
Non-Contiguous Pattern Avoidance in Binary
Trees

Michael Dairyko1

Department of Mathematics
Pomona College

Claremont, CA 91711, USA

Lara Pudwell1

Department of Mathematics and Computer Science
Valparaiso University

Valparaiso, IN 46383, USA
Lara.Pudwell@valpo.edu

Samantha Tyner1

Department of Mathematics
Augustana College

Rock Island, IL 61201, USA

Casey Wynn1

Department of Mathematics and Computer Science
Hendrix College

Conway, AR 72032, USA

Abstract

In this paper we consider the enumeration of binary trees avoiding non-contiguous
binary tree patterns. We begin by computing closed formulas for the number of trees
avoiding a single binary tree pattern with 4 or fewer leaves and compare these results
to analogous work for contiguous tree patterns. Next, we give an explicit generating
function that counts binary trees avoiding a single non-contiguous tree pattern accord-
ing to number of leaves and show that there is exactly one Wilf class of k-leaf tree
patterns for any positive integer k. In addition, we enumerate binary trees that simul-
taneously avoid more than one tree pattern. Finally, we explore connections between
pattern-avoiding trees and pattern-avoiding permutations.

1Partially supported by NSF grant DMS-0851721

1



1 Introduction

The notion of one object avoiding another has been studied in permutations, words, par-
titions, and graphs. Much recent work has been devoted to the study of pattern-avoiding
permutations. Given permutations π = π1 · · · πn and ρ = ρ1 · · · ρk, we say that π contains ρ
as a (classical) pattern if there exist indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that πi1 · · · πik
is order-isomorphic to ρ; that is, πia ≤ πib if and only if ρa ≤ ρb. Otherwise, π is said to
avoid ρ. For example π = 24135 contains the pattern ρ = 132 as evidenced by π1 = 2,
π2 = 4, and π4 = 3, but π avoids the pattern 321 because π has no decreasing subsequence
of length 3. One variation on this definition of pattern avoidance is to place the restriction
ij+1 = ij + 1 on the indices for 1 ≤ j ≤ k− 1. If there exists such a subsequence of π that is
order-isomorphic to ρ, then π is said to contain ρ as a consecutive permutation pattern. For
each of these definitions, two natural questions arise: “Given a permutation ρ, how many
permutations of length n avoid ρ?” and “When do two distinct permutations ρ1 and ρ2 yield
the same avoidance generating function?” Patterns ρ1 and ρ2 with this property are said to
be Wilf-equivalent.

In this paper we consider analogous questions of pattern avoidance for plane trees. All
trees in the paper are rooted and ordered. We will focus on full binary trees, that is, trees
in which each vertex has 0 or 2 (ordered) children. Two children with a common parent are
sibling vertices. A vertex with no children is a leaf and a vertex with 2 children is an internal
vertex. A binary tree with n leaves has n− 1 internal vertices, and the number of such trees

is
(2n−2

n−1 )
n

(OEIS A000108). For simplicity of computation, we adopt the convention that
there are zero rooted binary trees with zero leaves. The first few binary trees are depicted
in Figure 2.

Conceptually, a plane tree T avoids a tree pattern t if there is no instance of t anywhere
inside T . Pattern avoidance in vertex-labeled trees has been studied in various contexts by
Steyaert and Flajolet [16], Flajolet, Sipala, and Steyaert [7], Flajolet and Sedgewick [6], and
Dotsenko [3]. Recently, Disanto [2] studied pattern containment of caterpillar subgraphs
in binary trees while Khoroshkin and Piontkovski [9] considered generating functions for
general unlabeled tree patterns in a different context.

In 2010, Rowland [13] explored contiguous pattern avoidance in binary trees (that is,
rooted ordered trees in which each vertex has 0 or 2 children). He chose to work with binary
trees because there is natural bijection between n-leaf binary trees and n-vertex trees. His
study had two main objectives. First, he developed an algorithm to find the generating
function for the number of n-leaf binary trees avoiding a given tree pattern; he adapted this
to count the number of occurrences of the given pattern. Second, he determined equivalence
classes for binary tree patterns, classifying two trees s and t as equivalent if the same number
of n-leaf binary trees avoid s as avoid t for n ≥ 1. He completed the classification for all
binary trees with at most eight leaves, using these classes to develop replacement bijections
between equivalent binary trees.

In 2012, Gabriel, Peske, Tay, and the second author [8] considered Rowland’s definition
of tree pattern in ternary, and more generally in m-ary, trees. After generalizing Rowland’s
algorithmic approach to compute functional equations for the avoidance generating func-
tions of arbitrary ternary tree patterns, they explored bijections between equinumerous sets

2



of pattern-avoiding trees. Along the way they found sets of pattern-avoiding trees whose
enumeration yielded a number of well-known sequences.

In this paper, we extend Rowland’s work in a new direction. The work of [8] and [13]
may be seen as parallel to the definition of consecutive permutation patterns given at the
beginning of this section. In those papers, tree T was said to contain tree t as a (contiguous)
pattern if t was a contiguous, rooted, ordered, subtree of T . In this paper, we modify the
definition of tree pattern to mirror the idea of classical pattern avoidance in permutations.
In the case of pattern-avoiding permutations, there are more Wilf-classes for consecutive
patterns of a given length than for classical patterns (as a small example, there are 7 Wilf
classes of consecutive permutation patterns of length 4, compared to 3 Wilf classes for
classical permutation patterns of length 4). This parallel holds true in the case of trees.
In fact, as we show in Section 4, there is precisely one Wilf class of k-leaf patterns for any
k ∈ Z+.

