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Abstract

In this paper, we consider pattern avoidance in a subset of words
on {1, 1, 2, 2, . . . , n, n} called double lists. We enumerate double lists
avoiding any permutation pattern of length at most 4 and completely
determine the corresponding Wilf classes.
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1 Introduction

Let Sn be the set of all permutations on {1, 2, . . . , n}. Given π ∈ Sn and
ρ ∈ Sm we say that π contains ρ as a pattern if there exists 1 ≤ i1 < i2 <
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· · · < im ≤ n such that πia ≤ πib if and only if ρa ≤ ρb. In this case we say
that πi1 · · · πim is order-isomorphic to ρ, and that πi1 · · · πim is an occurrence
of ρ in π. If π does not contain ρ, then we say that π avoids ρ. An inversion
is an occurrence of the pattern 21, and a coinversion is an occurrence of
the pattern 12. Pattern-avoiding permutations have been well-studied with
applications to algebraic geometry, theoretical computer science, and more.
Of particular interest are the sets Sn(ρ) = {π ∈ Sn | π avoids ρ}. Let

sn(ρ) = |Sn(ρ)|. It is well known that sn(ρ) =
(2n

n )
n+1

for ρ ∈ S3 [9]. For ρ ∈ S4,
3 different sequences are possible for {sn(ρ)}n≥1. Two of these sequences are
well-understood, but the computation of sn(1324) remains open for n ≥ 37
[5].

Pattern avoidance has been studied for a number of combinatorial ob-
jects other than permutations. The definition above extends naturally for
patterns in words (i.e. permutations of multisets) and there have been sev-
eral algorithmic approaches to determining the number of words avoiding
various patterns [2, 3, 8, 10].

In another direction, a permutation may be viewed as a bijection on
[n] = {1, . . . , n}. When we graph the points (i, πi) in the Cartesian plane, all
points lie in the square [0, n+ 1]× [0, n+ 1], and thus we may apply various
symmetries of the square to obtain involutions on the set Sn. For π ∈ Sn,
let πr = πn · · · π1 and let πc = (n + 1 − π1) · · · (n + 1 − πn), the reverse
and complement of π respectively. For example, the graphs of π = 1342,
πr = 2431, and πc = 4213 are shown in Figure 1. Pattern-avoidance in
centrosymmetric permutations, i.e. permutations π such that πrc = π has
been studied by Egge [6] and by Barnabei, Bonetti and Silimbani [1]. Ferrari
[7] generalized this idea to pattern avoidance in centrosymmetric words. In
all of these cases, knowing the first half of the word or permutation uniquely
determines the second half.

π = 1342 πr = 2431 πc = 4213

Figure 1: The graphs of π = 1342, πr = 2431, and πc = 4213
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A final variation involves circular permutations. In a circular permutation
π1 · · · πn, we consider the last digit in the permutation to be adjacent to the
first and two permutations are considered the same if they differ by only a
rotation. For example, 1234, 2341, 3412, and 4123 are all the same circular
permutation. A circular permutation π is said to contain ρ as a pattern if
there exists a rotation of π that contains ρ. Circular permutations avoiding
permutation patterns were studied by Callan [4] and Vella [13] who obtained
a number of interesting enumeration sequences.

In this paper we consider a specific type of word that borrows ideas from
centrosymmetric and circular permutations. In particular, we define the set
of double lists on n letters to be

Dn = {ππ | π ∈ Sn}.

In other words, a double list is a permutation of {1, . . . , n} concatenated with
itself. We see immediately that |Dn| = n!. As with centrosymmetric objects,
knowing the first half of a double list determines the second half. As with
circular permutations, we have taken a permutation and appended the end
to the beginning. Yet, double lists are a new combinatorial object of interest
in their own right. Consider

Dn(ρ) = {σ ∈ Dn | σ avoids ρ},

and let dn(ρ) = |Dn(ρ)|. We obtain a number of interesting enumeration
sequences for {dn(ρ)}n≥1 with connections to other combinatorial objects.
The goal of this paper is to completely determine dn(ρ) for ρ ∈ S1∪S2∪S3∪S4.

2 Avoiding patterns of length 1, 2, or 3

The main focus of this paper is avoidance of length 4 patterns, but for com-
pleteness we first consider shorter patterns. First, notice that the graph of a
double list σ ∈ Dn is a set of points on the rectangle [0, 2n + 1]× [0, n + 1].
Using the reverse and complement involutions described in Section 1, we see
that

σ ∈ Dn(ρ)⇐⇒ σr ∈ Dn(ρr)⇐⇒ σc ∈ Dn(ρc).

We will partition the set of permutation patterns of length m into equivalence
classes where ρ ∼ τ means that dn(ρ) = dn(τ) for n ≥ 1. In this case ρ and
τ are said to be Wilf equivalent. When this equivalence holds because of one
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of the symmetries of the rectangle, we say that ρ and τ are trivially Wilf
equivalent. Using trivial Wilf equivalence we have that 12 ∼ 21, 123 ∼ 321
and 132 ∼ 213 ∼ 231 ∼ 312, so we need only consider 4 patterns in this
section: 1, 12, 123, and 132.

Avoiding a pattern of length 1 or length 2 is trivial. It is straightforward
to check that for n ≥ 1, dn(1) = 0, and similarly

dn(12) = dn(21) =

{
1 n = 1

0 n ≥ 2.

With pattern-avoiding permutations, avoiding a pattern of length 3 is
the first non-trivial enumeration, and for any pattern ρ of length 3, we have
that sn(ρ) is the nth Catalan number. Double lists are more restrictive, so
we obtain simpler sequences for dn(ρ). More strikingly, although sn(123) =
sn(132) for n ≥ 1, we obtain two distinct sequences in this new context.

Proposition 1. dn(123) = dn(321) =

{
n! n ≤ 2

1 n ≥ 3.

