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In this paper we will explore two seemingly unrelated counting questions,

both of which are answered by the same formula. In the first section, we find

the surface areas of certain solids formed from unit cubes. In second section,

we enumerate permutations with a specified set of restrictions. Next, we give

a bijection between the faces of the solids and the set of permutations. We

conclude with suggestions for further reading. First, however, it is worth

explaining how this paper came about.

The author received an email from David Harris while he was helping his

12-year-old daughter complete a project for her math class. Together Harris

and his daughter constructed triangular piles of cubes. After creating an

increasing sequence of these piles, they computed the surface area of each

pile, and hoped to find a formula for the surface area of their nth pile. This

project and its solution are described in the next section. At the time of their

correspondence, Harris and his daughter had deduced several facts about the

construction but were unable to find a formula for the surface area in general.

When they searched for the first few terms in their sequence, Google returned

only one hit: a Maple data file on the author’s website.

The sequence that Harris and his daughter discovered online was origi-

nally generated in the context of pattern-avoiding words and permutations.

Their web search produced a conjecture that gives a nice geometric interpre-

tation of a permutation patterns question. This serendipitous discovery of

the surprising and beautiful connection between a geometry problem and an

enumeration problem illustrates how attractive new results may sometimes

appear in such a surprising place as an elementary homework exercise.
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Figure 1: The second and third solids

The Surface Area of Cubes

We begin with the Harrises’ original geometry question. We first describe

a recursive construction involving unit cubes, and then compute the surface

area of the nth solid in this construction.

The first solid is a unit cube, which has surface area 6. To construct

the nth solid, first form a row of 2n − 1 cubes. Then, center the (n − 1)st

construction on top of this row. For example, the second solid is shown in

Figure 1. It has surface area 18. The third solid is also shown. It has surface

area 34.

Now, we wish to compute the surface area SAn of the nth solid. We have

already computed SA1, SA2, and SA3 above.

Notice that to construct SAn, we glue together a solid of surface area

SAn−1 together with a rectangular prism of surface area 4 · (2n − 1) + 2 =

8n − 2. However, there are 2n − 3 squares which overlap, and are now on

the interior of the shape. Thus, the surface area only increases by (8n −
2) − 2(2n − 3) = 4n + 4 units; that is SAn − SAn−1 = 4n + 4. Since

the difference sequence for SAn is linear, we know that SAn is quadratic.

Three points determine a quadratic, so we already have enough information

to compute SAn in general. Let SAn = an2 + bn + c. We easily see that

SAn − SAn−1 = (2a)n + (b − a). Thus 2a = 4 and b − a = 4, or a = 2 and

b = 6. Together with the fact that SA1 = 6, we see that SAn = 2n2 +6n−2.
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Permutation Patterns

We have proved that the surface area of the Harrises’ nth solid is 2n2+6n−2.

We now give the necessary definitions to produce a set of permutations with

2n2 + 6n− 2 elements.

Given a string of numbers s, the reduction of s is the string obtained

in the following way: find the smallest number in the string and replace all

occurrences of that number with 1, then find the second smallest number in

the string and replace all occurrences of that number with 2, and so forth,

replacing the occurrences of the ith smallest number with the number i.

For example, the reduction of 2671165 is 2451143. Now, given strings of

numbers p = p1 · · · pn and q = q1 · · · qm, we say that p contains q as a pattern

if there exist indices 1 ≤ i1 < i2 < · · · im ≤ n such that pi1 · · · pim reduces

to q. Otherwise, we say that p avoids q. For example, 2671165 contains

the pattern 2321 because it contains the subsequence 6765, which reduces to

2321. However, 2671165 avoids the pattern 1234 because it has no strictly

increasing subsequence of length 4.

