly this refinement is worthwhile only when red(w) = p. The re-
dundancy of including p in the Sn(B)[p;w] notation is maintained to
emphasize the subset relation. We will denote sizes of these sets by
sn(B)[p] =

∣∣Sn(B)[p]
∣∣ and sn(B)[p;w] =

∣∣Sn(B)[p;w]
∣∣.

By looking at the prefix of a permutation, one can identify likely “trou-
ble spots” where forbidden patterns may appear. For example, suppose
we wish to avoid the pattern 23 1. Then the presence of the pattern 12
in the prefix indicates the potential for the entire permutation to contain
a 23 1 pattern. In [22], Vatter partitions Sn(B) according to the inverse
notion of the pattern formed by the smallest k letters in π ∈ Sn(B). This
partition is not well-suited for keeping track of adjacencies.

Enumeration schemes take a divide-and-conquer approach to enumer-
ation. For a permutation p ∈ Sk, we say that p′ ∈ Sk+1 is a child of p
if p′1p

′
2 · · · p′k ∼ p. For example, the children of p = 312 are 3124, 4123,

4132, and 4231. Any set Sn(B)[p] for p ∈ Sk may be partitioned into the
family of sets Sn(B)[p′] for each of the children p′ ∈ Sk+1(B)[p]. These
smaller sets are then counted as described below, and their sizes are to-
taled to obtain sn(B)[p]. In the end we will have computed sn(B), since
Sn(B) = Sn(B)[ε] = Sn(B)[1] for n ≥ 1, where ε is the empty permuta-
tion.

For a prefix pattern p ∈ Sk, we will classify Sn(B)[p] in one of three
ways:

(1) If n = k, then Sn(B)[p] is either {p} or ∅, depending on whether p
avoids B.

(2) For each w ∈ [n]k such that red(w) = p one of the following happens:

(2a) Sn(B)[p;w] is empty, or

(2b) Sn(B)[p;w] is in bijection with some Sn′(B)[p′;w′] for n′ < n.

(3) Sn(B)[p] must be partitioned further, so sn(B)[p] =
∑

p′∈Sk+1(B)[p]

sn(B)[p′].

Case (1) provides the base cases for our recurrence. For case (2), if
there is any w for which neither (2a) nor (2b) holds then we must divide
Sn(B)[p] as in case (3). For case 2a, the gap vector criteria for the given
p identify which w yield empty Sn(B)[p;w]. Gap vector criteria are devel-
oped in Subsection 2.1. The bijection in (2b) is performed by removing a
certain subset of the first k letters of π ∈ Sn(B)[p;w], and which subset
may be “nicely” removed depends on p and B but not w. Such subsets
are called reversibly deletable, and are developed in Subsection 2.2.

4

2.1 Gap Vectors

The motivation for gap vectors lies in the idea of “vertical space” (in the
sense of the graph of a permuation) in a prefix w. Sometimes the difference
of the values of letters in the prefix is so great that a forbidden pattern
must appear. To make this notion more precise, we follow our example
above and compute sn(B) for B = {23 1}. Observe that Sn(B)[12;w1w2]
is empty if w1 > 1, since if π ∈ Sn(B)[12;w1w2] then πi = 1 for some i ≥ 3.
Thus red(w1w2πi) = 231 and so π contains 23 1. Hence Sn(B)[12;w1w2]
is non-empty only if 1 = w1 < w2 ≤ n.

For a word w ∈ [n]k, let ci be the ith smallest letter of w, c0 =
0 and ck+1 = n + 1. Define the (k + 1)-vector ~g(n,w) such that ith

component gi = ci − ci−1 − 1. We call ~g(n,w) the spacing vector of
w. Observe that for any π ∈ Sn(B)[p;w], gi is the number of letters in
πk+1, πk+2, . . . , πn which lie between ci−1 and ci, and so ~g(n,w) indicates
what letters follow the prefix. In the preceding paragraph, we saw that
Sn(B)[12;w] is empty if ~g(n,w) ≥ 〈1, 0, 0〉 where ≥ represents the product
order for N3 (component-wise dominance). Towards generality, we make
the following definition:

Definition 1. Given a set of forbidden patterns B and prefix p ∈ Sk,
then ~v ∈ Nk+1 is a gap vector for prefix p with respect to B if for all n
Sn(B)[p;w] = ∅ for all w such that ~g(n,w) ≥ ~v. When this happens, we
say that w satisfies the gap vector criterion for ~v.

It should be noted that this definition reverses the terminology of [22]
to match that of [4, 17–19, 24].

From this definition we see ~v = 〈1, 0, 0〉 is a gap vector for p = 12 with
respect to B = {23 1}, and any prefix w = w1w2 with 1 < w1 < w2 ≤ n
satisfies the gap vector condition for ~v.

Observe that gap vectors for a given prefix p ∈ Sk form an upper
order ideal in Nk+1, i.e., if ~u ≥ ~v for gap vector ~v then ~u is also a gap
vector. Hence it suffices to determine only the minimal elements since
they will form a basis (since Nk+1 is partially well-ordered). Details of
the automated discovery of gap vectors are left to Section 3.1.

2.2 Reversible Deletions

If we are considering Sn(B)[p;w] for a w that fails all gap vector criteria,
we rely on bijections with previously-computed Sn′(B)[p′;w′] for n′ < n.
To continue the example above, consider Sn(23 1)[12; 1w2]. An initial
π1 = 1 cannot take part in a 23 1 pattern, so the map of deleting π1 is a
bijection

d1 : Sn(23 1)[12; 1w2]→ Sn−1(23 1)[1;w2 − 1]

where d1 : π1π2 · · ·πn 7→ red(π2π3 · · ·πn). Hence we see that sn(23 1)[12; 1w2] =
sn−1(23 1)[1;w2 − 1].

More generally define the deletion dr(π) := red(π1 . . . πr−1πr+1 . . . πn),
that is, the permutation obtained by omitting the rth letter of π and
reducing. Furthermore for a set R, define dR(π) to be the permutation
obtained by deleting πr for each r ∈ R and then reducing. For a word w
with no repeated letters, define dr(w) be the word obtained by deleting the

5

rth letter and then subtracting 1 from each letter larger than wr. Similarly,
to construct dR(w) delete wr for each r ∈ R and subtract

∣∣{r ∈ R : wr <
wi}
∣∣ from wi. For example d3(6348) = 537 and d{1,3}(6348) = 36. It can

be seen that this definition is equivalent to the one given above when w ∈
Sk, and it allows for more succinct notation in the upcoming definition.
For any set R and n ≥ |R|, dR : Sn(∅)[p;w]→ Sn−|R|(∅)[dR(p); dR(w)] is
a bijection. Sometimes we are lucky and the restriction to Sn(B)[p;w] is a
bijection with Sn−|R|(B)[dR(p); dR(w)], leading to the following definition:

Definition 2. The index r is reversibly deletable for p with respect to B
if the map

dr : Sn(B)[p;w]→ Sn−1(B)[dr(p); dr(w)]

is a bijection for all w failing the gap vector criterion for every gap vec-
tor of p with respect to B (i.e., dr is a bijection for all w such that
Sn(B)[p;w] 6= ∅).

The set of indices R is reversibly deletable for p with respect to B if
the map

dR : Sn(B)[p;w]→ Sn−|R|(B)[dR(p); dR(w)]

is a bijection for all w failing the gap vector criterion for every gap vec-
tor of p with respect to B (i.e., dR is a bijection for all w such that
Sn(B)[p;w] 6= ∅).

