
Non-Contiguous Pattern
Containment in Binary Trees ∗

Lara Pudwell †

Department of Mathematics
and Computer Science
Valparaiso University

Valparaiso, IN 46383, USA

Lara.Pudwell@valpo.edu

Connor Scholten
Department of Mathematics

Grand Valley State University
Allendale, MI, 49401, USA

Tyler Schrock
Department of Mathematics

Troy University
Troy, AL, 36082, USA

Alexa Serrato
Department of Mathematics

Harvey Mudd College
Claremont, CA, 91711, USA

January 28, 2014

Abstract

In this paper we consider the enumeration of binary trees contain-
ing non-contiguous binary tree patterns. First, we show that any two
`-leaf binary trees are contained in the set of all n-leaf trees the same
number of times. We give a functional equation for the multivariate
generating function for number of n-leaf trees containing a specified
number of copies of any path tree, and we analyze tree patterns with
at most 4 leaves. The paper concludes with implications for pattern
containment in permutations.

∗Research was supported by the National Science Foundation (NSF DMS-0851721).
†Corresponding author

1

1 Introduction

Pattern avoidance has been studied in a number of combinatorial objects
including permutations, words, partitions, and graphs. In this paper we
consider such pattern questions in trees. Conceptually, tree T avoids tree t if
there is no copy of t anywhere inside of T . Pattern avoidance in vertex-labeled
trees has been studied in various contexts by Steyaert and Flajolet [19],
Flajolet, Sipala, and Steyaert [10], Flajolet and Sedgewick [9], and Dotsenko
[6] while Khoroshkin and Piontkovski [12] considered generating functions
for general unlabeled tree patterns in a different setting.

In 2010, Rowland [16] explored contiguous pattern avoidance in binary
trees (that is, rooted ordered trees in which each vertex has 0 or 2 children).
He chose to work with binary trees because there is natural bijection between
n-leaf binary trees and n-vertex trees. In 2012, Gabriel, Peske, Tay, and the
first author [11] considered Rowland’s definition of tree pattern in ternary,
and more generally in m-ary, trees.

The patterns in [11] and [16] may be seen as parallel to consecutive pat-
terns in permutations. In those papers, tree T was said to contain tree t
as a (contiguous) pattern if t was a contiguous, rooted, ordered, subtree
of T . In 2012, Dairyko, Tyner, Wynn, and the first author [5] considered
non-contiguous patterns in binary trees in order to introduce an tree pat-
tern analogue of classical permutation patterns. In particular, they showed
that for any n, ` ∈ Z+, any two `-leaf non-contiguous binary tree patterns are
avoided by equally many n-leaf trees and gave an explicit generating function
for this enumeration.

In this paper, we follow the definition of tree pattern in [5] to mirror
the idea of classical pattern avoidance in permutations. However, instead of
focusing on trees that do not contain tree pattern t, we turn our attention to
the number of trees with exactly k copies of tree pattern t, making pattern
avoidance the special case where k = 0. Ultimately, we study the total
number of copies of a given tree pattern in the set of all n-leaf trees to mirror
the work of Bóna in [1, 2] where he considers the total number of copies
of a given permutation pattern of length 3 in the set of all 132-avoiding
permutations of length n.

All trees in this paper are rooted and ordered. We will focus on full binary
trees, that is, trees in which each vertex has 0 or 2 (ordered children). Two
children with a common parent are sibling vertices. A vertex with no children
is a leaf and a vertex with 2 children is an internal vertex. A binary tree with

2

n leaves has n − 1 internal vertices, and the number of such trees is given
by the nth Catalan number (OEIS A000108). For simplicity of computation,
we adopt the convention that there are zero rooted binary trees with zero
leaves. The first few binary trees are shown in Figure 1, with names that
will be referred to throughout the paper.

t1 = t2 = t3 = tr3 =

t4 = t5 = t6 =

tr5 = tr4 =

Figure 1: Binary trees with at most 4 leaves

2 Definitions and Notation

Tree T contains t as a (non-contiguous) tree pattern if t can be obtained from
T via a finite sequence of edge contractions. Conversely, T avoids t if there
is no sequence of edge contractions that produces t from T . For example,
consider the three trees shown in Figure 2. T avoids t4 as a contiguous
pattern, but T contains t4 non-contiguously (contract both dashed edges).
On the other hand, T avoids t6 both contiguously and non-contiguously since
no vertex of T has a left child and a right child, both of which are internal
vertices.