As with previous work, given any binary tree pattern t we present a technique to com-
pute the generating function that enumerates trees avoiding t according to the number of
leaves. This enumeration shows that there is exactly one Wilf class of k-leaf patterns. We
also consider trees avoiding multiple tree patterns and explore relationships between sets of
pattern-avoiding trees and pattern-avoiding permutations.

2 Definitions and Notation

In this paper, a tree T contains t as a (non-contiguous) tree pattern if there is a tree T ∗,
obtained from T via a finite sequence of edge contractions, such that t is a contiguous, rooted,
and ordered subtree of T ∗. Conversely, T avoids t if there is no such T ∗ that contains t as a
subtree. For example, consider the three trees shown in Figure 1. T avoids t as a contiguous
pattern, but T contains t non-contiguously (contract all non-bolded edges). On the other
hand, T avoids s both contiguously and non-contiguously since no vertex of T has a left
child and a right child, both of which are internal vertices.

T = t = s =

Figure 1: Three binary trees

We define Avt(n) to be the set of n-leaf binary trees that avoid the pattern t non-
contiguously, and avt(n) = |Avt(n)|. We will also write Avct(n) for the set of n-leaf binary
trees that avoid t contiguously, and avct(n) = |Avct(n)|. We will be particularly interested in
determining the generating function

gt(x) =
∞∑
n=0

avt(n)xn

for various tree patterns t.

3



t11 = t21 = t31 =

t41 = t42 = t43 =

Figure 2: Binary trees with less than 5 leaves

Before we explore particular binary tree patterns, we list all of the 1, 2, 3, and 4-leaf
binary trees. We label trees with a double subscript notation. The first subscript gives the
number of leaves of the tree, and the second subscript distinguishes between distinct tree
patterns with the same number of leaves. We also note that if tr is the left-right reflection
of tree t, then avt(n) = avtr(n) by symmetry, so we omit left-right reflections. We will use
these labels throughout the remainder of the paper.

3 Avoiding Simple Tree Patterns

In this section, we find generating functions for the number of trees avoiding each of the tree
patterns in Figure 2. For each tree, we discuss the structure of trees that avoid the given tree
pattern and explain how to find a recurrence and generating function from this structure.
We also compare these generating functions to previously known results for contiguous tree
patterns.

3.1 Avoiding t11, t21, and t31

Clearly, a tree avoids t11 if and only if it has no vertices. This is also true for contiguous
avoidance, so we have

avt11 (n) = avct11 (n) = 0 for n ≥ 1 and gt11 (x) = 0.

Next, a tree avoids t21 if and only if it has no vertex with two children. In other words,
only t11 avoids t21 . Again, we have

avt21 (n) = avct21 (n) =

{
1 n = 1

0 n > 1
and gt11 (x) = x.

Finally, we observe that tree t avoids t31 if and only if t has no vertex whose left child is
not a leaf. For each n ≥ 1 there is precisely one such tree, so we have

avt31 (n) = avct31 (n) = 1 for n ≥ 1 and gt31 (x) =
x

1− x
.

From these few cases, it may seem that non-contiguous and contiguous avoidance is the
same for many trees. The reader should suspect that this similarity does not hold for larger
tree patterns based on the example of Figure 1. This suspicion is confirmed when we consider
4-leaf tree patterns.

4



Rowland showed that for n > 1

avct41 (n) = Mn−1 and avct42 (n) = avct43 (n) = 2n−2

where Mn is the nth Motzkin number (OEIS A001006).
It turns out that non-contiguous avoidance is even more well-behaved for 4-leaf tree

patterns. We will show that for n > 1

avt41 (n) = avt42 (n) = avt43 (n) = 2n−2.

3.2 Avoiding t41

To find avt41 (n), we consider the structure of a general n-leaf binary tree T that avoids t41 .
We have two cases. Let v be the root of T . In the first case, v’s left child has no children,
while v’s right child is the root of an (n − 1)-leaf subtree avoiding t41 . In the second case,
v’s left child has two children, but the leftmost of these children is a leaf. If the right child
of v’s left child is the root of a subtree with i leaves (1 ≤ i ≤ n− 2), then v’s right child is
the root of a subtree with n − i − 1 leaves. Further, the i-leaf subtree must avoid the tree
pattern t31 .

In the first case, we considered avt41 (n− 1) possible trees. In the second case, we consid-

ered
n−2∑
i=1

avt31 (i)avt41 (n− i− 1) trees. However, since we know that avt31 (i) = 1 for i ≥ 1,

we have

avt41 (n) = avt41 (n− 1) +
n−2∑
i=1

avt41 (n− i− 1) =
n−2∑
i=0

avt41 (n− i− 1) =
n−1∑
i=1

avt41 (n− i).

Together with the base case avt41 (1) = avt41 (2) = 1, we see that

avt41 (n) = 2n−2 for n > 1 and gt41 (x) =
x− x2

1− 2x
.

3.3 Avoiding t42

Next, we consider the structure of a general n-leaf binary tree T that avoids t42 where v is
the root of T . Again, we have two cases. As before, in the first case, v’s left child has no
children, while v’s right child is the root of an (n−1)-leaf subtree avoiding t42 . In the second
case, v’s left child has two children, but now the rightmost of these children is a leaf. The
subtree whose root is the left child of v’s left child must avoid the tree pattern tr31 . After a
nearly identical calculation to that of avoiding t41 , we see that

avt42 (n) = 2n−2 for n > 1 and gt42 (x) =
x− x2

1− 2x
.