Note that the empty set R = ∅ is always reversibly deletable. We
are interested in finding non-empty reversibly deletable sets when they
exist. Also observe that if the prefix p contains a forbidden pattern then
Sn(B)[p;w] = ∅ for any appropriate w, and so ~0 = 〈0, 0, . . . , 0〉 is a gap
vector. Furthermore if ~0 is a gap vector then any set R ⊆ {1, 2, . . . , |p|}
is vacuously reversibly deletable.

In [22] Vatter uses the term ES+-reducible to describe p for which
there is a non-empty reversibly deletable set. When there is no non-
empty reversibly deletable set, then p is called ES+-irreducible. We will
not make use of this terminology in the current work.

In the classical case, Vatter proved that identifying reversibly deletable
indices is a finite process in [22]. We will prove the analogous result for
vincular patterns in Section 3.2.

2.3 Formal Definition of an Enumeration Scheme

Formally, an enumeration scheme E for Sn(B) is a set of triples (p,Gp, Rp),
where p ∈ Sk is a prefix pattern, Gp is a basis of gap vectors for p with
respect to B, and Rp is a reversibly deletable set for p with respect to B.
Furthermore, E must satisfy the following criteria:

1. (ε, ∅, ∅) ∈ E.

2. For any (p,Gp, Rp) ∈ E,

(a) If Rp = ∅ and ~0 /∈ Gp, then (p′, Gp′ , Rp′) ∈ E for every child p′

of p.

(b) If Rp 6= ∅, then (p̂, Gp̂, Rp̂) ∈ E for p̂ = dRp(p).

One can then “read” the enumeration scheme E to compute sn(B)[p;w]
according to the following rules:

6

1. If w satisfies the gap vector criteria for some ~v ∈ Gp, then sn(B)[p;w] =
0.

2. For each prefix w that fails the gap criteria for all ~v ∈ Gp, sn(B)[p;w] =
sn−|Rp|(B)[dRp(p); dRp(w)] (i.e., Rp is a reversibly deletable set of
indices).

3. If Rp = ∅ then sn(B)[p] =
∑

p′∈Sk+1(B)[p]

sn(B)[p′].

When combined with the obvious initial condition that sn(B)[p;w] =
1 when p has length n and avoids B, the scheme provides a system of
recurrences to compute sn(B)[p;w] and hence sn(B).

As an example consider Sn(23 1), discussed above, with the enumer-
ation scheme:

E = {(ε, ∅, ∅), (1, ∅, ∅), (12, {〈1, 0, 0〉}, {1}), (21, ∅, {1})}. (2)

The definition of schemes implies (ε, ∅, ∅) ∈ E, and Rε = ∅ requires
(1, G1, R1) ∈ E. Starting with the pattern 1 yields no additional informa-
tion so G1 and R1 are both empty. Thus we see (12, G12, R12) ∈ E and
(21, G21, R21) ∈ E. As discussed in Section 2.1, 〈1, 0, 0〉 ∈ G12. It is easily
seen this forms a basis for all gap vectors for 12 and so G12 = {〈1, 0, 0〉}.
As discussed in Section 2.2, R12 = {1}.

Moving on to the prefix pattern p = 21, it can be seen that R21 =
{1} by the following argument. Suppose π ∈ Sn(∅)[21]. First observe
that deleting π1 cannot create a 23 1 which was not already present in
π2 · · ·πn. Next π1 cannot take part in a 23 1 pattern since this would
require red(π1π2) = red(23) = 12 while it is known that π1 > π2. Hence
the map d1 restricts to a bijection Sn(23 1)[21] ↔ Sn−1(23 1)[1], so we
may let R21 = {1}. Since this argument can hold regardless of the actual
letters π1 and π2, we may let G21 = ∅. This completes the construction
of E above.

The scheme E translates into the following system of recurrences:

sn(23 1) = sn(23 1)[ε]

= sn(23 1)[1]

=

n∑
a=1

sn(23 1)[1; a]

sn(23 1)[1; a] =

a−1∑
b=1

sn(23 1)[21; ab] +

n∑
b=a+1

sn(23 1)[12; ab]

sn(23 1)[21; ab] = sn−1(23 1)[1; b]

sn(23 1)[12; ab] =

{
sn−1(23 1)[1; b− 1], a = 1

0, a > 1

This system simplifies to:

sn(23 1)[1; a] =


n−1∑
b=1

sn−1(23 1)[1; b], a = 1

a−1∑
b=1

sn−1(23 1)[1; b], 1 < a ≤ n.

7

which can be used to compute arbitrarily many terms of the sequence
sn(23 1) in polynomial time.

Claesson shows in Proposition 3 of [8] that sn(23 1) is the nth Bell
number, and his bijection also implies that sn(23 1)[1; a] is the number
of permutations of [n] such that a is the largest letter in the same block
as 1. The triangle formed is an augmented version of Aitken’s array as
described in OEIS sequence A095149 [15].

If |E| is finite, we say that B admits a finite enumeration scheme. The
length of the longest p appearing is the called the depth of E. Not every
set B admits a finite enumeration scheme, the simplest example being
the classical pattern 2 3 1. Let E231 be the scheme for Sn(2 3 1), and
let Jt = t(t − 1) · · · 21 be the decreasing permutation of length t. It can
be shown that GJt = ∅ and RJt = ∅ for any t, and hence E231 contains
the triple (Jt, ∅, ∅) for all t ≥ 1 and hence is infinite. It should be noted,
however, that the enumeration scheme for Sn(1 3 2) is finite (of depth 2)
and sn(2 3 1) = sn(1 3 2) by symmetry.

In general, if B admits an enumeration scheme EB of depth d then
its set of complements Bc = {σc : σ ∈ B} also admits an enumeration
scheme EBc of depth d. In fact, one can say (p,R,G) ∈ EB if and only
if (pc, R,Gr) ∈ EBc where Gr = {〈gk+1, gk, . . . , g1〉 : 〈g1, g2, . . . , gk+1〉 ∈
G}. This follows directly from the definitions given above and is left to
the reader. One cannot make analogous statements regarding Br = {σr :
σ ∈ B}, and so B may not have a finite scheme while Br does.

3 Automated Discovery

We now turn to the process of automating the discovery of enumeration
schemes for vincular patterns, since this automation is the most outstand-
ing feature of this method. The overall algorithm proceeds as follows:

Algorithm 3.

1. Initialize E := {(ε, ∅, ∅)}
2. Let P be the set of all children of all prefixes p such that (p,Gp, Rp) ∈

E and Rp = ∅ and ~0 /∈ Gp. If there are no such prefixes, return E.
Otherwise proceed to step 3.

3. For each p ∈ P , find a basis of gap vectors Gp.

4. For each p ∈ P , find a non-empty reversibly deletable set of indices
Rp given the gap vector criteria in Gp. If no such Rp exists, let
Rp = ∅.

5. Let E = E ∪ {(p,Gp, Rp) : p ∈ P}.
6. Return to step 2.

Steps 1, 2, 5, and 6 are routine computations for a computer algebra
system. In the following subsections we present algorithms to automate
steps 3 and 4.

8

3.1 Gap Vectors

We first look at automating step 3 of Algorithm 3. As mentioned previ-
ously, the set of gap vectors forms an order ideal in Nk+1 and therefore
it suffices to find a finite basis of minimal gap vectors. In this section we
present a method to test whether a given ~v is a gap vector by checking
finitely many permutations for pattern containment.

The approach mimics that of [24], rather than [22] where Vatter presents
a stronger notion of gap vector which yields an a priori bound on the set
of vectors to check. Define the norm of a vector ~v = 〈v1, . . . , vk+1〉 to be
the sum of its components, |~v| = v1 + · · · + vk+1. In Vatter’s notion of
gap vector, if ~v is a basis gap vector then |~v| ≤ max{|σ| : σ ∈ B} − 1.
In Zeilberger’s method in [24], the maximum norm of basis gap vectors is
entered by the user as a parameter of the algorithm.