The definition of pattern in the previous paragraph is unambiguous for
deciding the question “does T contain t?”, but becomes more complicated
when determining “how many copies of t are in T?” To remove ambiguity,
we make the convention that if an edge between a parent vertex and a child
vertex is contracted, then the edge from the parent to its other child must
be contracted simultaneously.

3

http://oeis.org/A000108

T = t4 = t6 =

Figure 2: Three binary trees

Define trt(n, k) to be the number of n-leaf binary trees that contain ex-
actly k copies of tree pattern t non-contiguously. For any tree T , let cot(T)
be the number of copies of t in T . We write Tn for the set of n-leaf binary
trees and T = ∪n≥1Tn. Further, let `(t) be the number of leaves of t. We
are particularly interested in determining trt(n, k) for various choices of t, n,
and k. To this end, we define

Ft(x, y) :=
∑
T∈T

x`(T)ycot(T) =
∑
n≥1

∑
k≥0

trt(n, k)xnyk.

In [5], the authors were concerned with pattern avoidance, so they focused
on trt(n, 0). They showed the following enumeration.

Theorem 1 (Dairyko, Tyner, Pudwell, Wynn, [5]). Let ` ∈ Z+ and let t be
a binary tree pattern with ` leaves. Then

Ft(x, 0) =
∑
n≥1

trt(n, 0)xn =

b `−2
2
c∑

i=0

(−1)i ·
(
`−(i+2)

i

)
· xi+1

b `−1
2
c∑

i=0

(−1)i ·
(
`−(i+1)

i

)
· xi

.

In particular,

Corollary 2 (Dairyko, Tyner, Pudwell, Wynn, [5]). Fix ` ∈ Z+. Let t and
s be two `-leaf binary tree patterns. Then

Ft(x, 0) = Fs(x, 0).

We obtain a parallel result to Corollary 2 if we focus on

toct(n) :=
∞∑
k=1

k · trt(n, k) =
∑
T∈Tn

cot(T).

4

We compute toct(n) for any tree t and n ∈ Z+ in Section 3. In Section 4
we find a functional equation for Ft(n, k) for any path tree (i.e. any tree
avoiding t6 in Figure 1), and in Section 5 we consider trt(n, k) for any tree
pattern t with at most 4 leaves. Finally, in Section 6 we consider implications
for pattern containment in permutations.

3 Total number of copies

In this section, we compute toct(n) =
∑∞

k=1 k · trt(n, k) =
∑

T∈Tn
cot(T), i.e.

the total number of occurrences of tree pattern t in Tn, for any tree pattern
t and any positive integer n. Theorem 3 is parallel to a result of Steyaert
and Flajolet [19]. They showed that the total number of occurrences of a
(contiguous) `-leaf binary tree pattern in all n-leaf binary trees is independent
of the tree pattern and is

(
2n−`
n−`

)
. As it turns out, for non-contiguous tree

patterns, we also have the following:

Theorem 3. Fix ` ∈ Z+. Let t and s be two `-leaf binary tree patterns.
Then

toct(n) = tocs(n) for n ≥ 0.

The fact that toct(n) = tocs(n) does not guarantee trt(n, k) = trs(n, k)
for various choices of k. While Corollary 2 guarantees trt(n, 0) = trs(n, 0)
and Theorem 3 guarantees

∑∞
k=1 k · trt(n, k) =

∑∞
k=1 k · trs(n, k), it is often

the case that trt(n, k) 6= trs(n, k) when k ≥ 1.
In the following argument we give a bijective proof of Theorem 3. Notice

that this is a different approach from the proof of Theorem 1 in [5], which
relies on algebraic manipulation of recurrences and generating functions.

Since we are concerned with pairs (t, s) of `-leaf binary trees, we make
some definitions allowing us to more precisely compare t and s. First, the
intersection of trees t and s is the largest contiguous rooted tree that is
contained in both t and s and includes the root vertex. For example, Figure
3 shows trees t4 and t6 along with their intersection.

Two `-leaf trees whose intersection has exactly ` − 1 leaves are called
neighboring trees. Thus, t4 and t6 in Figure 3 are neighboring trees. On the
other hand, t4 and its left-right reflection tr4 are non-neighboring since their
intersection has only 2 leaves. By definition, if t and s are neighboring trees,

5

t4 = t6 = t4 ∩ t6 =

Figure 3: Two neighboring trees and their intersection; white vertices are
breaking points

then each of them has exactly two vertices that are not part of the intersec-
tion. Call the vertex on each tree that is the parent of the non-intersection
vertices the breaking point. For example, in Figure 2, the breaking point of
t is the left child of the left child of the root. The breaking point of s is the
right child of the root. In fact, since both t’s breaking point and s’s breaking
point are part of their intersection, we can identify both breaking points on
either of the original trees or on their intersection.