Finally, we introduce a bit of notation. In this paper we are concerned

with permutations that have two copies of each letter. Given a set of per-

mutations Q, let S
(2)
n (Q) denote the set of permutations of two 1’s, two

2’s, and so on up to two n’s avoiding all patterns in the set Q. For exam-

ple S
(2)
2 ({112}) = {1221, 2121, 2211}. Typically, a permutation refers to an

ordering of n distinct letters. Since we are considering permutations where

there are more than one copy of each letter we may refer to our permutations

as multiset permutations.

We now have the machinery necessary to state and prove a useful lemma.

This lemma is a special case of a result of Burstein [3].

Lemma 1
∣∣∣S(2)

n ({132, 231, 213})
∣∣∣ = 2n + 2 for n ≥ 2.

Proof. Since we will only consider permutations that avoid the set of pat-

terns {132, 231, 213} in this proof, we will write An instead of S
(2)
n ({132, 231,

213}).
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Because no string of 1’s and 2’s will contain a pattern in {123, 231, 213},
we have that A2 = {1122, 1212, 1221, 2112, 2121, 2211}, and |A2| = 6, as

desired.

We proceed by induction. Consider p ∈ An. Let p′ be the multiset

permutation formed by deleting the two copies of n in p. For example if p =

312123, then p′ = 1212. Notice that since p ∈ An, we have that p′ ∈ An−1.

Now, given p′ ∈ An−1, we consider all the ways to insert two copies of n

into p′ to obtain a multiset permutation in An. Notice that if n is inserted

between two letters of p′, we have necessarily created either a 132 pattern or

a 231 pattern. Thus, the n’s can be inserted in one of only 3 ways: (i) both

n’s are prepended to the beginning of p′, (ii) both n’s are appended to the

end of p′, or (iii) one n is prepended to the beginning of p′ and the other n

is appended to the end of p′. Clearly, (i) will always produce a member of

S
(2)
n , however, (ii) and (iii) must be considered more carefully. In particular,

appending an n to the end of p′ will only produce a 213-avoiding multiset

permutation if p′ avoids the pattern 21, i.e. if p′ is weakly increasing. Thus,

|An| = |An−1| + 2, since we may prepend two n’s to the beginning of any

member of An−1, but we may also append two n’s to the end of the unique

increasing permutation of An−1, or we may prepend an n to the beginning

of it and append an n to the end of it.

Finally, since |An| − |An−1| = 2, we know that |An| grows linearly, and

use the fact that A2 = 6 to compute the formula |An| = 2n + 2. �

This lemma is key to our main theorem, which is given at the end of the

next section.

A Bijection

We now give a bijection between the faces of their nth solid of the Harrises’

construction and the multiset permutations of S
(2)
n+1({132, 231, 2134}). While

we could count the permutations of S
(2)
n+1({132, 231, 2134}) directly, a bijec-

tion not only will show that the two quantities in question are equal, but a

bijection will also illuminate some parallels between the cube construction
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Figure 2: Constructing the n = 3 solid from the n = 2 solid

and the structure of the members of S
(2)
n+1({132, 231, 2134}). To find such a

bijection, it suffices to associate each permutation in S
(2)
n+1({132, 231, 2134})

with a unique unit square on the surface of the Harrises’ nth solid.

To this end, we consider another description of the Harrises’ construction.

To construct the nth solid from the (n−1)st solid, we first remove the bottom

face of the solid and move it one unit lower as in Figure 2 (i). Next, we form

a rectangular ring of 4n squares. This ring should be constructed so that it

has two opposing sides of length 1 and two opposing sides of length 2n− 1,

as shown in Figure 2 (ii). Now, attach a new square to the top and bottom

of each end of the ring, as shown in Figure 2 (iii), for a total of 4n + 4 new

squares. We may glue the modified version of the (n − 1)st solid together

with this new modified ring of 4n + 4 squares to form the nth solid. Two

views of this gluing are shown in Figure 2 (iv).

This alternate construction has a clear advantage. Although it is more

complicated to explain, this revised description allows us to associate each

square on the surface of the (n − 1)st solid with squares on the nth solid,

rather than “gluing” some squares into the interior.