5



3.4 Avoiding t43

Finally, we consider the structure of a general n-leaf binary tree T that avoids t43 where v is
the root of T . Again, we have two cases: either v’s left child has children or v’s right child
has children, but not both. There are avt43 (n − 1) trees that fall into the first case, and
avt43 (n− 1) trees that fall into the second case, which yields

avt43 (n) = 2avt43 (n− 1).

We have

gt43 (x) =
x− x2

1− 2x
.

4 Generating Functions for Pattern-Avoiding Trees

We have just seen that all 4-leaf binary tree patterns produce the same avoidance sequence
when considered as non-contiguous patterns. This observation leads naturally to the main
theorem of this paper, which provides a particularly clean answer to both questions stated
in the introduction. Namely, “given a tree pattern t, how many trees with n leaves avoid t?”
and “given two distinct tree patterns t and s, when do t and s produce the same avoidance
sequence?” In fact, we see that not only is exact enumeration possible for any non-contiguous
tree pattern, we see that all avoidance generating functions are rational and of a particularly
attractive form.

Theorem 1. Let k ∈ Z+ and let t be a binary tree pattern with k leaves. Then

gt(x) =

b k−2
2
c∑

i=0

(−1)i ·
(
k−(i+2)

i

)
· xi+1

b k−1
2
c∑

i=0

(−1)i ·
(
k−(i+1)

i

)
· xi

.

The reader can check that this indeed matches the generating functions computed in the
previous section when k ≤ 4. Further, notice that the generating function given in Theorem
1 depends only on the number of leaves of t, and not on t itself; that is, there is precisely
one Wilf class of k-leaf tree patterns for each k ∈ Z+. As we will see in Section 7 and the
Appendix, the analogous statement for pairs of trees is not true. In this section we build the
necessary framework to prove Theorem 1.

First, following [8, 13] we say that T contains pattern p at the root if T contains a
contiguous copy of p where the root of p coincides with the root of T . Now, let g(t;p)(x) be
the generating function that enumerates binary trees avoiding tree pattern t non-contiguously
and containing the contiguous tree pattern p at their root according to number of leaves.
Because all binary trees have a root vertex, it follows that the generating function for all trees
avoiding t is given by gt(x) = g(t; )(x). Also, let t` and tr denote the subtrees descending

from the left and right children of the root of t respectively.

6



Since we are working with full binary trees, the root has either zero or two children.
When there are zero children, we have a 1-leaf tree. When there are two children, we have
a tree with pattern at the root. Such trees are enumerated with the generating function
g(t; )(x). Thus, we have

g(t; )(x) = x+ g(t; )(x). (1)

Next, we determine a recurrence for g(t; )(x). Consider a tree T that avoids t and has

the contiguous pattern at the root. Either the subtree extending from the left child of the
root of T avoids t`, the subtree extending from the right child of the root of T avoids tr, or
both. Inclusion-exclusion gives

g(t; )(x) = g(t`; )(x) · g(t; )(x) + g(t; )(x) · g(tr; )(x)− g(t`; )(x) · g(tr; )(x). (2)

Combining Equations 1 and 2 yields

gt(x) = x+ gt`(x) · gt(x) + gt(x) · gtr(x)− gt`(x) · gtr(x).

Now, solve for gt(x) to obtain

gt(x) =
x− gt`(x) · gtr(x)

1− gt`(x)− gtr(x)
. (3)

This computation yields one immediate result:

Proposition 1. For any tree pattern t, gt(x) is a rational function of x.

Proof. We have already seen that gt(x) is rational for all tree patterns t with k ≤ 4 leaves.
Thus, by induction and Equation 3, the proposition follows.

Equation 3 simplifies further for one particular family of binary tree patterns. Let the
k-leaf left comb be the unique k-leaf binary tree where every right child is a leaf. Write ck
for the k-leaf left comb. Then c1 = t11 , c2 = t21 , c3 = t31 , and c4 = t41 .

Lemma 1. gck(x) = x
1−gck−1

(x)
for k ≥ 2.

Proof. Let t = ck in Equation 3. Then t` = ck−1 and tr = . We have:

gck(x) =
x− gck−1

(x) · g (x)

1− gck−1
(x)− g (x)

.

Since g (x) = 0, this simplifies to

gck(x) =
x

1− gck−1
(x)

.

This nice relationship between gck(x) and gck−1
(x) seems natural because of the large over-

lap between copies of ck and ck−1. Our next lemma shows that there is a simple relationship
between generating functions for non-comb tree patterns as well.

7



Lemma 2. Fix k ∈ Z+. Let t and s be two k-leaf binary tree patterns. Then

gt(x) = gs(x).

Proof. Assume the lemma holds for tree patterns with ` leaves where ` < k. Since we
suppose that all `-leaf trees have the same avoidance generating function, we have that any
`-leaf tree has avoidance generating function gc`(x). Suppose that tree t∗ has ` leaves to the
left of its root and k − ` leaves to the right of its root. Similarly, suppose that tree s∗ has
`+ 1 leaves to the left of its root and k − `− 1 leaves to the right of its root. We will show
that gt∗(x) = gs∗(x).