Given neighboring trees t and s, we define a map φt,s from the set of
copies of t in Tn to the set of copies of s in Tn. If t appears non-contiguously,
we may still identify a (possibly non-contiguous) copy of t ∩ s using only
edges from that copy of t. The breaking points along this copy of t ∩ s are
then uniquely determined.

Given a copy c of t in a particular n-leaf tree, find both breaking points
on the intersection and swap the subtrees that have the breaking points as
their roots. We have now obtained an n-leaf tree with a unique copy of s
that has the same intersection with c and the same breaking points. This
copy of s is ĉ = φt,s(c). Figure 4 shows a copy of t4 being mapped to a copy
of t6 via φt4,t6 .

↔

Figure 4: An application of φt4,t6

Since t and s are neighboring trees, it is clear that φt,s maps a copy of
t to a copy of s. Further, φ−1t,s = φs,t since φt,s only involves swapping two

6

well-defined subtrees. Thus, φt,s is a bijection from the set of copies of t in
Tn to the set of copies of s in Tn.

The fact that φt,s is a bijection shows that Theorem 3 is true when t and
s are neighboring trees. To show that the theorem holds in general we need
the following lemma.

Lemma 4. Given two `-leaf trees t and s, there is a finite sequence t =
t1, t2, . . . , tp = s of trees such that for any i, (1 ≤ i < p), ti and ti+1 are
neighboring trees.

Proof. Let t and s be non-neighboring `-leaf binary trees whose intersection
is a j-leaf tree. Clearly j ≥ 2 since both trees share the root vertex and its
two children.

To obtain ti+1 from ti, remove a pair of leaves with a common parent
from ti that are not in the intersection of ti and s, and attach them to a leaf
of ti that is not a leaf of s. The new tree has a larger intersection with s.
Repeat until the intersection has `− 1 leaves.

Since any two `-leaf tree patterns are a finite sequence of neighboring trees
apart, we have that φtp−1,s ◦ · · · ◦ φt2,t3 ◦ φt,t2 provides a bijection between all
copies of t in Tn and all copies of s in Tn, so Theorem 3 is true.

Theorem 3 also generalizes naturally for copies of m-ary tree patterns
within the set of all m-ary trees with n leaves. The definition of intersection
and and breaking points remain unchanged, and the swapping action of φt,s

still applies. To find a sequence of neighboring trees, we need only move
collections of m vertices with a common parent instead of pairs, and the rest
of the argument goes through as expected.

Now that we know that toct(n) is the same for all `-leaf trees t, we define
toc`(n) = toct(n) where t is an `-leaf tree and compute toc`(n) in general.

Our first proposition deals with the pathological case of ` = 1.

Proposition 5. toc1(n) = Cn−1 where Cn is the nth Catalan number.

Proof. There is exactly one way to contract all edges of a tree to produce
the one-leaf tree. Since there is one copy of the one-leaf tree in any given
binary tree and there are Cn−1 binary trees with n leaves, we see that there
are Cn−1 copies of the one-leaf tree in Tn.

Proposition 6. toc2(n) = (n− 1)Cn−1.

7

Proof. There is only one two-leaf tree and the number of copies of this tree in
tree T is equal to the number of internal vertices of T , which is one less than
the number of leaves of T . Since there are n− 1 copies of the two-leaf tree in
any n-leaf tree and there are Cn−1 n-leaf trees, toc2(n) = (n− 1)Cn−1.

More generally, we obtain the following recurrence for toc`(n):

Proposition 7.

toc`(n) = 2
n−1∑
k=1

Ck−1toc`(n− k) +
n−1∑
k=1

Ck−1toc`−1(n− k)

Proof. Consider `-leaf tree pattern t. A copy of t in T can (a) be fully
contained in the left subtree of T ’s root, (b) be fully contained in the right
subtree of T ’s root, or (c) include T ’s root.