The permutations of S
(2)
n+1({132, 231, 2134}) also have a nice recursive
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structure. Given p′ ∈ S
(2)
n ({132, 231, 2134}), there are three ways to insert

two copies of (n+1) into p′ to obtain a multiset permutation in S
(2)
n+1({132, 231,

2134}): (i) both (n + 1)’s are prepended to the beginning of p′, (ii) both

(n + 1)’s are appended to the end of p′, or (iii) one (n + 1) is prepended

to the beginning of p′ and the other (n + 1) is appended to the end of p′.

As with the permutations of Lemma 1, (i) will always produce a member of

S
(2)
n+1({132, 231, 2134}), but (ii) and (iii) must be considered in more detail.

In particular, appending (n + 1) to the end of p′ may induce a copy of a

forbidden 2134 pattern if p′ contains a 213 pattern.

Now, we may recursively define a bijection between the squares of the

nth solid and the permutations of S
(2)
n+1({132, 231, 2134}).

To begin, since there are 6 elements of S
(2)
2 ({132, 231, 2134}), and 6 faces

in a unit cube, we may assign each one of these permutations to a unique

face of the cube.

Now, consider the nth solid, constructed as described in this section.

In the (n − 1)st solid, each of the light gray squares was associated with

some permutation p ∈ S
(2)
n ({132, 231, 2134}). Let each such square now be

associated with the permutation (n + 1)(n + 1)p ∈ S
(2)
n+1({132, 231, 2134}).

We must now account for the four dark gray squares (the tops and

bottoms of the left and right cubes in the bottom row of the solid) and

the 4n medium gray squares (the side faces of all cubes in the bottom

row of the solid). Clearly, these must correspond to the permutations of

S
(2)
n+1({132, 231, 2134}) that either begin and end with (n + 1) or that end

with two copies of (n + 1). Notice that each of these permutations was

formed by taking one of the 2n + 2 permutations in S
(2)
n ({132, 231, 213})

and inserting two (n+1)’s in one of the two ways just described. Thus the

4n + 4 permutations of the form p(n + 1)(n + 1) or (n + 1)p(n + 1) where

p ∈ S
(2)
n ({132, 231, 213}) are precisely the members of S

(2)
n+1({132, 231, 2134})

that correspond to the 4n + 4 dark gray and medium gray squares. We

now have established a recursive bijection between the exterior faces of the

Harrises’ piles of cubes and the members of S
(2)
n+1({132, 231, 2134}). This cor-
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respondence gives a combinatorial proof of the following theorem, which was

first observed using the method of enumeration schemes found in [6].

Theorem 1
∣∣∣S(2)

n+1({132, 231, 2134})
∣∣∣ = 2n2 + 6n− 2 for n ≥ 1.

For Further Reading

In this paper we found a bijection between the squares on the faces of the

Harrises’ nth construction, and certain pattern-avoiding permutations. This

bijection illustrates the nice and unexpected connection between a question

of middle school geometry and enumerative combinatorics.

The interested reader may wish to learn more about other enumeration

problems related to this paper. Permutations which avoid other permutations

have been actively studied since the seminal paper of Simion and Schmidt

[7]. They aid in the study of a number of combinatorial objects. A friendly

introduction to permutation patterns can be found in [2]. The permutations

in this paper, with precisely two copies of each letter, are a special case of

multiset permutations in which there may be an arbitrary numbers of copies

of each letter. More detailed work with pattern avoidance involving multiset

permutations can be found in [1], [3], [5], and [6].

The bijection demonstrated in this paper illustrates one of several connec-

tions between the Harrises’ cube constructions and pattern-avoiding permu-

tations. To see another bijection that relies on different geometric and com-

binatorial properties, visit the author’s website at http://faculty.valpo.

edu/lpudwell/papers.html.
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