We choose the method of [24] since its implementation allows the user
more control over runtime via a parameter that lets us set the maximum
allowed gap norm. This speeds computation time since it reduces the
candidate pool for putative gap vectors, but this is at the cost of missing
gap vectors which could make the enumeration scheme finite. For example,
it is shown in [22] that there is no finite enumeration scheme for the
forbidden set B = {1 4 2 3, 1 4 3 2} using only gap vectors of norm
1. On the other hand, there is a depth 7 scheme for 1 2 3 4 5-avoiding
permutations which has maximum basis gap vector norm 1 instead of
the a priori bound of 4. A search for a depth 7 scheme with maximum
gap vector norm 4 is impractical with the current implementation. A
search for a depth 7 scheme with maximum gap vector norm 1, however,
completes in under five minutes with a finite scheme.

We now present a test for whether a specific vector ~v is a gap vector
by checking finitely many cases.

Given a set of forbidden patterns B, prefix p ∈ Sk, and vector ~v ∈
Nk+1, define the set of permutations with prefix p and spacing vector ~v:

A(p,~v) := {π ∈ S|p|+|~v| : π1 · · ·πk ∼ p,~g(π1 · · ·πk) = ~v}.

In this notation, ~v is a gap vector if ~u ≥ ~v implies that every π ∈ A(p, ~u)
contains some pattern in B.

Define the head of a vincular pattern (σ,X) to be the subpattern
(red(σ1 · · ·σ`+1), X) where ` = maxX. For example, the head of (241652, {2}) =
2 41 6 5 3 is (red(241), {2}) = 2 31. The part of σ following the head is
a classical pattern, with dashes between every letter.

Theorem 4. Consider a prefix p ∈ Sk and a spacing vector ~v ∈ Nk+1. If
every permutation π ∈ A(p,~v) contains a copy of some σ ∈ B such that
π1 · · ·πk contains the head of the copy, then ~v is a gap vector.

Proof. We will demonstrate how to construct any permutation π ∈ A(p, ~u)
for ~u ≥ ~v from a π′ ∈ A(p,~v) while preserving any copy of σ ∈ B whose
head lies in π′1 · · ·π′k .

Let π ∈ A(p, ~u) where |p| = k. Let ci be the ith smallest letter in
π1 · · ·πk and let c0 = 0 and ck+1 = n+1. Define Ci := {πj : j > k, ci−1 <
πj < ci} for i ∈ [k + 1], and observe that ui =

∣∣Ci∣∣. For each i, choose
ui−vi letters of Ci, delete these letters from π, and reduce. Note that the

9

deleted letters all lie outside of the prefix π1 · · ·πk, so this process forms
π′ ∈ A(p,~v). Reversing this process by re-inserting the letters provides
the necessary construction of π from π′. By our hypothesis, π′ contains
σ ∈ B such that the head of σ lies in the prefix π′1 · · ·π′k. Inserting letters
after the prefix will not destroy this copy of σ since the portion of σ lying
outside the head has no adjacency restrictions. Hence π ∈ A(p, ~u) also
contains σ, and our result is proven.

Note that A(p,~v) contains |~v|! permutations, and each of these must
be checked for B-containment. Hence keeping |~v| small is a significant
computational advantage.

Note that the criterion that every permutation in A(p,~v) contains a
copy of σ ∈ B such that π1 · · ·πk contains the head of the copy is required.
For example, consider B = {124 3, 123 4 5}. Here A(123, 〈0, 0, 0, 2〉) =
{12345, 12354}, both of which contain a forbidden pattern although the
copy of 124 3 contained in 12354 does not have its head entirely in p. Now
observe that 234165 ∈ A(123, 〈1, 0, 0, 2〉) avoidsB even though 〈1, 0, 0, 2〉 ≥
〈0, 0, 0, 2〉: the inserted 1 severs the copy of 124 3 without creating any
other forbidden pattern.

Note that Theorem 4 provides a sufficient condition, but we do not
prove necessity. There may exist gap vectors ~v which do not satisfy the
given criterion, but we have observed no such vectors in practice.

In the computer implementation of this test, one must constructA(p,~v)
explicitly. This may be done by methods discussed in [24].

As an example of applying Theorem 4, consider the B = {23 1}-
avoiding permutations, with prefix p = 12 and suppose we search over all
vectors with norm at most 2. Table 1 gives the relevant information for
each of the ten candidates.

~v A(12, ~v) Gap vector?
〈0, 0, 0〉 {12} No
〈1, 0, 0〉 {231} Yes
〈0, 1, 0〉 {132} No
〈0, 0, 1〉 {123} No
〈1, 1, 0〉 {2413, 2431} Yes
〈1, 0, 1〉 {2314, 2341} Yes
〈0, 1, 1〉 {1324, 1342} No
〈2, 0, 0〉 {3412, 3421} Yes
〈0, 2, 0〉 {1423, 1432} No
〈0, 0, 2〉 {1234, 1243} No

Table 1: Computing gap vectors for p = 12 with respect to {23−1}

Looking at the set of gap vectors determined {〈1, 0, 0〉, 〈1, 1, 0〉, 〈1, 0, 1〉, 〈2, 0, 0〉},
we see the order ideal generated by these vectors has minimal basis {〈1, 0, 0〉}.2
Hence in the enumeration scheme we see G12 = {〈1, 0, 0〉}.

2The thoroughness of this example is perhaps misleading regarding the implementation.
Once the computer discovers that ~v is a gap vector, it need not bother testing any other ~u ≥ ~v.

10

3.2 Reversibly Deletable Sets

We now turn our attention to automating step 4 of Algorithm 3: dis-
covering reversibly deletable sets of indices for a given prefix p. Our
scenarios-based approach parallels that of [24].

Recall that for a set of indices R, the map dR deletes πr for each r ∈ R.
This forms a bijection dR : Sn(∅)[p;w] → Sn−|R|(∅)[dR(p); dR(w)], and
when this map restricts to a bijection Sn(B)[p;w]→ Sn−|R|(B)[dR(p); dR(w)]
we say that R is reversibly deletable for the prefix p. In the classical case,
the deletion of a letter or letters could not create a copy of a forbidden
pattern. For vincular patterns, however, deleting a letter may create the
adjacency required to form an occurrence of a vincular pattern. For ex-
ample, 3142 avoids 23 1 but d2(3142) = 231 does not since the 3 and 4
become adjacent to one another. This does not preclude the existence of
bijective maps dR, it merely requires additional checks for the automated
discovery. In the end, a finite search for a reversibly deletable set suffices
as in the classical case: it is only the manner in which we check each can-
didate which differs. The need to check both directions of the map first
appears in [18] when extending schemes for barred pattern avoidance. The
added twist needed for vincular pattern avoidance is the introduction of
the “null” symbol •.

Note R is reversibly deletable when every π ∈ Sn(∅)[p;w] avoids B if
and only dR(π) also avoids B. Inversely, we could check whether every
π which contains some σ ∈ B has image dR(π) which also contains some
σ′ ∈ B. This approach was introduced by Zeilberger in [24] and used
by the second author in [18, 19] when extending enumeration schemes to
other contexts.