From Equation 3, we have

gt∗(x) =
x− gc`(x) · gck−`

(x)

1− gc`(x)− gck−`
(x)

=
x− gc`(x) ·

(
x

1−gck−`−1
(x)

)
1− gc`(x)−

(
x

1−gck−`−1
(x)

)
=

x
(
−1 + gc`(x) + gck−`−1

(x)
)

1− x− gc`(x)− gck−`−1
(x) + gc`(x) · gck−`−1

(x)
.

(4)

Similarly,

gs∗(x) =
x− gc`+1

(x) · gck−`−1
(x)

1− gc`+1
(x)− gck−`−1

(x)

=
x−

(
x

1−gc` (x)

)
· gck−`−1

(x)

1−
(

x
1−gc` (x)

)
− gck−`−1

(x)

=
x
(
−1 + gc`(x) + gck−`−1

(x)
)

1− x− gc`(x)− gck−`−1
(x) + gc`(x) · gck−`−1

(x)
.

(5)

Thus

gt∗(x) = gs∗(x).

Since this holds for 1 ≤ ` ≤ k − 1, by transitivity, all k-leaf tree patterns have the same
non-contiguous avoidance generating function.

Finally, to prove the main theorem, it suffices to show that

gck(x) =

b k−2
2
c∑

i=0

(−1)i ·
(
k−(i+2)

i

)
· xi+1

b k−1
2
c∑

i=0

(−1)i ·
(
k−(i+1)

i

)
· xi

.

8



k gck(x) Sequence Growth rate OEIS number
1 0 0, 0, 0, 0, 0, 0, 0, 0 . . . 0 trivial
2 x 1, 0, 0, 0, 0, 0, 0, 0, . . . 0 trivial
3 x

1−x 1, 1, 1, 1, 1, 1, 1, 1, . . . 1n trivial

4 x−x2
1−2x 1, 1, 2, 4, 8, 16, 32, 64, . . . 2n A000079

5 x−2x2
1−3x+x2 1, 1, 2, 5, 13, 34, 89, 233, . . .

(
3+
√
5

2

)n
A001519

6 x−3x2+x3
1−4x+3x2

1, 1, 2, 5, 14, 41, 122, 365, . . . 3n A007051

7 x−4x2+3x3

1−5x+6x2−x3 1, 1, 2, 5, 14, 42, 131, 417, . . . ≈ (3.247)n A080937

8 x−5x2+6x3−x4
1−6x+10x2−4x3 1, 1, 2, 5, 14, 42, 132, 428, . . . (2 +

√
2)n A024175

9 x−6x2+10x3−4x4
1−7x+15x2−10x3+x4 1, 1, 2, 5, 14, 42, 132, 429, . . . ≈ (3.532)n A080938

Table 1: Enumeration data for binary tree patterns with k ≤ 9 leaves

It is a straightforward induction proof, using the fact that gck(x) = x
1−gck−1

(x)
to show

that this formula holds in general.
We have now explicitly enumerated trees avoiding any single binary tree pattern non-

contiguously and determined all equivalences for when two trees exhibit the same avoidance
sequence. We display the explicit generating function, first 8 sequence terms, and appropriate
OEIS entry for tree patterns with k leaves where k ≤ 9 in Table 1.

Because all generating functions gt(x) are rational it follows that for any k-leaf binary
tree t the sequence {avt(n)}∞n=1 satisfies a linear recurrence with constant coefficients. In
fact, when tree pattern t has k ≥ 4 leaves, {avt(n)}∞n=1 grows exponentially. Because there
are Catalan-many binary trees with n leaves, the growth of these sequences is bounded above
by 4n. In Table 1 we display also the asymptotic growth rate for 3 ≤ k ≤ 9.

5 Recurrences for Binary Trees

While we gave explicit combinatorial explanations for the recurrences satisfied by avt(n)
when t has k = 3 or k = 4 leaves in Section 3, the rest of our work has been algebraic. It is
possible, however, to derive the recurrences satisfied by tree enumeration sequences through
other techniques. In this section, we give a combinatorial explanation for these recurrences
by considering the structure of trees that avoid the k-leaf left comb.

First, we define a many-to-one correspondence between the set of (n+1)-leaf binary trees
and the set of n-leaf binary trees. Given a tree t with n + 1 leaves, let vr be rightmost leaf
whose sibling vertex is also a leaf. Then, let the parent tree of t be the n-leaf tree obtained
by deleting vr and its sibling. If t̂ is the parent tree of t, then we say that t is a descendent
tree of t̂. While the parent tree of a tree is unique, a given tree may have multiple descendent

trees. For example, , , and are descendent trees of . Similarly, and

are descendent trees of .
Now, for any n-leaf tree tn, we can use this parent/descendent relationship to generate a

list t1, t2, t3, . . . , tn where t1 = , ti has i leaves for 1 ≤ i ≤ n and ti+1 is a descendant tree

9



of ti. We refer to such a sequence of trees as the ancestry of t. Because parent trees are

unique, the ancestry of tree t must be unique. For example, the tree has ancestry

→ → → →

Given an n-leaf tree t, we may also generate all descendent trees of t in a systematic way.
Call an internal vertex v of t closed if v’s right child is not a leaf. The number of descendent
trees of t is equal to the number of leaves of t that appear to the right of all closed vertices.
In fact, to produce a descendent tree of t, we need only attach a pair of children to any one
such leaf. The descendent tree relationship is further articulated in the following proposition.

Proposition 2. Suppose that tree t has i descendant trees. Then those descendant trees will
have 2, 3, 4, . . . , i + 1 descendant trees respectively. Further, if t has i descendant trees then
the leftmost vertex to which one may add children is the leftmost vertex in a copy of an i-leaf
left comb.