For the first case, suppose that T̂ is an (n − k)-leaf tree containing t. T̂
appears Ck−1 times as the left subtree of some n-leaf tree in Tn. Therefore,
the number of times t is fully contained in a left subtree of an n-leaf tree in
Tn is

∑n−1
k=1 Ck−1toc`(n− k). The same sum also counts the number of times

t is fully contained in a right subtree of an n-leaf tree in Tn.
If a copy of t includes the root of T , we must count copies of t’s left

subtree to the left of the root and t’s right subtree to the right of the root.
By Theorem 3, we may assume that t is the `-leaf right comb, i.e. the
unique `-leaf tree where every left child is a leaf. This means that the num-
ber of ways for an n-leaf tree to have a copy of t that includes the root is∑n−1

k=1 Ck−1toc`−1(n − k) where Ck−1 counts copies of the 1-leaf left subtree
addressed in Proposition 5, and toc`−1(n−k) counts copies of the (`−1)-leaf
right comb in the right subtree.

Fix ` ∈ Z+, and let t`(x) =
∑∞

i=1 toc`(i)x
i. Then, using the recurrence of

Proposition 7, we have that

t`(x) =
t1(x)t`−1(x)

1− 2t1(x)
.

We know from Proposition 5 that t1(x) =
1−
√

1− 4x

2
, the generating func-

tion for the Catalan numbers, so by induction, we have

t`(x) =

(
−1

2

)`
(
−1 +

√
1− 4x

)`(√
1− 4x

)`−1 .

8

n\` 1 2 3 4 5 6 7 8

1 1 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0
3 2 4 1 0 0 0 0 0
4 5 15 7 1 0 0 0 0
5 14 56 37 10 1 0 0 0
6 42 210 176 68 13 1 0 0
7 132 792 794 392 108 16 1 0
8 429 3003 3473 2063 731 157 19 1
9 1430 11440 14893 10254 4395 1220 215 22
10 4862 43758 63004 49024 24465 8249 1886 282

Table 1: toc`(n) for small n and `

Moreover the following theorem enumerates all copies of a given `-leaf tree
in Tn for any `, n ∈ Z+.

Theorem 8.∑
n≥1

∑
`≥1

toc`(n)xny` =
∞∑
`=1

t`(x)y` =

√
1− 4x(1−

√
1− 4x)y

(y + 2)
√

1− 4x− y

Table 1 gives values of toc`(n) for 1 ≤ n ≤ 10 and 1 ≤ ` ≤ 8. As ex-
pected toc`(n) = 0 if ` > n and tocn(n) = 1. It also follows that tocn−a(n)
is a polynomial in n of degree a. Further, toc1(n) and toc2(n) were given
above. toc3(n) = 22n−3−

(
2n−1
n

)
+
(
2n−3
n−1

)
; this is entry A006419 in the Online

Encyclopedia of Integer Sequences [18], which gives several other combina-
torial interpretations. toc`(n) for ` ≥ 4 appear to be new sequences to the
literature.

4 Pattern containment of path trees

Now that we know toct(n) for any `-leaf tree, we turn our attention to com-
puting trt(n, k) for particular tree patterns. In this section we give a func-
tional equation for

Ft(x, y) =
∑
T∈T

x`(T)ycot(T) =
∑
n≥1

∑
k≥0

trt(n, k)xnyk

9

http://oeis.org/A006419

for the case where t is a path tree, that is, t has no vertex which has both
left and right grandchildren. Each `-leaf path tree can be encoded uniquely
by a word in {L,R}`−2. The two leaf tree is encoded by the empty word.
For ` > 2, consider w = w1 · · ·w`−2 ∈ {L,R}`−2. If w1 = L, then w encodes
the tree whose root’s right child is a leaf, and whose root’s left child is the
root of the subtree encoded by w2 · · ·w`−2. Similarly, if w1 = R, w encodes
the tree whose root’s left child is a leaf and whose root’s right child is the
root of the subtree encoded by w2 · · ·w`−2. For a path tree t whose encoding
is w1 · · ·w`, the deletion d(t) is the tree whose encoding is w2 · · ·w`−2. Note
that d`−2(t) is the 2-leaf tree for any t ∈ T`. Several iterations of the deletion
map on the path tree with word encoding LRRL are shown in Figure 5.

t= d(t)= d2(t)= d3(t)= d4(t)=

Figure 5: The deletion map for path trees

Theorem 9. Given `-leaf path tree t, let

Gt(x, y0, . . . , y`−2) =
∑
T∈T

x`(t)y
cot(T)
0 y

cod(t)(T)

1 y
cod2(t)(T)

2 · · · y
co

d`−2(t)
(T)

`−2 .