Let us illustrate the approach via an example before moving to the
general case. Consider B = {124 3} and prefix p = 132. We ask “which
letters of the prefix can participate in a σ = 124 3 pattern?”. Suppose π is
a permutation with prefix pattern 132, and that at least one letter of the
prefix is part of a copy of σ. If π has minimal length, then π must have the
form red(132abc) where a, b, c ∈ Q such that 2abc ∼ σ: σ starts with two
rises and the descent 32 in the prefix prevents a σ from starting earlier.
There are four such permutations: 132465, 142365, 152364, 162354 (the
occurence of σ is underlined in each). It will be necessary to keep track of
where and when dashes in the contained copy of σ appear outside of the
prefix, which we denote with the “null” symbol •. This special character
denotes the possibility for intervening letters but cannot participate in
patterns itself. Thus we write these four permutations as 13246•5,14236•5,
15236•4, 16235•4. Denote this set of containment scenarios for p = 132
by A132. We now apply dR for each R ⊆ [3] and check whether the images
under dR each contain σ. This is done in Table 2. If dR(π) contains σ for
each π ∈ A132, then R passes the first test3 for reverse deletability: the
insertion d−1

R does not create any forbidden patterns in B when applied to
a permutation which already avoids B. Looking across the rows of Table
2, we see that {1}, {2}, and {1, 2} pass this test since every permutation
in those rows contains σ.

3In the classical case, this was the only test.

11

π ∈ A132 13246•5 14236•5 15236•4 16235•4
d{1}(π) 2135•4 3125•4 4125•3 5124•3
d{2}(π) 1235•4 1235•4 1235•4 1235•4
d{3}(π) 1235•4 1325•4 1425•3 1524•3
d{1,2}(π) 124•3 124•3 124•3 124•3
d{1,3}(π) 124•3 214•3 314•2 413•2
d{2,3}(π) 124•3 124•3 134•2 143•2
d{1,2,3}(π) 13•2 13•2 13•2 13•2

Table 2: dR(π) for each R ⊆ {1, 2, 3}, π ∈ A132.

Since a deletion map creates new adjacencies and potentially a copy
of σ, there is a second test that R must pass to be reversibly deletable.
Consider R = {2}, which passed the previous test. Applying d{2} to
a permutation with prefix pattern 132 will create a permutation with
prefix patttern 12, so we must consider the containment scenarios for
the prefix p = 12: A12 = {124 • 3, 1235 • 4}. We then consider all
ways each of these containment scenarios could have arisen by apply-
ing d{2} to a permutation with prefix patern 132; i.e., every permutation
of the form red(1a24•3) for a ∈ {2 + 1

2
, 3 + 1

2
, 4 + 1

2
} or red(1b235•4)

for b ∈ {2 + 1
2
, 3 + 1

2
, 4 + 1

2
, 5 + 1

2
}. In particular, this list includes

1325•4, which avoids σ while d{2}(1325•4) = 124•3 contains σ. Since
one can use d{2} to create a σ-containing permutation from a σ-avoiding
permutation, R = {2} cannot be reversibly deletable. On the other
hand, for R = {1} one can check that the containment scenarios for
d{1}(132) = 21 are A21 = {2135•4, 3125•4, 4125•3, 5124•3} and that the
permutations starting with 132 which map to some π ∈ A21 are precisely
{13246•5, 14236•5, 15236•4, 16235•4}. Since each of these pre-image per-
mutations contains σ, R = {1} passes the second test for reversible
deletability. Hence {1} is reversibly deletable. Similarly, for R = {1, 2}
we get only the containment scenario A1 = {124•3} and the same set of
pre-images with prefix 132:

d{1,2} ({13246•5, 14236•5, 15236•4, 16235•4}) = A1.

Again, each of the permutations on the lefthand side contains σ, so
R = {1, 2} is reversibly deletable. Hence we have two non-empty re-
versibly deletable sets for prefix 132. While either set will lead to a valid
enumeration scheme, we follow a convention to choose the largest one and
break ties lexicographically by the smallest elements.

To demonstrate a subtlety of containment scenarios, consider the for-
bidden set B = {3 21, 32 1} and prefix p = 21. Here we see that we
have the basis gap vector 〈1, 0, 0〉, and so any permutation starting with
prefix word ab for a > b > 1 necessarily contains a forbidden pattern.
Hence to prove R is reversibly deletable, we only need to show dR is bijec-
tive starting from sets of the form Sn(B)[21; a1]. Therefore even though
42•31 contains a forbidden pattern and begins with 21, we know that
Sn(B)[21; 42] = ∅ and so we do not need to check whether dR(42•31)
contains a forbidden pattern. In fact the only containment scenario worth

12

checking for p = 21 is 41•32. Hence R = {2} passes the first test for
reversible deletability. We then move on to consider the containment sce-
narios for prefix pattern d2(21) = 1. These are A1 = {3•21, 32•1}. The
pre-images under d2 starting with 21 include 413 2, however, which does
not contain either forbidden pattern. Hence R = {2} fails the second test
for reversible deletability. If we had not kept track of dashes with the null
character •, however, the preimage 4132 would have contained a forbidden
pattern and {2} would have appeared to be reversibly deletable.

We now outline in general the scenarios method to test whether a set
R is reversibly deletable for prefix p with respect to forbidden pattern B.
We begin with a formal definition for a containment scenario.

Definition 5. Let (σ,X) be a vincular pattern of length ` and let p ∈ Sk be
a prefix pattern with known set of gap vectors G. Let w ∈ {1, 2, . . . , n, •}n+m
be a word with m copies of • and no other letters repeated. Then w is a
containment scenario for p if the following criteria are satisfied:

1. w1 · · ·wk ∼ p. Note this implies • does not appear in the first k
letters.

2. w1 · · ·wk fails all gap vector criteria in G.

3. There is some subsequence 1 ≤ i1 < · · · < i` ≤ n + m such that
w(i1) · · ·w(i`) ∼ σ and w(ix + 1) = • for each x such that ix ≥ k
and there is a dash between σx and σx+1 (i.e., x 6∈ X).

4. No subsequence of w is a containment scenario (i.e., w has minimal
length).

The set of containment scenarios for a forbidden set B is simply the
union of the sets of containment scenarios for each σ ∈ B. We will denote
by Ap the set of containment scenarios for a forbidden set B, a prefix p,
and a set of gap vectors G.

One can compute Ap via brute force over all 2|p| − 1 nonempty sub-
sequences of p. A set of indices 1 ≤ i1 < · · · it ≤ |p| is a partial match
for (σ,X) ∈ B if ix + 1 = ix+1 for each x ∈ X and p(i1)p(i2) · · · p(it) ∼
σ1σ2 · · ·σt. Note that a set of indices may be a partial match for more
than one pattern in B. For each partial match of (σ,X), insert the |σ| − t
letters and necessary number of • on the right end of p in such a way
to complete the occurrence of σ using the letters in the partial match.
Repeating this process for each (σ,X) ∈ B gives us the complete set of
containment scenarios. We may then throw out any containment scenar-
ios whose first |p| letters satisfy a gap vector criterion for some basis gap
vector.

We now present the algorithm to check whether a given set R ⊆ [k] is
reversibly deletable for a prefix p ∈ Sk with respect to the forbidden set
B.

Algorithm 6.

1. Compute the set of containment scenarios Ap.

2. For each π ∈ Ap, check if dR(π) contains a forbidden pattern in B.
If any π avoids B, then R is not reversibly deletable. Otherwise,
proceed to step 3.

13

3. Compute the set of containment scenarios AdR(p).

4. Find the set of all permutations π with prefix p such that dR(π) ∈
AdR(p). If any of these π avoids B, then R is not reversibly deletable.
If each of these contains some forbidden pattern, then R is reversibly
deletable.

Therefore we can compute non-empty reversibly deletable sets au-
tomatically by a finite computer search. This concludes our discussion
on automated discovery of enumeration schemes. These procedures have
been implemented in the Maple package gVatter, available on the au-
thors’ homepages.

4 Special Cases of Guaranteed Success

Knowing a priori whether a set of patterns B has a finite enumeration
scheme remains an open question. As a partial classification, we show here
that if B contains only consecutive (i.e., dashless) patterns and patterns of
the form σ1σ2 · · ·σt−1 σt = (σ, [t−2]) then B admits a finite enumeration
scheme. We will prove this via a series of lemmas regarding gap vectors
and reversibly deletable sets.