Proof. For n ≤ 2, all double lists avoid permutation patterns of length 3.
However, for n ≥ 3, the unique double list avoiding 123 is n · · · 1n · · · 1. We
verify this directly for the 6 members of D3, with a copy of 123 underlined
in each of the other 5 double lists: 123123, 132132, 213213, 231231, 312312.
Now, assume Dn(123) = {n · · · 1n · · · 1} and consider Dn+1(123). Given σ ∈
Dn+1(123), let σ′ be the double list obtained by deleting both copies of n+ 1
in σ. Since σ ∈ Dn+1(123), we know σ′ ∈ Dn(123). By assumption, σ′ =
n · · · 1n · · · 1. To construct σ, we must only reinsert the two copies of n + 1
so that σ avoids 123. If n + 1 is inserted after the initial n, then we have
1n(n + 1) as a copy of 123 in σ where the 1 is in the first half of σ, and
n(n+ 1) are in the second half of σ. Therefore, n+ 1 must be inserted before
the initial n, and Dn+1(123) = {(n+ 1)n · · · 1(n+ 1)n · · · 1}.

Finally, we consider double lists avoiding 132.

Proposition 2. dn(132) = dn(213) = dn(231) = dn(312) =


n! n ≤ 2

1 n = 3

0 n = 4.

4



Proof. For n ≤ 2, all double lists avoid permutation patterns of length 3.
However, for n = 3, the unique double list avoiding 132 is 231231. Indeed for
the other 5 double lists in D3: 123123, 132132, 213213, 312312, 321321. Now,
consider the 4 ways to insert 4 into 231231: 42314231, 24312431, 23412341,
23142314. We see (via the underlined occurrences) that each of these double
lists contains a 132 pattern. If there are no 132-avoiding double lists of length
n, then there are no 132-avoiding double lists of length n+ 1, since deleting
both occurrences of n+ 1 in such a list should produce another 132-avoiding
double list.

At this point, we have completely characterized double lists avoiding a
single pattern of length 1, 2, or 3. Although we obtained only trivial se-
quences, the fact that we obtained two distinct Wilf classes for avoiding
patterns of length 3 is a noteworthy difference between avoidance in double
lists and avoidance in permutations.

3 Avoiding patterns of length 4

The remainder of this paper is concerned with double lists avoiding a single
pattern of length 4. Using the symmetries of the rectangle, we can partition
the 24 patterns of length 4 into 8 trivial Wilf classes, as shown in Table
1. Notably, the trivial Wilf equivalences are the only Wilf equivalences for
patterns of length 4. This is in contrast to the case for pattern-avoiding per-
mutations. In that context, we have an additional trivial Wilf equivalence
since sn(ρ) = sn(ρ−1) for n ≥ 1, so sn(1342) = sn(1423). As it turns out,
there are a number of non-trivial Wilf equivalences for pattern-avoiding per-
mutations so that every length 4 pattern is equivalent to one of 1342, 1234,
or 1324. For large n, we have that

sn(1342•) < sn(1234†) < sn(1324◦).

In Table 1 each pattern is marked according to its Wilf equivalence class for
permutations; patterns equivalent to 1342 are marked with •, those equiva-
lent to 1234 are marked with †, and those equivalent to 1324 are marked with
◦. A closer look at the table reveals a couple more subtleties of the pattern-
avoiding double lists problem. For permutations, the monotone pattern 1234
is neither the hardest nor the easiest pattern to avoid; for double lists, it is
the easiest pattern to avoid. Similarly, one might expect that all patterns
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equivalent to 1324 may produce smaller sequences than those avoiding 1234,
which produce smaller sequences than those avoiding 1324, but this is also
not the case. Other than the trivial equivalences of reverse and complement,
Wilf equivalence in the context of double lists appears to be a very differ-
ent phenomenon than equivalence in the context of permutations. We now
consider each of these patterns in turn.

Pattern ρ {dn(ρ)}10n=1

1342• ∼ 2431• ∼ 3124• ∼ 4213• 1, 2, 6, 12, 15, 15, 15, 15, 15, 15
2143† ∼ 3412† 1, 2, 6, 12, 13, 14, 16, 18, 20, 22
1423• ∼ 2314• ∼ 3241• ∼ 4132• 1, 2, 6, 12, 17, 23, 27, 30, 33, 36
1432† ∼ 2341† ∼ 3214† ∼ 4123† 1, 2, 6, 12, 17, 23, 31, 40, 50, 61
1243† ∼ 2134† ∼ 3421† ∼ 4312† 1, 2, 6, 12, 19, 25, 34, 44, 55, 67
2413• ∼ 3142• 1, 2, 6, 12, 18, 29, 47, 76, 123, 199
1324◦ ∼ 4231◦ 1, 2, 6, 12, 21, 38, 69, 126, 232, 427
1234† ∼ 4321† 1, 2, 6, 12, 27, 58, 121, 248, 503, 1014

Table 1: Enumeration of double lists avoiding a pattern of length 4

3.1 The pattern 1342

The pattern 1342 is the hardest permutation of length 4 to avoid, and, from
initial data, is the easiest pattern for which to conjecture a general enumer-
ation formula.

Theorem 1. dn(1342) =


n! n ≤ 3

12 n = 4

15 n ≥ 5.

Proof. For n ≤ 3, all double lists avoid 1342, and for n = 4, a check of the
24 members of Dn yields exactly 12 that avoid 1342. They are 12431243,
21342134, 23142314, 23412341, 24132413, 24312431, 31243124, 32143214,
32413241, 42314231, 43124312, 43214321.

We now consider Dn(1342) for n ≥ 5 and make three key structural
observations. Let σ = ππ ∈ Dn(1342) and let σ′ = π′π′ ∈ Dn−2(1342) be the
double list obtained by deleting both copies of n and both copies of n − 1
from σ. Then
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1. π′ avoids 123.

2. π′ contains at most one coinversion.

3. If π′ contains a coinversion, then the coinversion is composed of the
digits 1 and 2 or the digits 2 and 3.

For the first observation, suppose to the contrary that π′ contains 123
and the occurrence of 123 is formed by the digits π′a < π′b < π′c. If n (resp.
n−1) appears before π′b or after π′c in π, then π′aπ

′
cnπ

′
b (resp. π′aπ

′
c(n−1)π′b) is

a copy of 1342 in σ = ππ. Therefore, n and n− 1 must both appear between
π′b and π′c in π. If they are in increasing order, then π′a(n− 1)nπ′c is a copy of
1342 in π, and thus in σ. If they are in decreasing order, then π′a(n− 1)nπ′c
is a copy of 1342 in σ. Since we have exhausted all possible options, it must
be the case that π′ avoids 123.