Proof. Both claims in the proposition are consequences of the fact that the number of de-
scendent trees of t is equal to the number of leaves of t appearing to the right of all closed
vertices.

Let vj be the jth leaf from the right of these i leaves. When we append two children to
vj, vj’s parent is closed, and this new tree has only j + 1 descendents.

Further, if t has i leaves to the right of all closed vertices, by definition of closed, none of
these leaves’ parents have right children that are internal vertices. The only way to arrange
a collection of vertices so that no internal vertices are right children is in the shape of an
i-leaf left comb.

Now, consider the descendant relation restricted to trees that avoid the k-leaf left comb.
Any tree with k descendant trees contains an k-leaf comb, so we are only concerned with
trees that have at most k − 1 descendent trees. As in Proposition 2, a tree with i < k − 2
descendant trees will have descendant trees with 2, 3, 4, . . . , i+ 1 descendants respectively.

Notice further that for a tree which would have k − 1 descendent trees, one of these
descendent trees contains the k-leaf left comb, so such a tree only has k − 2 descendent
trees that avoid the k-leaf comb. Consequently, for a tree with k− 2 descendent trees, those
descendents will have 2, 3, 4, . . . , k − 3, k − 2, k − 2 descendent trees respectively that avoid
the k-leaf left comb.

Let an,i be the number of n-leaf trees that avoid the k-leaf left comb and have exactly i

(n+ 1)-leaf descendants, and let an =
k−2∑
i=1

an,i.

We have the base cases a1 = a1,1 = 1 and a2 = a2,2 = 1.
More generally, for n ≥ 3

an,2 = an−1,2 + an−1,3 + · · ·+ an−1,k−2 = an−1

an,3 = an−1,2 + an−1,3 + · · ·+ an−1,k−2 = an−1

10



an,i = an−1,i−1 + an−1,i + · · ·+ an−1,k−2 for i < k − 2

an,k−2 = an−1,k−3 + 2an−1,k−2

Ultimately, we seek a recurrence for an =
k−2∑
i=1

an,i. Adding the above equations and

algebraic manipulation produces the result

an =

b k+1
2
c∑

i=2

(−1)i
(
k − i
i− 1

)
an−i+1.

From the discussion above, trees avoiding an k-leaf comb can be constructed with a finitely
labeled generating tree (in particular with a generating tree using precisely k − 2 labels),
and one may use the transfer matrix method to obtain an alternate proof of Theorem 1 for
the case of avoiding the k-leaf left comb.

6 Connections to pattern-avoiding permutations

As evidenced in the Appendix, many sequences obtained by counting trees that avoid non-
contiguous binary tree patterns are already known in the literature for other reasons. In this
section we present a theorem that fully explains this connection for the case of avoiding a
single binary tree pattern.

To this end, let S(n) denote the set of permutations of length n. As in the introduction,
given π ∈ S(n) and ρ ∈ S(k) we say that π contains ρ as a pattern if there exist indices
1 ≤ i1 < · · · < ik ≤ n such that πia < πib if and only if ρa < ρb. Let SQ(n) = {π ∈ S(n)|∀ρ ∈
Q, π avoids ρ}, and sQ(n) = |SQ(n)|. For example, s{12}(n) = 1 for n ≥ 1 since the only way
to avoid the pattern 12 is to be the decreasing permutation of length n. It is also well-known
that if ρ ∈ S(3), then s{ρ}(n) = Cn where Cn is the nth Catalan number.

Theorem 2. Let t be any binary tree pattern with k ≥ 2 leaves. Then

avt(n) = s{231,(k−1)(k−2)···21}(n− 1).

Proof. It is well known that the set of binary trees with n leaves is in bijection with the set
of permutations of length n− 1 which avoid the pattern 231.

To see this, label the root of tree t with the label n−1. Now, suppose there are i internal
vertices to the left of the root and (n− i− 2) internal vertices to the right of the root. The
i vertices on the left will receive labels from the set {1, . . . , i} and the vertices on the right
will receive labels from the set {i+ 1, . . . n− 2}. For each subtree, give the root the largest
available label and continue recursively until each internal vertex has been labeled.

11



Now, there is a natural left-to-right ordering of the vertices of t. Read the labels of the
vertices from left to right to obtain a permutation π ∈ S(n − 1). Necessarily, π avoids 231
because all labels to the left of a given vertex have smaller labels than all labels to the right.

Further, we can see that the k-leaf right comb encodes the unique decreasing permutation
of length k − 1. It is not hard to see that if a tree avoids the k-leaf right comb, then
the corresponding permutation avoids the decreasing permutation of length k − 1 and vice
versa.

We note that this correspondence between {231}-avoiding permutations and binary trees
is not new. If one ignores the leaves in our trees, the bijection given in the proof of Theorem
2 is identical to the correspondence between postorder-labeled trees with inorder-read per-
mutations found in [5]. Further work connecting permutations to binary trees in the context
of sorting can be found in [1], [4], [10], [11], [12], and [14].

It is worth considering when Theorem 2 generalizes and how. The correspondence given
in the proof of Theorem 2 does not necessarily work with trees other than the right comb.
For example, while avt41 (n) = s{231,321}(n− 1), the permutation corresponding to t41 is 123.