Then

Gt(x, y0, . . . , y`−2) = x+

y`−2Gt(x, y0, p1y1, . . . , p`−2y`−2)Gt(x, y0, q1y1, . . . , q`−2y`−2),

where pi = yi−1 and qi = 1 if di(t) is the left subtree of di−1(t) and pi = 1
and qi = yi−1 if di(t) is the right subtree of di−1(t).

Observe that setting y1 = y2 = · · · = y`−2 = 1 causes every catalytic
variable to drop out, leaving Ft(x, y) = Gt(x, y, 1, . . . , 1).

10

Proof. In this generating function the weight wt(T) of a given tree T is

wt(T) = x`(t)y
cot(T)
0 y

cod(t)(T)

1 y
cod2(t)(T)

2 · · · y
co

d`−2(t)
(T)

`−2 . Clearly, for t1, the one-
leaf tree, wt(t1) = x.

Now, for other trees T we see that each copy of some di(t) (0 ≤ i ≤ `−2)
either (a) is contained entirely in the left subtree of T , (b) is contained
entirely in the left subtree of T , or (c) includes the root of T . The weight-
enumerator for copies of di(t) (0 ≤ i ≤ ` − 2) covered in cases (a) and (b)
is Gt(x, y0, y1, . . . , y`−2)Gt(x, y0, y1, . . . , y`−2). If the word representation of
di(t) begins with L, a copy of di(t) including the root consists of the root, the
two edges emanating from the root, and a copy of di+1(t) in the left subtree
of t. The pi contributions keep track of copies of di(t) formed in this way.
Similarly, the qi contributions keep track of copies of di(t) that include the
root of T when di(t)’s word representation begins with R. The y`−2 factor
keeps track of the copy of the two-leaf tree, t2, that includes the root of
T .

For example, if t is the tree in Figure 5, we have

Gt(x, y0, y1, y2, y3, y4) = x+

y4Gt(x, y0, y0y1, y2, y3, y3y4)Gt(x, y0, y1, y1y2, y2y3, y4).

For even larger trees, we obtain even more complicated functional equa-
tions which are hard to solve in general, but straightforward to extract initial
terms from via the computer.

For non-path trees, the interaction of the left and right subtrees of T
make this computation more tedious. Analysis of Gt for for small path trees
appears in the following section. A parallel argument holds for m-ary path
tree containment, although it requires complicated notation for the pi and qi
terms.

5 Pattern containment of small trees

We have already seen that when t is the one-leaf tree, trt(n, 1) = Cn−1 and
trt(n, k) = 0 if k 6= 1. Similarly, we know that when t is the two-leaf tree and
n ≥ `, then trt(n, n − 1) = Cn−1 and trt(n, k) = 0 if k 6= n − 1. If tr is the
left-right reflection of tree t, then trtr(n, k) = trtr(n, k) for any n and k since
if tree T contains k copies of t, then T r contains k copies of tr. This means
we need only consider one three leaf tree (t3 in Figure 1) and three different

11

four leaf trees (t4, t5, and t6 in Figure 1) to completely classify tree patterns
with at most four leaves.

5.1 Containing a 3-leaf tree

Following the result of Theorem 9, we have that

Gt3(x, y0, y1) = x+ y1Gt3(x, y0, y0y1)Gt3(x, y0, y1),

and Ft3(x, y) = Gt3(x, y, 1) = x+x2 + (y+ 1)x3 + (y3 + y2 + 2y+ 1)x4 + (y6 +
y5 + 2y4 + 3y3 + 3y2 + 3y + 1)x5 + (y10 + y9 + 2y8 + 3y7 + 5y6 + 5y5 + 7y4 +
7y3 + 6y2 + 4y + 1)x6 + · · · .

Several nice sequences quickly appear. In particular:

• As expected, trt3(n, 0) = 1.

• trt3(n, 1) = n− 2 for n ≥ 2. (ogf x2

(1−x)2)

• trt3(n, 2) =
(
i−2
2

)
for n ≥ 3 (OEIS A000217, ogf x3

(1−x)3)

• trt3(n, 3) =
(
n−3
1

)
+
(
n−3
2

)
+
(
n−3
3

)
for n ≥ 3 (OEIS A004006, ogf

x3(1−x+x2)
(1−x)4)

Each of these formulas can be proved directly by case analysis. In general,
trt3(n, k) has a rational ordinary generating function with denominator (x−
1)k+1, but the numerator has increasingly many terms as k increases.

5.2 Containing a 4-leaf tree

4-leaf trees provide the first opportunity to consider trees with an equal
number of leaves that are not reflections of one another. We must consider
three different tree patterns for a complete analysis. Two of these three trees
fall under the scope of Theorem 9.