For the second observation, we know that π′ avoids 123, so if π′ contains
two coinversions, either (a) π′ contains the pattern 132, (b) π′ contains the
pattern 213, or (c) π′ contains the pattern 3412. It can be shown that case (a)
and case (b) are impossible by a similar analysis to the previous paragraph,
conditioning on various possible positions of n and n − 1. Case (c) is even
more readily discounted, since 34123412 already contains a copy of 1342.

Finally, if π′ contains a coinversion, we show that it must use two consec-
utive digits and they must include the digit 2. Suppose on the contrary that
we have the coinversion π′i < π′j where

∣∣π′j − π′i∣∣ > 1. Then no matter the
location of π′i+1, it forms a coinversion with either π′i or π′j. This contradicts
our previous observation that π′ contains at most one coinversion. Therefore,
the coinversion must use consecutive digits. Now suppose that the coinver-
sion uses digits π′i and π′i + 1 where π′i ≥ 3. To avoid other coinversions, it
must be the case that π′ = (n − 2)(n − 3)(n − 4) · · · (π′i + 3)(π′i + 2)π′i(π

′
i +

1)(π′i− 1)(π′i− 2) · · · 21. However, in this case, 1π′i(π
′
i + 1)2 is a copy of 1342

in σ. Therefore, any coinversion must either use the digits 1 and 2 or the
digits 2 and 3.

Using these three observations, we see that there are only 3 possible forms
for π′. They are: (n− 2) · · · 1 (the decreasing permutation), (n− 2) · · · 4231,
or (n− 2) · · · 312. Now, we consider ways to reinsert n and n− 1 into π′ to
form π so that σ = ππ is a member of Dn(1342). There are 6 ways to insert
them into the decreasing permutation; namely,

n · · · 1, (n− 1) · · · 1n, (n− 1) · · · 2n1,
(n− 2) · · · 1n(n− 1), (n− 2) · · · 2n1(n− 1), (n− 2) · · · 2n(n− 1)1.
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There are also 6 ways to insert them into (n− 2) · · · 4231; namely,

n · · · 4231, (n− 1) · · · 4231n,
(n− 1) · · · 423n1, (n− 2) · · · 4231n(n− 1),

(n− 2) · · · 423n1(n− 1), (n− 2) · · · 423n(n− 1)1.

Finally, there are only 3 ways to insert them into (n− 2) · · · 312; namely

n · · · 312, (n− 1) · · · 312n, (n− 2) · · · 312n(n− 1).

These 15 permutations π uniquely describe all possible members σ = ππ ∈
Dn(1342) for n ≥ 5.

To illustrate, the 15 members of D6(1342) are shown in Figure 2. While
an eventually constant sequence is expected for smaller patterns, the constant
sequence 15 is perhaps a bit more surprising in this context. Nonetheless the
structural argument in this proof sets the stage for several of the proofs yet
to come in the following subsections.

Figure 2: The members of D6(1342)
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3.2 The patterns 2143 and 1423

Two of our patterns yield avoidance sequences that grow linearly.

Theorem 2. dn(2143) =


n! n ≤ 3

12 n = 4

13 n = 5

2(n+ 1) n ≥ 6.

Proof. The cases for n ≤ 5 are easily verified by brute force methods, so we
focus on the case where n ≥ 6. Intuitively there are an even number of double
lists avoiding 2143 for a geometric reason. We have that 2143rc = 2143, so ρ
avoids 2143 if and only if ρrc avoids 2143. For n ≥ 6, there are exactly two
members σ = ππ of Dn(2143) that are reverse-complement invariant. If n
is even, they are π = 12 · · ·n and π = n+2

2
· · ·n1 · · · n

2
; If n is odd, they are

π = 12 · · ·n and π = n+3
2
· · ·nn+1

2
1 · · · n−1

2
. All other 2143-avoiders come in

pairs ρ and ρrc. However, it turns out that it is easier to characterize the
members of Dn(2143) using other distinguishing features.

Notice that there are no inversions among elements after 1 and larger
than 2 in π. Suppose to the contrary that i < j < k where πi = 1 and
πj > πk > 2. Then 21πjπk forms an occurrence of 2143 in σ. Similarly,
all elements before n and other than n− 1 must appear in increasing order.
Therefore, there are only 3 possible double lists σ = ππ where 1 precedes
n: π = 12 · · ·n, π = 13 · · ·n2, and π = (n − 1)12 · · · (n − 2)n. So far, we
have described 3 members of Dn(2143), as shown in Figure 3. It remains to
consider when n precedes 1 in π.

Figure 3: 2143-avoiding lists where 1 precedes n

If n precedes 1, then there is at most 1 element between n and 1. Suppose
to the contrary that there are two elements πa > πb that appear between n
and 1 in π. Then πb1nπa forms a 2143 pattern in σ, taking πb1 from the
first copy of π and nπa from the second copy. We have two subcases: either
πj−1 = n and πj+1 = 1 or πj−1 = n and πj = 1.
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In the case where πj−1 = n and πj+1 = 1, let i = πj. Consider elements
πa and πb, such that a < j − 1 and b > j + 1. It must be the case that
πa > πj > πb; otherwise a case analysis shows that σ contains a 2143 pattern.
Next, an inversion πa > πb after πj+1 creates the 2143 occurrence πaπbni in
σ, while an inversion πa > πb before πj−1 creates the 2143 occurrence i1πaπb
in σ. Therefore, the only 2143-avoiders in this case are the n− 2 lists where
π = (i+ 1) · · ·ni1 · · · (i− 1) (2 ≤ i ≤ n− 1), as shown in Figure 4.

On the other hand, if πj−1 = n and πj = 1, if there is an inversion in
π1 · · · πj−2 or in πj+1 · · · πn, there is a 2143 pattern with two exceptions. The
double lists where π = 4 · · ·n132 or π = (n − 1)(n − 2)n1 · · · (n − 3) are
2143-avoiding. In addition, we obtain n− 1 lists where π = i · · ·n1 · · · i− 1
(2 ≤ i ≤ n). There are 2 + (n − 1) = n + 1 members of Dn(2143) where n
immediately precedes 1, as shown in Figure 5.