Our first sequence of lemmas regards consecutive pattern avoidance.

Lemma 7. Let σ ∈ St and consider prefix pattern p ∈ Sk. Then the
set {1} is reversibly deletable for prefix p with respect to {(σ, [t − 1])} if
p1p2 · · · pmin(t,k) 6∼ σ1σ2 · · ·σmin(t,k).

Proof. Suppose the permutation starts with prefix pattern p such that π
p1p2 · · · pmin(t,k) 6∼ σ1σ2 · · ·σmin(t,k). Then π1 could not be involved in a
copy of the consecutive pattern (σ, [t−1]), since otherwise p1p2 · · · pmin(t,k) ∼
σ1σ2 · · ·σmin(t,k). To verify {1} is reversibly deletable, observe that ap-
plying the deletion map d1 does not create new adjacencies, and so d1(π)
avoids (σ, [t− 1]) if and only if π avoids (σ, [t− 1]).

Lemma 7 is conservative since larger sets can be reversibly deletable.
The set {1, 2, . . . , s} is reversibly deletable for prefix p with respect to
(σ, [t−1]) if papa+1 · · · pmin(a+t−1,|p|) is not order-isomorphic to σ1σ2 · · ·σmin(t,|p|−a+1)

for each a ≤ s. This fact can be proven by the same arguments, since
d{1,2,...,s} will not create new adjacencies. Looking ahead to Lemma 14,
we will keep to s = 1 so that the only non-empty reversibly deletable set
which appears in a given scheme is {1}.
Lemma 8. Let σ ∈ St. For any permutation p containing the consecutive
pattern (σ, [t−1]), ~0 = 〈0, 0, . . . , 0〉 is a gap vector for prefix p with respect
to {(σ, [t− 1])}.

Proof. If p already contains σ, then no permutation containing p (in par-
ticular, starting with prefix pattern p) can avoid σ. Hence Sn((σ, [t −
1]))[p;w] = ∅ for any prefix word w, and the result follows from the defi-
nition of gap vectors.

Lemmas 7 and 8 combine to give us the following Proposition:

14

Proposition 9. For σ ∈ St, the pattern set {(σ, [t − 1])} admits an
enumeration scheme of depth t where every reversibly deletable set is either
∅ or {1}.

Proof. We will construct an enumeration scheme E for (σ, [t−1])-avoiding
permutations. For each permutation p of length at most t, Lemmas 7 and
8 imply a gap vector basis Gp and a reversibly deletable set Rp, and
we add the triple (p,Gp, Rp) to E. Observe every permutation of length
exactly t is either p = σ, in which case ~0 is a gap vector, or p 6= σ, in
which case {1} is reversibly deletable, so we see that E satisfies criterion
(2a) given in Section 2.3. Since every permutation p of length at most t
appears in E, we see that criterion (2b) is also satisfied. Hence E is a
valid enumeration scheme with finitely many elements.

This proof has some redundancy built into it. For a more efficient
approach, we could execute Algorithm 3, using Lemmas 7 and 8 to obtain
gap vector bases (either ∅ or {~0}) and our reversibly deletable sets (either
∅ or {1}). The algorithm terminates since every prefix pattern p of length
t is either p = σ, in which case ~0 is a gap vector, or p 6= σ, in which case
{1} is reversibly deletable. Hence E contains no prefix patterns of length
greater than t.

We now present the analogues of Lemmas 7 and 8 and Proposition 9
for patterns of the form (σ, [t− 2]) for σ ∈ St.
Lemma 10. Let σ ∈ St and consider prefix pattern p ∈ Sk. Then the
set {1} is reversibly deletable for prefix p with respect to (σ, [t − 2]) if
p1p2 · · · pmin(t−1,k) 6∼ σ1σ2 · · ·σmin(t−1,k).

Proof. As in the proof for 7, the letter π1 cannot be involved in the pattern
(σ, [t−2]) unless π1π2 · · ·πmin(t−1,k) is order-isomorphic to σ1σ2 · · ·σmin(t−1,k).
Furthermore, the deletion map d1 does not create new adjacencies and so
preserves (σ, [t− 2])-avoidance.

Like Lemma 7, Lemma 10 is conservative. The set {1, 2, . . . , s} is re-
versibly deletable for prefix p with respect to (σ, [t−2]) if papa+1 · · · pmin(a+t−2,|p|)
is not order-isomorphic to σ1σ2 · · ·σmin(t−1,|p|−a+1) for each a ≤ s.
Lemma 11. Let σ ∈ St and consider the prefix pattern p = σ1 · · ·σt−1.
Then ~v = 〈0, . . . , 0, 1, 0, . . . , 0〉 is a gap vector for the prefix p with respect
to {(σ, [t − 2])}, where vσt = 1 and vi = 0 for other i. Further, {1} is
reversibly deletable for p with respect to (σ, [t− 2]).

Proof. Let π ∈ A(p, ~u) for ~u ≥ ~v. Then we know π1 · · ·πt−1 ∼ σ1 · · ·σt−1,
so define indices a and b so that πa corresponds to σt−1 and πb corresponds
to σt + 1. Since π has spacing vector ~u ≥ ~v, we know there is some πi for
i > t − 1 such that the value πi lies between the values of πa and πb. In
short, π1 · · ·πt−1πi forms a copy of (σ, [t− 2]). Hence ~v is a gap vector as
per Theorem 4.

We now turn to proving {1} is reversibly deletable. Suppose that
π ∈ Sn((σ, [t − 2]))[p;w] for a prefix word w such that ~u = ~g(n,w) 6≥ v.
Then uσt = 0, so we see that there is no πi for i > t − 1 such that
π1 · · ·πt−1πi ∼ σ. Therefore π1 cannot be involved in any copies of

15

(σ1σ2 · · ·σt−1, [t−2]) and hence cannot be involved in a copy of (σ, [t−2]).
Since d1 preserves (σ, [t−2])-avoidance as previously seen, we have shown
that {1} is reversibly deletable.

We combine Lemmas 10 and 11 to form Proposition 12:

Proposition 12. For σ ∈ St, the pattern set {(σ, [t − 2])} admits an
enumeration scheme of depth t− 1 where every reversibly deletable set is
either ∅ or {1}.

Proof. The proof is similar to that of Proposition 9. Construct E by
adding the triple (p,Gp, Rp) for each permutation p of length at most
t − 1, where the gap vector basis Gp and reversibly deletable set Rp are
given by Lemmas 10 and 11. Since every permutation p of length t−1 has
Rp = {1}, we see that E is finite while still satisfying criterion (2a).

As in Proposition 9, the scheme constructed in Proposition 12 has
more terms than the scheme which would be constructed via Algorithm
3.

Propositions 9 and 12 demonstrate how to construct schemes for sin-
gleton sets of patterns of certain forms. The following lemmas outline
when one can combine enumeration schemes for pattern sets B and B′ to
construct an enumeration scheme for B ∪B′.
Lemma 13. Suppose that ~v is a gap vector for the prefix p with respect
to B. Then ~v is a gap vector for p with respect to any pattern set C ⊇ B.
In particular, for a pattern set B′, ~v is a gap vector for C = B ∪B′.

Proof. If C ⊇ B, then Sn(C)[p;w] ⊆ Sn(B)[p;w]. Therefore any criterion
implying Sn(B)[p;w] = ∅, in particular a gap vector criterion, also implies
that Sn(C)[p;w] = ∅.

Lemma 14. Suppose that R is reversibly deletable for the prefix p with
respect to B and with respect to B′. Then R is reversibly deletable for p
with respect to B ∪B′.