However, avt41 (n) = 2n−2 (n > 1) while s{231,123}(n − 1) =
(
n−1
2

)
+ 1 (n > 1). Thus even

if the sequence obtained from avoiding a set of tree patterns is also the avoidance sequence
for some set of pattern-avoiding permutations, there may be other bijections required to
demonstrate the equivalence. It remains open to give a natural interpretation of Theorem 2
for trees other than the right comb.

7 Avoiding two or more binary trees simultaneously

Thus far, we have analyzed generating functions and enumeration sequences for trees avoiding
a single non-contiguous binary tree pattern. We will now consider trees that avoid two
tree patterns simultaneously. To this end, let g({t1,t2};p)(x) be the generating function that
enumerates trees avoiding t1 and t2 with pattern p at the root according to number of leaves.
For brevity, we may abbreviate g({t1,t2}; )(x) = g{t1,t2}(x).

Parallel to Equations 1 and 2 we have

g({t1,t2}; )(x) = x+ g({t1,t2}; )(x) (6)

and

g({t1,t2}; )(x) = g({t1` ,t2`}; )(x)g({t1,t2}; )(x) + g({t1,t2}; )(x) · g({t1r ,t2r}; )(x)

+ g({t1` ,t2}; )(x) · g({t1,t2r}; )(x) + g({t1,t2`}; )(x) · g({t1r ,t2}; )(x)

− g({t1,t2`}; )(x) · g({t1r ,t2r}; )(x)− g({t1` ,t2}; )(x) · g({t1r ,t2r}; )(x)

− g({t1` ,t2`}; )(x) · g({t1,t2r}; )(x)− g({t1` ,t2`}; )(x) · g({t1r ,t2}; )(x)

+ g({t1` ,t2`}; )(x) · g({t1r ,t2r}; )(x).

(7)

12



This latter expression follows again from inclusion-exclusion. One can solve this pair of
equations for g{t1,t2}(x) to obtain a rational combination of rational generating functions and
see that for any pair of binary trees, g{t1,t2}(x) is indeed rational.

To compactly state the equivalent expression to Equation 7 for trees avoiding j binary
tree patterns (j ∈ Z+), we need to introduce more efficient notation. Notice that all terms
on the right hand sides of Equations 2 and 7 are of the form g(S`; )(x) · g(Sr; )(x) where for

each tree ti (1 ≤ i ≤ j), there are 3 possibilities: (i) ti ∈ S` and tir ∈ Sr, (ii) ti` ∈ S` and
ti ∈ Sr, or (iii) ti` ∈ S` and tir ∈ Sr. Let v ∈ {−1, 0, 1}j and let gp~v(x) = g(S`; )(x) ·g(Sr; )(x)

where (i) if vi = −1 then ti ∈ S` and tir ∈ Sr, (ii) if vi = 1 then ti` ∈ S` and ti ∈ Sr, and
(iii) if vi = 0 then ti` ∈ S` and tir ∈ Sr. Further, for ~v ∈ {−1, 0, 1}j, define |~v| =

∑j
i=1 |vi|.

By inclusion-exclusion we have:

g({t1,...,tj}; )(x) =
∑

~v∈{−1,0,1}j
(−1)j−|v|gp~v(x). (8)

Notice that this expression is linear in g({t1,...,tj}; )(x). In fact, g({t1,...,tj}; )(x) only appears

in two terms: the ones corresponding to ~v = 〈1, . . . , 1〉 and ~v = 〈−1, . . . ,−1〉, so we see that
g{t1,...tk}(x) is rational for any finite set of j tree patterns.

We used Equations 6 and 7 to compute g{t1,t2}(x) for any pair of binary tree patterns
where t1 and t2 have no more than 5 leaves. A summary of these results is given in the
Appendix.

In light of Theorem 2 one might wonder if for every set of binary tree patterns S,
{avS(n)}∞n=2 is identical to the avoidance sequence {sQ(n)}∞n=1 for some set Q of permu-
tation patterns. This, however turns out not to be the case. For example consider the
sequence

{avS(n)}∞n=2 = 1, 2, 5, 12, 26, 49, 83, 129, . . . where S = { , }.

If this were the avoidance sequence for some set of permutation patterns Q, we see from
the fact that a3 = 5 that Q contains a pattern of length 3. Further, since it is known that
s4(ρ) = 14 for any pattern ρ ∈ S(3), Q must contain precisely two patterns of length 4.
However, exhaustive checking of {sn(Q)}8n=1 for sets of patterns Q consisting of one pattern
of length 3 and two patterns of length 4 yields no match for this sequence.

8 Conclusion

Throughout this paper, we have investigated non-contiguous pattern avoidance in binary
trees. Unlike Rowland’s work for contiguous patterns, our avoidance generating functions
are always rational, and the Wilf classes obtained for avoidance of single patterns are easy to
describe: two tree patterns are Wilf-equivalent if and only if they have the same number of
leaves. The results in this paper not only give a complete characterization of trees avoiding
a single pattern, but we also present a computational technique to quickly determine the
number of trees avoiding any finite set of non-contiguous tree patterns. Finally we explore

13



combinatorial proofs of our results and give an explicit bijection between certain pattern-
avoiding trees and pattern-avoiding permutations.

Acknowledgement

The authors thank Eric Rowland for assistance with generating the tree graphics for this
paper and for several helpful presentation suggestions.

Appendix

This appendix lists pairs of binary tree patterns each of which have at most 5 leaves, classi-
fying them by their avoidance generating function and sequence. For each class, we give the
generating function g{t1,t2}(x), and we list the first 15 terms of the corresponding avoidance
sequence. If the avoidance sequence for a class is listed in the Online Encyclopedia of Integer
Sequences [15], we include the appropriate reference. For brevity, left–right reflections are
omitted.