Figure 4: 2143-avoiders where n is two positions before 1

Figure 5: 2143-avoiders where n immediately precedes 1

We have now accounted for (n − 2) + (n + 1) = 2n − 1 additional per-
mutations π such that ππ ∈ Dn(2143). Together with the original 3 lists we
have 2n− 1 + 3 = 2(n+ 1) double lists avoiding 2143.

The number of 1423-avoiding double lists also grows linearly but for a
different reason.

Theorem 3. dn(1423) =



n! n ≤ 3

12 n = 4

17 n = 5

23 n = 6

3(n+ 2) n ≥ 7.
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Proof. Again, the cases for n ≤ 6 are easily verified by brute force methods,
so we focus on the case where n ≥ 7. Now, we condition on which of the
letters 1 and n comes first in σ = ππ ∈ Dn(1423).

If 1 precedes n, then all other digits must appear in decreasing order in π;
otherwise 1n in the first copy of π and any increasing pair in the second copy
of π form a 1423 pattern in σ = ππ. Further, n must be the last element of
π. Since all other digits appear in decreasing order, if n is not the last digit
of π, then πn = 2, and 1n23 is a 1423 pattern in σ. Since n is last, then
either πn−1 = 1, πn−2 = 1, or πn−3 = 1. Otherwise πn−3 > πn−2 > πn−1 and
1πn−3πn−1πn−2 is a copy of 1423 in σ, taking the first three digits from the first
copy of π and the remaining digit from the second copy. There are exactly 3
double lists in Dn(1423) where 1 precedes n; namely, π = (n − 1) · · · 4132n,
π = (n− 1) · · · 312n or π = (n− 1) · · · 1n.

Now, suppose that n precedes 1. We quickly see that the digits after 1 in
π must appear in decreasing order; otherwise, 1 from the first copy of π and
n and the increasing pair from the second copy form a 1423 pattern. This
implies there are at most 2 digits after 1 in π; otherwise we can form a 1423
pattern using 1πn−2πn from the first copy of π and πn−1 from the second
copy of π. Similarly, all digits after n and larger than 1 in π must appear in
decreasing order.

What can be said about the digits that appear before n? Two things: (a)
either the only digit before n is n − 2, or all digits before n are larger than
all digits after n, and (b) if there are at least four digits before n, then they
appear in decreasing order. For observation (a), if π1 = i and π2 = n where
i < n − 2 then in(n − 2)(n − 1) forms a 1423 pattern in σ where the first
three digits come from the first copy of π. Further, if there is more than one
digit before n in π, let the first two digits of π be a and b where a < b. By
assumption there exists a digit c that appears after n in π where a < c. We
have that either anbc or ancb is a 1423 pattern in σ where in the first case,
an comes from the first copy of π and in the second case, anc comes from the
first copy of π. Therefore, observation (a) holds. A similar analysis supports
observation (b). If there are two digits before n in π, they may appear in
either order, and if there are 3 digits before n they may form either a 132
pattern or a 321 pattern as all other patterns lead to a 1423 pattern in σ.

Here, then, is the final enumeration. We have seen 3 double lists where
πn = n. We have also seen that if n precedes 1, we may choose the position
of n, the arrangement of the digits before n, and the position of 1 (one of the
last 3 digits), and then the rest of the double list is decreasing. Therefore,
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there are 3 double lists beginning with n, 3 beginning with (n − 1)n, 3
beginning with (n− 2)n, 3 beginning with (n− 2)(n− 1)n, 3 beginning with
(n− 1)(n− 2)n, 3 beginning with (n− 3)(n− 1)(n− 2)n, 3 beginning with
(n − 1)(n − 2)(n − 3)n, and 3 where πi = n for 5 ≤ i ≤ n − 3. Finally
there are 2 lists where πn−2 = n (since there are only two positions to place
1 following n), and 1 list where πn−1 = n. Adding these together, we have
3 · 8 + 3 · (n− 7) + 3 = 3(n+ 2) double lists avoiding 1423.

3.3 The patterns 1432 and 1243

The avoidance sequences for two patterns grow quadratically.

Theorem 4. dn(1432) =


n! n ≤ 3

12 n = 4

17 n = 5
n2

2
+ 3n

2
− 4 n ≥ 6.

Proof. Again, the base cases are easily checked by brute force techniques, so
we focus on the case where n ≥ 7.

First, consider σ′ = π′π′ ∈ Dn−1(1432). Notice that all digits after n− 1
in π′ and larger than 1 must appear in increasing order, otherwise the 1 from
the first copy of π′ followed by n− 1 and a decreasing pair from the second
copy of π′ form a 1432 pattern.

Now, we claim that if σ′ = π′π′ ∈ Dn−1(1432), then inserting n imme-
diately after n − 1 produces a member σ = ππ of Dn(1432). Suppose to
the contrary that inserting n immediately after n− 1 creates a 1432 pattern.
Then n must play the role of ‘4’ in this new occurrence. If n − 1 does not
play the role of ‘3’, then using n − 1 instead of n would have been a 1432
pattern in σ′. Therefore, the new forbidden pattern must involve the n from
the first copy of π and the n−1 from the second copy of π with two numbers
a and b playing the roles of ‘1’ and ‘2’ respectively. Next, if b < n − 2, we
know that one copy of n− 2 must occur somewhere between the two copies
of n− 1 in σ′, so a(n− 1)(n− 2)b would have been a forbidden pattern in σ′.
Thus, b = n−2. If a < n−3, then one copy of n−3 must appear somewhere
between the two copies of n− 2 in σ′, so a(n− 1)(n− 2)(n− 3) would have
been a forbidden pattern in σ′. Thus, a = n − 3. We now know that in
π′, the largest 4 digits appear in the order (n − 3)(n − 1)n(n − 2). We also
assume that n ≥ 7, so there are at least 3 smaller digits in π′. If any of these
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smaller digits d appears before n− 1 in π′, then d(n− 1)(n− 2)(n− 3) would
have been a forbidden pattern in σ′, so it must be the case that all digits
smaller than n − 3 appear after n − 1 in π′. From the previous paragraph,
we know that the digits 2, 3, . . . n− 4 must appear in increasing order before
n − 2. Now, 1(n − 2) from the first copy of π′, followed by (n − 3)(n − 4)
from the second copy of π′ form a forbidden pattern in σ′. In every case, we
have shown that if σ′ avoids 1432, then insertion of n immediately after n−1
results in σ avoiding 1432 as well.