Proof. First recall that Sn(B ∪ B′)[p;w] = Sn(B)[p;w] ∩ Sn(B′)[p;w].
From the definition of a reversibly deletable set, we know that we have
the following bijections:

dR :Sn(B)[p;w]→ Sn−|R|(B)[dR(p); dR(w)]

dR :Sn(B′)[p;w]→ Sn−|R|(B′)[dR(p); dR(w)]

It follows that we also have the bijection

dR : Sn(B ∪B′)[p;w]→ Sn−|R|(B ∪B′)[dR(p); dR(w)].

Hence R is reversibly deletable for p with respect to B ∪B′.

We may combine Lemmas 13 and 14 combine with Propositions 9 and
12 to give us the following theorem:

Theorem 15. If a finite set B contains only patterns of the form (σ, [|σ|−
1]) and (σ, [|σ| − 2]), then B admits a finite enumeration scheme where
every reversibly deletable set is either ∅ or {1}.

16

Proof. Let M be the maximum length of patterns (σ,X) ∈ B. For each
permutation p of length at most M , let Gp(σ,X) be the gap vector basis
for prefix pattern p with respect to (σ,X) as implied by Lemma 8 or 11.
Define the set

Gp :=
⋃

(σ,X)∈B

Gp(σ,X). (3)

By Lemma 13, Gp is a gap vector basis for p with respect to B. Observe
that Gp may not be a minimal basis.

Similarly let Rp(σ,X) be the reversibly deletable set for p with respect
to (σ,X) as implied by Lemma 7, 10, or 11. Define the set

Rp :=
⋂

(σ,X)∈B

Rp(σ,X). (4)

Observe that each Rp(σ,X) is either ∅ or {1}, so Rp is either ∅ or {1}.
Further, Rp = {1} if and only if each Rp(σ,X) = {1}. Hence Lemma 14
implies Rp is reversibly deletable for p with respect to B.

Let E be the set of triples (p,Gp, Rp) for each permutation p of length
at most M . Clearly E is finite and satisfies criteria (1) and (2b), and E
satisfies (2a) for any prefix p of length less than M . It remains to show
that any prefix p of length M has either ~0 ∈ Gp or non-empty Rp. If
p contains any forbidden pattern (σ,X) ∈ B, then Gp(σ,X) = {~0} by
Lemma 8 or 11. Hence ~0 ∈ Gp. On the other hand if p avoids B, then p
avoids each (σ,X) ∈ B and so each Rp(σ,X) = {1} by Lemma 7, 10, or
11. Hence Rp = {1}. Thus we see that E satisfies criterion (2a) for all p
of length M , and so E is a valid enumeration scheme for B.

It is worth mentioning that Proposition 12 and its supporting lemmas
can be generalized to obtain a finite scheme for any set of patterns of
the form B = {σ1σ2 · · ·σt σt+1 σt+2, σ1σ2 · · ·σt σt+2 σt+1} based on the
enumeration scheme for their common head τ = red(σ1σ2 · · ·σt). In this
case the prefix p = τ has a gap vector basis Gp = {~v}, where vσt+1 = 1,
vσt+2−1 = 1 and vi = 0 for other i for σt+1 < σt+2−1. If σt+1 = σt+2−1,
then vσt+1 = vσt+2−1 = 2 instead. The triples for other prefixes p 6= τ
appearing in Eτ transfer unchanged to Eσ.

One may similarly construct a scheme for the set of k! patterns formed
by appending to the consecutive pattern τ a dashed tail of k letters
σt+1, σt+1 + 1, . . . , σt+k in all possible orderings, e.g., B = {12 3 4 5,
12 3 5 4, 12 4 3 5, 12 4 5 3, 12 5 3 4, 12 5 4 3}. If we suppose σt+j <
σt+j+1, then let ~u(j) be the 0-1 vector with a 1 in position σt+j − (j − 1).
Then for prefix p = τ we have the gap vector ~v =

∑
j ~u

(j). The remaining
triples (p,Gp, Rp) ∈ Eτ transfer unchanged to Eσ. These pattern sets
are identical to Kitaev’s notion of partially-ordered generalized patterns
in [13], where some letters of the pattern are incomparable (or rather,
do not need to be compared). Thus the example B would be written
as a single such pattern 12 3 3′ 3′′ where the letters acting as 3, 3′, 3′′

are incomparable. The arguments above imply that the following is an
enumeration scheme for patterns avoiding 12 3 3′ 3′′:{

(ε, ∅, ∅), (1, ∅, ∅), (12, {〈0, 0, 3〉}, {1}), (21, ∅, {1})
}
. (5)

17

One might hope we can continue this trend of adding vincular portions
to patterns with known schemes to get new schemes, but of course this
does not work in general4. Still, there may be some interesting relation-
ships between two vincular patterns with the same underlying permuta-
tion. For example, every pattern (1234, X) for X ⊆ {1, 2, 3} has a finite
scheme, whose depths (based on the implementation in gVATTER) are
summarized in Table 3. There do not appear to be any clear patterns dic-
tating scheme depth for the vincular pattern (1234, X) given the depths
of other patterns (1234, X ′), based on subset relations between X and X ′.

σ X Scheme Depth
1234 {1, 2, 3} 4
123 4 {1, 2} 3
12 34 {1, 3} 4
1 234 {2, 3} 4
12 3 4 {1} 4
1 23 4 {2} 3
1 2 34 {3} 5
1 2 3 4 ∅ 4

Table 3: Scheme depth for vincular pattern (1234, X)

5 Known successes and applications

5.1 Analysis of Success Rates

Aside from the results of the previous section, there is no known classi-
fication of which pattern sets admit finite enumeration schemes. In this
section we present empirical results obtained from the implementation of
the above algorithms in the Maple package gVATTER. We will say that
a set of forbidden patterns B is (d,M)-scheme countable, or (d,M)-SC,
if either B, Br, or B−1 admits a finite enumeration scheme of depth at
most d with basis gap vectors with norm at most M . As discussed in the
introduction, B is (d,M)-SC if and only if its set of complement patterns
Bc is (d,M)-SC.

The following data were assembled by checking whether each vincular
pattern (σ,X) is (5, 2)-SC, where we chose 5 and 2 as a practical com-
putational considerations. While there are k! · 2k−1 vincular patterns of
length k, we took advantage of symmetry when able to reduce the num-
ber of patterns to check. To refine analysis, we separated the patterns of
length k by the locations of their dashes. These are represented in Table
4 by “block type,” which is a vector describing the number of letters be-
tween each dash. For example, the block type of the pattern 12 35 467
is (2, 2, 3).

4If it did then we would get enumeration schemes for all classical patterns, which certainly
is not the case.

18

Block type
Number of trivial
symmetry classes

Number of
(5, 2)-SC classes

Percentage

(2) 1 1 100%
(1,1) 1 1 100%

(3) 2 2 100%
(2,1) 3 3 100%

(1,1,1) 2 2 100%
(4) 8 8 100%

(3,1) 12 12 100%
(2,2) 8 3 37.5%

(2,1,1) 12 4 25%
(1,2,1) 8 6 75%

(1,1,1,1) 7 2 28.6%

Table 4: Success rate by block type

Set type
Number of trivial
symmetry classes

Number of
(5, 2)-SC classes

Percentage

{2} 2 2 100.0%
{2, 2} 3 3 100.0%
{2, 3} 11 11 100.0%
{3} 7 7 100.0%

{3, 3} 70 68 97.1%
{3, 3, 3} 358 354 98.9%

{4} 55 35 63.6%
{4, 4} 4624 1600 34.6%
{5} 479 144 30.1%

{3, 4} 914 639 69.9%
{3, 5} 7411 2465 33.3%

Table 5: Success rate for sets of patterns, B.