Avoiding a 3-Leaf & a 4-Leaf Tree

Class A

• g{t1,t2}(x) = x+ x2 + x3

• Sequence: 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .{
,

}

Avoiding a 3-Leaf & a 5-Leaf Tree

Class A

• g{t1,t2}(x) = x+ x2 + x3 + x4

• Sequence: 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .{
,

}

14



Avoiding a 4-Leaf & a 5-Leaf Tree

Class A

• g{t1,t2}(x) = x+ x2 + 2x3 + 4x4 + 7x5 + 8x6 + 8x7 + 6x8 + 3x9 + x10

• Sequence: 1, 1, 2, 4, 7, 8, 8, 6, 3, 1, 0, 0, 0, 0, 0, . . .{
,

}

Class B

• g{t1,t2}(x) = x−x2+x3+x4+x5
1−2x+x2

• Sequence: 1, 1, 2, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

• OEIS A016777: 3k + 1 for k ≥ 4. {
,

}
Class C

• g{t1,t2}(x) = −x+2x2−2x3
−1+3x−3x2+x3

• Sequence: 1, 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, . . .

• OEIS A152947: (k−2)·(k−1)+1
2{

,

}
,
{

,
}
,
{

,
}
,

{
,

}
,{

,

}
,
{

,
}
,
{

,
}
,
{

,
}
,{

,

}
,

{
,

}
,

{
,

}
,

{
,

}

Class D

• g{t1,t2}(x) = x−x2+x4
1−2x+x3

• Sequence: 1, 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, 609, 986, . . .

• OEIS A000071: Fibonacci numbers -1 for n ≥ 2.{
,

}
,

{
,

}
,

{
,

}
,
{

,
}

15



Class E

• g{t1,t2}(x) = −x
−1+x+x2+x3

• Sequence: 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, . . .

• OEIS A000073: Tribonacci Numbers{
,

}
,

{
,

}

Avoiding a Pair of 4 Leaf Trees

Class A

• g{t1,t2}(x) = x+ x2 + 2x3 + 3x4 + 2x5 + x6

• Sequence: 1, 1, 2, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .{
,

}
Class B

• g{t1,t2}(x) = x−x2+x3
1−2x+x2

• Sequence: 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, . . .

• OEIS A000027: The natural numbers{
,

}
,
{

,
}
,
{

,
}
,
{

,
}

Class C

• g{t1,t2}(x) = −x
−1+x+x2

• Sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . .

• OEIS A000045: Fibonacci Numbers{
,

}

16



Avoiding a Pair of 5 Leaf Trees

Note: The first five terms of the sequences in this section will be 1, 1, 2, 5, 12. Therefore,
the sequences will begin with the sixth term.

Class A

• g{t1,t2}(x) = x+ x2 + 2x3 + 5x4 + 12x5 + 26x6 + 46x7 + 76x8

+ 116x9 + 163x10 + 208x11 + 238x12 + 240x13 + 210x14

+ 158x15 + 100x15 + 52x17 + 21x18 + 6x19 + x20

• Sequence: 26, 46, 76, 116, 163, 208, 238, 240, 210, 158, 100, 52, 21, 6, 1{
,

}

Class B

• g{t1,t2}(x) = x−2x2+2x3+x4+2x5+3x6+2x7+2x8+x9

1−3x+3x2−x3

• Sequence: 26, 49, 83, 129, 187, 257, 339, 433, 539, 657, . . .

• New to OEIS {
,

}

Class C

• g{t1,t2}(x) = x−4x2+7x3−5x4+2x5

1−5x+10x2−10x3+5x4−x5

• Sequence: 26, 51, 92, 155, 247, 376, 551, 782, 1080, 1457, . . .

• OEIS A027927: T (k, 2k − 4), T given by A027926 for n ≥ 2.{
,

}
,

{
,

}
,

{
,

}

Class D

• g{t1,t2}(x) = x−5x2+11x3−12x4+7x5−2x6+x7
1−6x+15x2−20x3+15x4−6x5+x6

• Sequence: 26, 52, 98, 176, 303, 502, 803, 1244, 1872, 2744, . . .

• New to OEIS{
,

}
,

{
,

}
,

{
,

}
,

{
,

}
17



Class E

• g{t1,t2}(x) = x−3x2+3x3+x4−x5
1−4x+5x2−x3−2x4+x5

• Sequence: 26, 52, 98, 177, 310, 531, 895, 1491, 2463, 4044, . . .

• OEIS A116717: Number of permutations of length k which avoid the patterns 231,
1423, 3214 for n ≥ 2. {

,

}
,

{
,

}

Class F

• g{t1,t2}(x) = −x+2x2−x3−x4−2x5
−1+3x−2x2−x4+x5

• Sequence: 26, 53, 104, 199, 375, 700, 1299, 2402, 4432, 8167, . . .

• New to OEIS {
,

}

Class G

• g{t1,t2}(x) = x−2x2+2x4+2x5−x6−x7
1−3x+x2+2x3+x4−x5−x6

• Sequence: 26, 55, 113, 227, 449, 877, 1696, 3254, 6203, 11762, . . .

• OEIS A116726: Number of permutations of length k which avoid the patterns 213,
1234, 2431 for n ≥ 2. {

,

}
,

{
,

}

Class H

• g{t1,t2}(x) = x−x2−x3+3x5+2x6+x7

1−2x−x2+3x4+2x5+x6

• Sequence: 26, 56, 118, 244, 499, 1010, 2027, 4040, 8004, 15776, . . .