Further, there is at most 1 digit after n−1 in π′. Suppose to the contrary
that both digits b and c (with b < c) appear after n−1 in π′. Then a(n−1)cb
is a 1432 pattern in σ′ where the first three digits come from the first copy
of π′. Also, since we assume that n ≥ 7, so there are at least 2 digits that
appear before n − 1 in π′. Pick one such digit d where d 6= a. If d < a,
d(n− 1)ba is a forbidden pattern. If d > a, then a(n− 1)bd or a(n− 1)db is
a forbidden pattern. In any case, we have shown that σ contains a forbidden
pattern not including n, so σ′ /∈ Dn−1(1432), which is a contradiction.

Now, we must account for members σ = ππ of Dn(1432) where n does
not immediately follow n − 1 in π. We consider two cases: n follows n − 1
and n precedes n− 1.

If n follows n − 1, but not immediately, there can be at most one digit
between them. Otherwise, let a < b be two digits between them in π. an(n−
1)b forms a 1432 pattern in σ. Further that one digit must smaller than all
digits before n − 1 and larger than all digits after n. Otherwise, suppose
a < b or b < c where a is before n − 1 b is between n − 1 and n and c is
after n. if a < b, then an(n − 1)b forms a forbidden pattern. If b < c, then
bn(n− 1)c forms a forbidden pattern. Next, all digits before n− 1 in π must
appear in increasing order, otherwise bn from the first copy of π followed by
the descent is a forbidden pattern. Finally, the only digit that can appear
after n is 1. We already have seen that all digits after n−1 and smaller than
n− 1 and larger than 1 must appear in increasing order. A digit cannot be
smaller than b and in increasing order with b at the same time. The only two
lists of this form are when π = 2 · · · (n− 1)1n or π = 3 · · · (n− 1)2n1.

If n precedes n − 1, we have a different situation. We know everything
after n and larger than 1 appears in increasing order, otherwise 1 from the
first copy of π followed by n and the decreasing pair form a 1432 pattern.
Finally we show that in this case, n must be the first digit of π. Suppose
n is preceded by two digits a < b. Then an(n − 1)b is a forbidden pattern
in σ where an(n − 1) come from the first copy of π and b comes from the

13



second copy. Therefore, n must be the first or second digit in π. Suppose n
is preceded by a digit a. If a < n − 2 then an(n − 1)(n − 2) is a forbidden
pattern in σ. If a = n − 2, recall all digits after n other than 1 must be in
increasing order and n ≥ 6 so (n − 4)(n − 1)(n − 2)(n − 3) is a forbidden
pattern. Thus if n precedes n− 1, n is the first digit of π, and after choosing
the position of 1 the rest of π is uniquely determined. There are n−1 choices
for the position of 1, so we get n− 1 double lists in this case.

In summary, we have shown that dn(1432) = dn−1(1432) + 2 + (n− 1) =
dn−1(1432) + n+ 1, and after matching with the fact that d6(1432) = 23, we
have the quadratic formula above.

Theorem 5. dn(1243) =


n! n ≤ 3

12 n = 4

19 n = 5
n2

2
+ 5n

2
− 8 n ≥ 6.

Proof. Again, the base cases are easily checked by brute force techniques, so
we focus on the case where n ≥ 7.

We claim that if σ′ = π′π′ ∈ Dn−1(1243), then appending 1 to the end
of π′ and increasing all other digits by 1 produces a member σ = ππ of
Dn(1243). Suppose to the contrary that σ contains a 1243 pattern but σ′

does not. Then the 1 at the end of the first copy of π must play the role of
‘1’ and π′ contains a 132 pattern. Further, the digit 2 in the second copy of
π must play the role of ‘1’ in this 132 pattern otherwise taking 2 from the
first copy of π followed by the 132 pattern in the second copy of π implies
there is a 1243 pattern in σ′. Therefore the 1243 pattern in σ uses 1 from
the first copy of π, 2 from the second copy of π and digits a and b playing
the roles of ‘4’ and ‘3’ respectively.

Further, there are at most 2 digits between the 2 and the 1 in π. If
the digits between 2 and 1 contain a 132 occurrence then 2 followed by this
occurrence are a forbidden 1243 occurrence. We know that the only double
list of length 3 or more that avoids 132 is 231231. If the digits between 2
and 1 contain the pattern 231231, then a sublist of σ is 2453124531 which
contains the 1243 occurrence 1253. Now, since n ≥ 7, there are at least three
digits appearing before 2. If at least one of them, c, is less than b, then 2cab
is a forbidden pattern in σ. If at least one of them d is greater then a, then
2bda is a forbidden pattern. If all three digits are greater than b and less than
a and there is an decreasing pair e > f , then 2bef is a forbidden pattern,

14



so we may assume that the three digits before 2 appear in increasing order
with e < f < g and are all between a and b in value. However, in this case
efag is a forbidden pattern. In all cases we have found a copy of 1243 in σ′,
so it must be the case that inserting a 1 at the end of π′ and incrementing
all other digits produces another 1243-avoiding double list.

Now, we consider members σ = ππ of Dn(1243) that do not end in 1.
Notice that 1 must be one of the last three digits of π. If there were three
digits after 1 with a < b < c, then in order for the digits 1, a, b, c to avoid
1243, we must have 1bca1bca. Now consider d and e as digits before 1. If
d < a then 1dba is a forbidden pattern. If d > b then 1adb is a forbidden
pattern so we may assume that d and e are both between a and b in value. if
d > e appear in decreasing order, then 1ade is a forbidden pattern. If d > e
appear in increasing order, then edcb is a forbidden pattern. Thus, it must
be the case that there are at most two digits after 1.