It would appear that the success rate is not solely dependent on the
number of dashes. For example, of the 20 pattern classes with a single
dash, the five which are not (5, 2)-SC are all of block type (2, 2). Of the
classes with two or more dashes, the most successful block type is (1, 2, 1)
where the dashes do not follow one another.

In the classical case, schemes were most successful when avoiding mul-
tiple patterns simultaneously. Table 5 lists the success rates for finding
sets B which are (5, 2)-SC, for various B ⊆ S2∪S3∪S4∪S5. In the leftmost
column, the “set type” of a set B refers to the multiset {|σ| : σ ∈ B}.

5.2 Wilf-classification of Vincular Patterns

We now present some preliminary Wilf-classification results based on the
data generated by the schemes. Two patterns σ, τ are said to be Wilf-
equivalent if sn(σ) = sn(τ) for all n, and we denote this σ ≡ τ . Claesson

19

enumerates permutations avoiding a length 3 pattern with one dash in [8],
and Elizalde and Noy enumerate permutations avoiding length 3 patterns
with no dashes (i.e., consecutive) in [10]. Thus we turn our attention to
length 4 patterns. All patterns of length 4 with finite schemes of depth
at most 5 are listed in Table 6. Solid black lines separate classes whose
sequences are observed to diverge before the 31st term.

The first steps towards general results were taken in [9, 13], which we
summarize below in Proposition 16:

Proposition 16 (Elizalde [9], Kitaev [13]). Suppose σ, τ are Wilf-equivalent
consecutive patterns of length k. Then the following are also Wilf-equivalent:

• σ (k + 1) ≡ τ (k + 1)

• σ (k + 2)(k + 1) ≡ τ (k + 2)(k + 1)

• σ (k + 2)(k + 1) ≡ σ (k + 1)(k + 2)

• 1 (σ1 + 1)(σ2 + 1) · · · (σk + 1) (k + 1) ≡ 1 (τ1 + 1)(τ2 + 1) · · · (τk +
1) (k + 1)

It is clear from symmetries of the square that the following consecutive
patterns are Wilf-equivalent:

• 12 ≡ 21

• 123 ≡ 321

• 132 ≡ 213 ≡ 231 ≡ 312

Thus we see that Proposition 16 gets us many of the equivalences which
appear in Table 6. There remain many conjectured pairs, which we
summarize below in Conjecture 17. Note that in each case, the conjec-
tured equivalence is confirmed computationally for permutations of length
n ≤ 30.

Conjecture 17. We have the following Wilf-equivalences:

(a) 132 4 ≡ 142 3 ≡ 241 3

(b) 124 3 ≡ 421 3

(c) 12 3 4 ≡ 12 4 3 ≡ 21 3 4 ≡ 21 4 3

(d) 1 24 3 ≡ 1 42 3

(e) 1 43 2 ≡ 1 23 4 ≡ 1 34 2 ≡ 1 32 4

The equivalences in (a) and (b) are proven in an upcoming paper by
the first author [2]. The equivalences in (c) are proven in a different
upcoming paper by the first author [3].

5.3 Refinement According to the Inversion Num-
ber

In [4], the first author demonstrates that schemes for permutations avoid-
ing classical patterns can be adapted to compute the number of such per-
mutations with k inversions. The same refinement applies to the schemes
developed above, since they use the same deletion maps dR.

20

σ {Sn(σ)}n OEIS [16] Comments
123-4 1, 2, 6, 23, 108, 598, 3815, 27532,

221708, 197025, . . .
A071076

321-4 ≡ 123 4 by Proposition 16
132-4 1, 2, 6, 23, 107, 585, 3671, 25986,

204738, 1776327, . . .
A071075

231-4 ≡ 132 4 by Proposition 16
312-4 ≡ 132 4 by Proposition 16
213-4 ≡ 132 4 by Proposition 16
142-3 ≡ 132 4 by Conjecture 17
241-3 ≡ 132 4 by Conjecture 17
124-3 1, 2, 6, 23, 107, 584, 3660, 25910,

204564, 1782520, . . .
New

421-3 ≡ 124 3 by Conjecture 17
143-2 1, 2, 6, 23, 107, 582, 3622, 25369,

197523, 1692535, . . .
New

214-3 1, 2, 6, 23, 107, 583, 3637, 25548,
199506, 1714383, . . .

New

12-34 1, 2, 6, 23, 107, 585, 3669, 25932,
203768, 1761109, . . .

A113226

12-43 ≡ 12 34 by Proposition 16
21-43 ≡ 21 43 by Proposition 16
1-24-3 1, 2, 6, 23, 104, 532, 3004, 18426,

121393, 851810, . . .
A137538 Wilf-equivalent to 251̄34

1-42-3 ≡ 1 24 3 by Conjecture 17
1-23-4 1, 2, 6, 23, 105, 549, 3207, 20577,

143239, 1071704, . . .
A113227

1-32-4 ≡ 1 23 4 by Proposition 16
1-34-2 ≡ 1 23 4 by Conjecture 17
1-43-2 ≡ 1 23 4 by Conjecture 17
12-3-4 1, 2, 6, 23, 105, 550, 3228, 20878,

146994, 1116000, . . .
New

12-4-3 ≡ 12 3 4 by Conjecture 17
21-3-4 ≡ 12 3 4 by Conjecture 17
21-4-3 ≡ 12 3 4 by Conjecture 17

Table 6: Dashed patterns of length 4 admitting schemes of depth at most 5

21

k = 0 1 2 3 4 5 6 7 8 9 10
n = 0 1

1 1
2 1 1
3 1 1 2 1
4 1 1 2 4 3 3 1
5 1 1 2 4 7 8 9 9 6 4 1

Table 7: Number of permutations avoiding 1−32 of length n with k inversions

As an example, consider the permutations avoiding 1 32. In Propo-
sition 3 of [8], Claesson shows that the Bell numbers enumerate 1 32-
avoiding permutations via a bijection, where the number of descents in the
permutation is one more than the number of blocks in the corresponding
set partition. We now find the number of permutations with k inversions
avoiding 1 32, leading to a new refinement of the Bell numbers which is
shown in Table 7. Further terms of the sequence can be generated via the
enumeration scheme for 1 32 and applying the refinements discussed in
[4].5

It is interesting to note that if one continues this chart, the columns
are each eventually constant. Specifically, if f(n, k) is the number of
permutations avoiding 1 32 of length n with k inversions, then f(n, k) =
f(k+1, k) for all n ≥ k+1. The stagnation can be seen as follows. Suppose
π is a permutation with k inversions and length n ≥ k + 2 which avoids
1 32. We will show that π must have πj = j for j ≥ k + 2, which implies
f(n, k) = f(k+ 1, k) for n ≥ k+ 1. First observe that π must end with an
ascending run, that is, πk+1 < πk+2 < · · · < πn. To see this, suppose for
contradiction that πj > πj+1 for j ≥ k+ 1. Then πi > πj+1 for each i < j
or else πiπjπj+1 forms a copy of 1 32, but this implies πj+1 is involved in
 ≥ k + 1 inversions which contradicts the assumption that π has only k
inversions total. Next suppose πj < j for some j ≥ k+2, and without loss
of generality assume this is the minimal such j. Then πj−1 > πj , so πj = 1
or else 1πj−1πj forms a copy of 1 32. This implies that πj is involved in
j−1 ≥ k+1 inversions, however, which contradicts our assumption. Thus
we have shown for each k + 2 ≤ j ≤ n that j ≤ πj < πj+1 , and so it
follows that πj = j.