• OEIS A073778: a(m) =
∑m

k=0 T (k) · T (m− k). Convolution of tribonacci sequence
A000073 with itself for m ≥ 3, for n ≥ 2.{

,

}
18



Class I

• g{t1,t2}(x) = −x
−1+x+x2+2x3+3x4+2x5+x6

• Sequence: 26, 57, 127, 284, 632, 1405, 3126, 6958, 15485, 34458, . . .

• New to OEIS {
,

}

Class J

• g{t1,t2}(x) = −x+3x2−3x3
−1+4x−5x2+2x3

• Sequence: 27, 58, 121, 248, 503, 1014, 2037, 4084, 8179, 16370, . . .

• OEIS A000325: 2k − k{
,

}
,

{
,

}
,

{
,

}
,

{
,

}
,{

,

}
,

{
,

}
,
{

,
}
,
{

,
}
,{

,
}
,

{
,

}
,

{
,

}
,
{

,
}
,{

,
}
,

{
,

}
,
{

,
}

Class K

• g{t1,t2}(x) = x−2x2+2x4+x5

1−3x+x2+2x3

• Sequence: 27, 59, 126, 263, 551, 1136, 2327, 4743, 9630, 19493, . . .

• OEIS A116712: Number of permutations of length k which avoid the patterns 231,
3214, 4312 for n ≥ 2. {

,

}
,

{
,

}

Class L

• g{t1,t2}(x) = x−3x2+2x3+x4

1−4x+4x2

• Sequence: 28, 64, 144, 320, 704, 1536, 3328, 7168, 15360, 32768, . . .

19



• OEIS A045623: Number of 1’s in all compositions of k + 1 for n ≥ 2.{
,

}
,

{
,

}
,

{
,

}
,

{
,

}
{

,
}
,
{

,
}
,
{

,
}
,

{
,

}
{

,

}
,

{
,

}

Class M

• g{t1,t2}(x) = x−2x2+x3
1−3x+2x2−x3

• Sequence: 28, 65, 151, 351, 816, 1897, 4410, 10252, 23833, 55405, . . .

• OEIS A034943: Binomial transform of Padovan sequence A000931 for n ≥ 1.{
,

}
,

{
,

}
,

{
,

}
,

{
,

}
{

,

}
,

{
,

}
,

{
,

}

Class N

• g{t1,t2}(x) = x−x2−x3
1−2x−x2

• Sequence: 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, . . .

• OEIS A000129: Pell numbers: a(0) = 0, a(1) = 1; for k ≥ 1, a(k) = 2·a(k−1)+a(k−2)
for n ≥ 2. {

,

}
,

{
,

}
,
{

,
}

References

[1] M. Bousquet-Mèlou. Sorted and/or Sortable Permutations. Discrete Mathematics,
223:23–30, 2000.

[2] F. Disanto. The size of the biggest Caterpillar subtree in binary rooted planar trees.
preprint, arXiv:1202.5668.

[3] V. Dotsenko. Pattern avoidance in labelled trees. Séminaire Lotharingien de Combina-
toire, B67b: 27 pages, 2012.

20

http://arxiv.org/abs/1202.5668


[4] S. Even. Graph Algorithms. Computer Science Press, 1979.

[5] T. Feil, K. Hutson, R.M. Kretchmar. Tree Traversals and Permutations. Congressus
Numerantium, 172:201–221, 2005.

[6] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.

[7] P. Flajolet, P. Sipala, and J. M. Steyaert. Analytic variations on the common subexpres-
sion problem. Automata, Languages, and Programming: Proc. of ICALP 1990. volume
443 of Lecture Notes in Computer Science, pages 220–234. Springer, 1990.

[8] N. Gabriel, K. Peske, L. Pudwell, and S. Tay. Pattern Avoidance in Ternary Trees.
Journal of Integer Sequences 15:12.1.5, 2012.

[9] A. Khoroshkin and D. Piontkovski. On generating series of finitely presented operads.
preprint, arXiv:1202.5170.

[10] D. Knuth. The Art of Computer Programming: Volume 1. Addison-Wesley, 1997.

[11] D. Rotem. Stack Sortable Permutations. Discrete Mathematics, 33:185–196, 1981.

[12] D. Rotem and Y. Varol. Generating Binary Trees from Ballot Sequences. JACM, 25:396–
404, 1978.

[13] E. S. Rowland. Pattern avoidance in binary trees. J. Combin. Theory, Ser. A, 117:741–
758, 2010. 741–758.

[14] R. P. Stanley. Enumerative Combinatorics, Vol. 2. Cambridge University Press, 1999.

[15] N. Sloane. The Encyclopedia of Integer Sequences. Available at http://oeis.org, 2012.

[16] J. M. Steyaert and P. Flajolet. Patterns and pattern-matching in trees: an analysis.
Info. Control, 58:19–58, 1983.

21

http://arxiv.org/abs/1202.5170
http://oeis.org

	Introduction
	Definitions and Notation
	Avoiding Simple Tree Patterns
	Avoiding t11, t21, and t31
	Avoiding t41
	Avoiding t42
	Avoiding t43

	Generating Functions for Pattern-Avoiding Trees
	Recurrences for Binary Trees
	Connections to pattern-avoiding permutations
	Avoiding two or more binary trees simultaneously
	Conclusion