Suppose then that 1 is followed by 2 digits in π. Let a < b be those two
digits. If b < n, then 1anb forms a forbidden pattern, so b = n. Further, we
know that all digits larger than a must appear in increasing order in π lest
we create a 1243 pattern using 1 and a as ‘1’ and ‘2’. Thus, the last 3 digits
of π are 1ab = 1an. If there are at least four digits c < d < e < f larger than
a, then cdfe is a 1243 pattern in σ. So, it must be the case that a ≥ n− 3.
If a = n− 3 or a = n− 2, then 1an(n− 1) is a forbidden pattern, so the only
option is to end in 1(n− 1)n. The digits before 1 must appear in decreasing
order, otherwise, the increasing pair followed by n(n − 1) is a forbidden
pattern. In this case, we get one double list where π = (n− 2) · · · 1(n− 1)n.

Suppose that 1 is followed by exactly one digit in π. If π ends in 1i where
i ≤ n − 4, then all numbers larger than i must be in increasing order in π
and (n − 3)(n − 2)n(n − 1) is a forbidden pattern in σ. If 1 is followed by
n, then we have n− 2 choices for the location of (n− 1) and the rest of the
digits must appear in decreasing order, lest we have a 1243 pattern. If 1 is
followed by i where (n − 2) ≤ i ≤ (n − 1), then n appears in position n − i
and the rest of the digits are decreasing. If 1 is followed by (n− 3), we have
π = (n − 2)(n − 1)n(n − 4) · · · 1(n − 3). There are 1 + (n − 2) + 3 = n + 2
possible double lists that do not end in 1.

In summary, dn(1243) = dn−1(1243) + n + 2, and putting this together
with the base cases above, we achieve the desired enumeration.
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3.4 The patterns 1234, 2413, and 1324

The results of the previous sections make a stark contrast with pattern-
avoiding permutations where most avoidance sequences grow exponentially.
However, pattern avoidance in double lists is more restrictive, so it should
not be surprising that we achieve such a variety of behaviors. We conclude
by examining the three final patterns of length 4, each of whose avoidance
sequences exhibits exponential growth.

We begin with the monotone pattern. In the context of permutations,
1234 is neither the hardest nor the easiest pattern to avoid, but for double
lists it turns out that it is the easiest to avoid.

Theorem 6. dn(1234) =


n! n ≤ 3

12 n = 4

2n − n n ≥ 5.

Proof. If σ = ππ ∈ Dn(1234) where n ≥ 5, the digits of π may be partitioned
into two subsequences: for some i where 0 ≤ i ≤ n, the largest i digits appear
in decreasing order in π, the smallest n− i digits appear in decreasing order
in π, and these two subsequences may be interleaved in any way. In either
case, the permutation π may be encoded by a list of `s and ss for whether a
digit belongs to the decreasing subsequence of larger digits or the decreasing
subsequence of smaller digits. There are 2n such encodings of a sequence of
n `s and ss; however n + 1 of them (those of the form `isn−i) encode the
decreasing permutation, so we have overcounted by n. There are 2n − n
double lists avoiding the pattern 1234.

The remaining two patterns also produce nice sequences that are charac-
terized by linear recurrences with constant coefficients. Double lists avoiding
2413 are counted by the Lucas numbers Ln, where L0 = 2, L1 = 1, and for
n ≥ 2, Ln = Ln−1 + Ln−2.

Theorem 7. dn(2413) =


n! n ≤ 3

12 n = 4

Ln+1 n ≥ 5.

Proof. As usual, it is straightforward to confirm the theorem via brute force
techniques for specific small n. We show that dn(2413) = dn−1(2413) +
dn−2(2413) for n ≥ 7.
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We actually prove a more specific result. Let

Di
n = {σ ∈ Dn(2413) | σ1 = i}

and di
n(2413) = |Di

n(2413)|. It turns out that di
n(2413) = 0 if i /∈ {1, n −

2, n− 1, n}, and for n ≥ 7,

d1n(2413) = d1
n−1(2413) + d1

n−2(2413),

dn−2n (2413) = dn−2
n−1(2413) + dn−2

n−2(2413),

dn−1n (2413) = dn−1
n−1(2413) + dn−1

n−2(2413),

dnn(2413) = dn
n−1(2413) + dn

n−2(2413).

First, consider σ = ππ ∈ Di
n(2413) for i /∈ {1, n − 2, n − 1, n}. If n − 2

precedes n in π then (n− 2)ni(n− 1) forms a forbidden pattern in σ where
the first two digits come from the first copy of π and the last two digits come
from the second copy. Therefore, n−2 comes after n. Now, in1(n−2) forms
a forbidden pattern where in come from the first copy of π, 1 comes from
somewhere between the two copies of n and n − 2 comes from the second
copy of π. In every event, it is impossible to avoid 2413, so di

n(2413) = 0 for
i /∈ {1, n− 2, n− 1, n}.

Next, consider σ = ππ ∈ D1
n(2413). Any coinversion in π that does not

include the digit 1 must consist of a pair of consecutive digits and therefore
must appear in consecutive positions. Suppose to the contrary there is a
coinversion with a < b such that b 6= a+1. Then ab1(a+1) forms a forbidden
pattern where the first two digits come from the first copy of π. If a(a+ 1) is
a coinversion in nonconsecutive positions we have the subsequence ab(a+ 1)
in π. If b < a then b(a + 1) is another coinversion with nonconsecutive
digits, which is not allowed. If b > a+ 1 then ab is another coinversion with
nonconsecutive digits, which is still not allowed. We may only preserve these
properties of coinversions by inserting (n − 1)n after 1 in any member of
D1

n−2(2413) or inserting n after 1 in any member of D1
n−1(2413) to obtain σ.