The sequence of
{

lim
n→∞

f(n, k)
}
k≥0

is given by 1, 1, 2, 4, 7, 13, 22,

38, 63, 105, . . . , which was new to the OEIS [16] and has been added as
A188920. These numbers ought to describe set partitions where a certain
statistic is k, but it is unclear whether such a statistic would be “natural.”
It is interesting to note that when one considers the analogous question
of permutations avoiding 1 3 2 of length n and k inversions, one also sees
that as n→∞ the number is eventually constant at the number of integer
partitions of k. See [11] for a proof in terms of lattice paths or [7] for a
more recent treatment.

5This refinement is implemented in the Maple package gVatter as qMiklos.

22

6 Conclusions and Future Directions

This paper develops automatable methods to compute sn(B) for many
sets of vincular patterns B. This was accomplished by extending the enu-
meration schemes developed by Vatter and Zeilberger in [22–24]. The
restrictions on adjacencies which vincular patterns present introduced
complications when discovering gap vectors and reversibly deletable sets.
Theorem 4 demonstrates that gap vectors can only be discovered when
prefixes are long enough to contain a large portion of a vincular pattern.
Section 3.2 explains how the discovery of reversibly deletable sets requires
two tests rather than one as well as the introduction of a “null” charac-
ter. The Maple implementation in gVatter6, provides a practical tool to
compute many terms of sn(B) if B admits a finite scheme of reasonable
depth.

Despite the added complications, Theorem 15 proves that any pat-
tern set containing only consecutive patterns and patterns of the form
σ1σ2 · · ·σt σt+1 admits a finite scheme. Hence enumeration schemes may
be added to the list of methods to analyze problems in consecutive pat-
tern avoidance. Classical patterns admitting a finite scheme have not
been classified, and there have been few results about infinite classes of
patterns which admit finite schemes.

In Question 9.2 of [22], Vatter asks “Is every sequence produced by
a finite enumeration scheme holonomic (i.e., P -recursive)?” It is noted
above that 23 1 has a finite scheme which produces the Bell numbers,
and Sagan shows in [20] that the Bell numbers are not holonomic. Hence
a finite scheme can produce a sequence which is not holonomic, although
it remains to be seen whether a finite scheme resulting from classical pat-
terns (the original context for Vatter’s schemes) can yield a non-holonomic
sequence. It should be noted that there is no set B of classical patterns for
which sn(B) is known to be non-holonomic, even when B has no known
finite enumeration scheme.

Enumeration schemes provide powerful tools for generating terms of
the sequence sn(B) for a broad class of sets B. Thus far they have been
developed for vincular patterns and barred patterns. This project origi-
nated as an attempt to develop enumeration schemes for the bivincular
patterns introduced in [5], but it quickly became apparent that the maps
dR wreak havoc on vertical adjacencies among letters following the prefix
and would be unsuitable.7 A different recursive structure for Sn would
need to be exploited to make enumeration schemes work for bivincular
patterns which have non-trivial adjacency requirements.

One may wonder whether these methods may be extended to compute
the number of permutations of length n admitting r copies of a given
pattern, as done in [14]. The problem considered in this paper would be
the r = 0 case. Since a given letter can be involved in multiple copies
of a pattern, the existence of bijective deletion maps dR becomes far less

6Available for download from the both authors’ homepages.
7Deleting a letter at the start of the permutation can create a vertical adjacency at the

end of the permutation. For example, to contain the bivincular pattern σ = (12, {1}, {1}), a
permutation π must have a subsequence πiπi+1 such that πi + 1 = πi+1. The permutation
13524 avoids σ while d{2}(13524) = 1423 contains σ in the last two letters.

23

likely for short prefixes however. Thus it seems unlikely that the methods
contained here will extend easily to the multiple-copies case.

In [19] the second author extends enumeration schemes to pattern
avoidance by words, i.e., permutations of multisets. The techniques above
should extend in a straightforward manner to this case. Similarly, schemes
could be developed to handle permutations (or even words) avoiding
barred vincular patterns by combining the techniques of this paper and
[18]. These extensions have yet to be implemented by computer.

References

[1] Eric Babson and Einar Steingŕımsson. Generalized permutation pat-
terns and a classification of the Mahonian statistics. Sém. Lothar.
Combin., 44:Art. B44b, 18 pp. (electronic), 2000.

[2] Andrew Baxter. From enumeration schemes to functional equations.
In preparation.

[3] Andrew Baxter. Shape-Wilf-equivalence and vincular patterns. In
preparation.

[4] Andrew Baxter. Refining enumeration schemes to count accord-
ing to the inversion number. Pure Mathematics and Applications,
21(2):137–160, 2010.

[5] Mireille Bousquet-Mélou, Anders Claesson, Mark Dukes, and Sergey
Kitaev. (2+2)-free posets, ascent sequences and pattern avoiding
permutations. Journal of Combinatorial Theory, Series A, 117(7):884
– 909, 2010.

[6] William Y. C. Chen and Lewis H. Liu. Permutation tableaux and the
dashed permutation pattern 32–1. Electron. J. Combin., 18(1):Paper
111, 11, 2011.

[7] A. Claesson, V. Jeĺınek, and E. Steingŕımsson. Upper bounds for the
Stanley-Wilf limit of 1324 and other layered patterns. ArXiv e-prints,
November 2011.

[8] Anders Claesson. Generalized pattern avoidance. European J. Com-
bin., 22(7):961–971, 2001.

[9] Sergi Elizalde. Asymptotic enumeration of permutations avoiding
generalized patterns. Adv. in Appl. Math., 36(2):138–155, 2006.

[10] Sergi Elizalde and Marc Noy. Consecutive patterns in permutations.
Adv. in Appl. Math., 30(1-2):110–125, 2003. Formal power series and
algebraic combinatorics (Scottsdale, AZ, 2001).

[11] J. Fürlinger and J. Hofbauer. q-Catalan numbers. J. Combin. Theory
Ser. A, 40(2):248–264, 1985.

[12] Sergey Kitaev. Multi-avoidance of generalised patterns. Discrete
Math., 260(1-3):89–100, 2003.

24

[13] Sergey Kitaev. Partially ordered generalized patterns. Discrete
Math., 298(1-3):212–229, 2005.

[14] John Noonan. The number of permutations containing exactly one
increasing subsequence of length three. Discrete Math., 152(1-3):307–
313, 1996.

[15] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Se-
quences. http://oeis.org/A095149, 2011.

[16] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Se-
quences. http://oeis.org, 2011.

[17] Lara Pudwell. Enumeration schemes for words avoiding patterns with
repeated letters. Integers, 8:A40, 19, 2008.

[18] Lara Pudwell. Enumeration schemes for permutations avoiding
barred patterns. Electron. J. Combin., 17(1):Research Paper 29, 27,
2010.

[19] Lara Pudwell. Enumeration schemes for words avoiding permuta-
tions. In Permutation patterns, volume 376 of London Math. Soc. Lec-
ture Note Ser., pages 193–211. Cambridge Univ. Press, Cambridge,
2010.

[20] Bruce E. Sagan. Pattern avoidance in set partitions. Ars Combin.,
94:79–96, 2010.

[21] Einar Steingŕımsson. Generalized permutation patterns — a short
survey. In Steve Linton, Nik Ruškuc, and Vincent Vatter, edi-
tors, Permutation Patterns, St Andrews 2007, volume 376 of London
Mathematical Society Lecture Note Series, pages 193–211. Cambridge
University Press, 2010.

[22] Vincent Vatter. Enumeration schemes for restricted permutations.
Combin. Probab. Comput., 17(1):137–159, 2008.

[23] Doron Zeilberger. Enumeration schemes and, more importantly, their
automatic generation. Ann. Comb., 2(2):185–195, 1998.

[24] Doron Zeilberger. On Vince Vatter’s brilliant extension of Doron
Zeilberger’s enumeration schemes for Herb Wilf’s classes. Published
in The Personal Journal of Ekhad and Zeilberger, 2006.

25