Next, consider σ = ππ ∈ Dn−2
n (2413). If π1 = n − 2, we claim that

π2 = n−1 and πn = n. Suppose to the contrary that n precedes n−1. Then
(n−2)n1(n−1) is a forbidden pattern in σ. Now suppose that π2 = i < n−2.
Then (n− 2)ni(n− 1) is a forbidden pattern so π2 = n− 1. Finally, suppose
πn = i < n − 2. Then (n − 2)ni(n − 1) is a forbidden pattern, so we know
that π1 = n− 2, π2 = n− 1, and πn = n. Now, the digits n− 2, n− 1, and
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n can only play the role of ‘4’ in a 2413 pattern so any coinversions amongst
the digits {1, . . . , n − 3} in π must appear between consecutive digits in
consecutive positions as in the previous case. Given a member of Dn−4

n−2(2413),
we may increment n − 4, n − 3, and n − 2 by 2 and insert (n − 4)(n − 3)
in the third and fourth positions to obtain a member of Dn−2

n (2413). For
example, 34215 ∈ D3

5(2413) produces 5634217 ∈ D5
7(2413). Given a member

of Dn−3
n−1(2413), we may increment n − 3, n − 2, and n − 1 by 1 and insert

n− 3 in the third position to obtain a member of Dn−2
n (2413). For example,

452316 ∈ D4
6(2413) produces 5642317 ∈ D5

7(2413).
Next, consider σ = ππ ∈ Dn−1

n (2413). Then either π2 = n or πn = n.
Suppose to the contrary that πi = n where 3 ≤ i ≤ n − 1. First, all digits
between n−1 and n in π must be smaller than all digits after n in π; otherwise
we have a 2413 pattern in σ. Since we assume n ≥ 7, either there are at least
2 digits between n−1 and n in π or there are at least 2 digits after n in π. In
the first case, suppose the digits between n−1 and n include a < b and c is a
digit after n in π. Then bnac is a 2413 pattern in σ. If the digits after n in π
include a < b and c is a digit between n−1 and n then a(n−1)cb is a forbidden
pattern in σ. Therefore n is either the second or the last digit in π. In the
first case, given σ = ππ ∈ Dn−3

n−2(2413) where π2 = n − 2, we may prepend
(n−1)n to the front of π to obtain a 2413-avoiding member of Dn−1

n (2413). If
σ = ππ ∈ Dn−2

n−1(2413) where π2 = n−1, then increment π1 and π2 and insert
(n − 2) into the third position. For example, 563412 ∈ D5

6(2413) becomes
6753412 ∈ D6

7(2413). Now, if πn = n we approach the situation differently.
If σ′ = π′π′ ∈ Dn−3

n−2(2413) with π′n−2 = n − 2, then remove π′1 and π′n−2
to obtain a permutation on {1, . . . , n− 4} then create the new permutation
π = (n − 1)(n − 3)(n − 2)π′2 · · · π′n−3n. By inspection, ππ ∈ Dn−1

n (2413).
If σ′ = π′π′ ∈ Dn−2

n−1(2413) with π′n−1 = n − 1, then remove π′1 and π′n−1
to obtain a permutation on {1, . . . , n− 3} then create the new permutation
π = (n−1)(n−2)π′2 · · · π′n−2n, where again, by inspection, ππ ∈ Dn−1

n (2413).
Finally, consider σ = ππ ∈ Dn

n(2413). Given σ′ = π′π′ ∈ Dn−2
n−2(2413),

delete π′1 and create n(n − 2)(n − 1)π′2 · · · π′n−2n(n − 2)(n − 1)π′2 · · · π′n−2 ∈
Dn

n(2413). If σ′ = π′π′ ∈ Dn−1
n−1(2413), prepend n to the front of π′ to obtain

a member σ of Dn
n(2413).

The final sequence is perhaps the most surprising result. The task of enu-
merating 1324-avoiders in other contexts has proven especially challenging.
For double lists, however, structure is evident beginning with the n = 7 term.
It turns out these double lists satisfy a tribonacci recurrence.
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Theorem 8. dn(1324) =



n! n ≤ 3

12 n = 4

21 n = 5

38 n = 6

69 n = 7

126 n = 8

232 n = 9

dn−1(1324) + dn−2(1324) + dn−3(1324) n ≥ 10.

Proof. As before, we focus on the n ≥ 10 case, and leave the n ≤ 9 cases to
brute force verification.

First, given σ = ππ ∈ Dn(1324) it is impossible for 1 to precede n if
n ≥ 7. Suppose to the contrary that 1 precedes n. All digits in {2, . . . , n−1}
appear between the first 1 and the last n and must appear in increasing order
to avoid 1324. Suppose two digits a < b appear between 1 and n in π. Then
1ban is a 1324 pattern in σ. If there is just one digit i between 1 and n in
π, then if i > 2, 1i2n is a forbidden pattern, and if i = 2, then 132n is a
forbidden pattern. Therefore if 1 appears before n, 1 is immediately before
n and the digits {2, . . . , n − 1} appear in increasing order between the first
occurrence of 1n and the second occurrence of 1n in σ. Since n ≥ 7, there are
either 3 digits a < b < c before the first 1 (in which case acbn is a forbidden
pattern) or there are 3 digits a < b < c in π after the first n (in which case
1bac is a forbidden pattern). In every event we have forced the occurrence of
a 1324 pattern so it is impossible for 1 to precede n if n ≥ 7.

Now, if n precedes 1, n must appear as one of the first 3 digits of π.
Suppose that n appears in position i ≥ 4. Then π1 · · · πi−1π1 · · · πi−1 must
avoid 132. We have seen that this is impossible for i − 1 ≥ 4, and the only
way to do this if i − 1 = 3 is for π1π2π3 to form a 231 pattern. However
π3 < π1 < π2 implies that π1π2π3n1π1π2π3n1 contains the 1324 pattern
1π2π3n. Therefore n must appear in one of the first three positions.

Let Di
n(1324) = {σ ∈ Dn(1324) | σi = n} and let di

n(1324) = |Di
n(1324)|.

We claim that d1
n(1324) = d2

n(1324) and d3
n(1324) = d1

n−2(1324) for n ≥ 6.
First we show that d1

n(1324) = d2
n(1324) for n ≥ 6. We claim that

if ππ ∈ D2
n(1324), then π1 and π2 = n can be transposed to produce a

member of D1
n(1324). Suppose to the contrary that ππ ∈ D2

n(1324) but
π2π1π3 · · · πnπ2π1π3 · · · πn /∈ D1

n(1324). In this case, we know that π1 < n− 1
since if π1π2 = (n− 1)n, both (n− 1) and n can only play the role of ‘4’ in
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a 1324 pattern and transposing them does not change their involvement. If
π1 < n − 1 and it plays the role of a ‘1’ in a pattern where n plays the role
of ‘4’, we must have used the first copy of π1 and the second copy of n, so
transposing them within each copy of π does not affect the existence of the
1324 patterns. The only other way for both to be involved in the same copy
of 1324 that could possibly be destroyed by transposing π1 and π2 is for π1
to play the role of ‘2’ and n to play the role of ‘4’ in a 1324 pattern in ππ. In
this case suppose the double list beginning with π1n contains 1324 but the
list beginning with nπ1 avoids 1324. Since nπ1π3 · · · πnnπ1π3 · · · πn avoids
1324, all digits larger than π1 must appear in increasing order immediately
after π1 and π1 ≥ n − 3. Now, a case analysis shows that any σ beginning
with (n− 3)n(n− 2)(n− 1) or (n− 2)n(n− 1) cannot have σ1 play the role
of ‘2’ in a 1324 pattern so it is the case that transposing π1 and π2 provides
a bijection between D1

n(1324) and D2
n(1324).

To see that d3
n(1324) = d1

n−2(1324) for n ≥ 6 notice that if ππ ∈ D3
n(1324),

then π1 = (n−2) and π2 = (n−1). We know these two numbers must appear
in increasing order since 1 comes after n. If there exists i where π1 < i < π2,
then π1π2in is a forbidden pattern and if there exists i where π2 < i < n,
then π1iπ2n is a forbidden pattern. Since π = (n − 2)(n − 1)nπ3 · · · πn, we
may delete (n− 1) and n to obtain π′π′ ∈ D1

n−2(1324).
It remains to show that d1

n(1324) satisfies the tribonacci recurrence (and
thus so do d2

n(1324), d3
n(1324), and dn(1324)). For σ′ ∈ D1

n−3(1324), re-
place n − 3 with n(n − 3)(n − 2)(n − 1) to obtain σ ∈ D1

n(1324). For
σ′ ∈ D1

n−2(1324), replace n− 2 with n(n− 2)(n− 1) to obtain σ ∈ D1
n(1324).

For σ′ ∈ D1
n−1(1324), prepend n to the front of each copy of π to obtain σ ∈

D1
n(1324). This map sends members of D1

n−3(1324)∪D1
n−2(1324)∪D1

n−1(1324)
to D1

n(1324).
Further, each of these operations is bijective. In other words, if σ =

ππ ∈ D1
n(1324), then π either begins with n(n − 1), n(n − 2)(n − 1), or

n(n− 3)(n− 2)(n− 1). Indeed, if π2 ≤ n− 4, then n− 1, n− 2, and n− 3
appear in increasing order in π, and (n − 4)(n − 2)(n − 3)(n − 1) is a 1324
pattern in σ, so π2 ≥ n− 3. If π2 = n− 2 and π3 6= n− 1, then πn = n− 1.
If not, then we see all digits between π2 and n − 1 must be larger than all
digits after n − 1 in π, to avoid a 1324 pattern where n − 1 plays the role
of ‘3’ and n plays the role of ‘4’. However, if a < n − 2 is before n − 1 in
π and b < a is after n − 1 in π, then b(n − 2)a(n − 1) is a copy of 1324
in σ. Therefore, if π2 = n − 2 and π3 6= n − 1, then πn = n − 1. Now,
since we assume n ≥ 6, let a < b < c be three digits less than n − 2 in π.
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If πn = n − 1, then a(n − 2)c(n − 1) is a 1324 pattern in σ, so it must be
the case that π3 = n − 1 if π2 = n − 2. Finally, if π2 = n − 3, then n − 2
appears before n− 1 in π (or (n− 3)(n− 1)(n− 2)n is a 1324 pattern in σ).
If π3 < (n− 3) then π3(n− 2)(n− 3)(n− 1) is a 1324 pattern in σ. Now that
we know π2 = n − 3 implies that π3 = n − 2, a similar analysis to the case
where π2 = n− 2 shows that π4 = n− 1 as well.

We now have a bijection betweenD1
n(1324) andD1

n−3(1324)∪D1
n−2(1324)∪

D1
n−1(1324) by editing appropriate prefixes so d1

n(1324) satisfies the tribonacci
recurrence. Because D1

n(1324) is in bijection with D2
n(1324) and D3

n(1324)
is in bijection with D1

n−2(1324), d2
n(1324) and d3

n(1324) also satisfy the tri-
bonacci recurrence. Finally, since dn(1324) = d1

n(1324)+d2
n(1324)+d3

n(1324),
dn(1324) satisfies the tribonacci recurrence as well, which is what we wanted
to show.

4 Summary

We have now completely characterized dn(ρ) where ρ is a permutation pat-
tern of length at most 4. The corresponding results are given in Table 2.
These results provide an interesting contrast to pattern avoiding permuta-
tions. First, the only Wilf equivalences are the trivial ones. Second, the
monotone pattern is the easiest pattern to avoid in the context of double
lists. Finally, we obtained a variety of behaviors (constant, linear, quadratic,
and exponential), as opposed to permutation pattern sequences which only
grow exponentially.

The variety of sequence behaviors and the complete classification for
length 4 patterns are both exciting developments, but this work raises addi-
tional possibilities for future work. In particular,

1. Is 1 · · ·n the easiest pattern of length n to avoid for all n? Can we
characterize the hardest pattern of length n to avoid in general?

2. All of the sequences in Table 2 have rational generating functions. Do
there exist patterns ρ where the sequence {dn(ρ)} does not have a
rational generating function?

3. With the exception of the proof of Theorem 6, the proofs in this paper
were the result of detailed case analysis. While this is a thorough
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Pattern ρ dn(ρ) OEIS

1342, 2431,
15 (n ≥ 5) A010854

3124, 4213
2143, 3412 2n+ 2 (n ≥ 6) A005843
1423, 2314,

3n+ 6 (n ≥ 7) A008585
3241, 4132
1432, 2341, 1

2
n2 + 3

2
n− 4 (n ≥ 6) A052905

3214, 4123
1243, 2134, 1

2
n2 + 5

2
n− 8 (n ≥ 6) A183897

3421, 4312
2413, 3142 Ln+1 (n ≥ 5) A000032
1324, 4231 |Dn−1(ρ)|+ |Dn−2(ρ)|+ |Dn−3(ρ)| (n ≥ 10)
1234, 4321 2n − n (n ≥ 4) A000325

Table 2: Formulas for dn(ρ) where ρ ∈ S4

treatment that reveals much about the structure of pattern-avoiding
double lists, it is not the most elegant approach. What are alternate
proofs of these results?
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