For t4, we have the functional equation

Gt4(x, y0, y1, y2) = x+ y2Gt4(x, y0, y0y1, y1y2)Gt4(x, y0, y1, y2).

Particular sequences:

• As expected, trt4(n, 0) = 2n−2 for n ≥ 2.

12

http://oeis.org/A000217
http://oeis.org/A004006

• trt4(n, 1) = (n− 3)2n−4 for n ≥ 4. (OEIS A001787)

• trt4(n, 2) = (n− 4)(n− 1)2n−7 for n ≥ 5 (OEIS A001793)

• trt4(n, 3) = (n−5)(n−3)(n+2)
3

2n−9 for n ≥ 6 (OEIS A055585)

trt4(n, k) for k ≥ 4 is new to the OEIS, but each of the sequences above
is referenced as the number of 132-avoiding permutations of a given length
containing a particular number of copies of the pattern 123. We will see more
about this connection to pattern-avoiding permutations in Section 6.

For t5, we have the functional equation

Gt5(x, y0, y1, y2) = x+ y2Gt5(x, y0, y0y1, y2)Gt5(x, y0, y1, y1y2).

Particular sequences:

• As expected, trt5(n, 0) = 2n−2 for n ≥ 2.

• trt5(n, 1) = (n− 2)2n−5 for n ≥ 4. (OEIS A001792)

trt5(n, k) for k ≥ 2 is new to the OEIS. trt5(n, 1) shows up in a number of
combinatorial contexts from compositions to the game of Hex. Also, notice
that trt4(n, k) 6= trt5(n, k) when k > 0.

t6 is not a path tree, and thus requires other techniques. If we consider
the polynomial gt6,n(y) =

∑
T∈Tn

ycot6 (T), we obtain the recursion below.

gt6,n(y) =

1 n = 1
n−1∑
i=1

y(i−1)(n−i−1)gt6,i(y)gt6,n−i(y) otherwise

Here, i counts the number of leaves to the left of the root, y(i−1)(n−i−1) ac-
counts for copies of t6 including the root of T , and gt6,i(y) (resp. gt6,n−i(y))
accounts for copies of t6 entirely contained in the left (resp. right) subtree of
T .

Particular sequences:

• As expected, trt6(n, 0) = 2n−2 for n ≥ 2.

• trt6(n, 1) = 2n−4 for n ≥ 4. (ogf x3

1−2x)

• trt6(n, 2) = 2n−3 for n ≥ 5. (ogf 4x4

1−2x)

13

http://oeis.org/A001787
http://oeis.org/A001793
http://oeis.org/A055585
http://oeis.org/A001792

• trt6(n, 3) = 2n−3 for n ≥ 6. (ogf 8x5

1−2x)

• trt6(n, 4) has ogf 16x6+6x4

1−2x

In fact, it is clear that for any fixed k and sufficiently large n,
trt6 (n,k)

trt6 (n−1,k)
=

2. This is because there are a finite number of ways to arrange exactly k
copies of t6 before the only option is to take an (n−1)-leaf tree with k copies
of t6 and make it to be either the left subtree or the right subtree of a new
n-leaf tree. The numerators of the ordinary generating functions for trt6(n, k)
for fixed k have increasingly many terms as k grows larger.

Larger non-path trees introduce additional difficulties. Counting copies
of the left (resp. right) subtree of t6 is equivalent to counting single vertices.
Counting copies of a non-path tree that includes the root is more complicated
when either subtree is larger.

We end this section with a conjecture. Further computational data sug-
gests this is the case, but settling this question in general remains an open
problem.

Conjecture 10. trt(n, k) = trs(n, k) for all k ≥ 0 and n ≥ 1 if and only if
s = tr.

6 Connections to pattern-avoiding permuta-

tions

Several sequences obtained by counting trees that contain non-contiguous bi-
nary tree patterns are already known in the literature for pattern-containing
permutations. In this section we make the relationship between trees and
permutations explicit.

To this end, let Sn denote the set of permutations of length n. As in the
introduction, given π ∈ Sn and ρ ∈ Sk we say that π contains ρ as a pattern
if there exist indices 1 ≤ i1 < · · · < ik ≤ n such that πia < πib if and only if
ρa < ρb. Let Sn(Q) = {π ∈ Sn | ∀ρ ∈ Q, π avoids ρ}, and sn(Q) = |Sn(Q)|.
For example, sn({12}) = 1 for n ≥ 1 since the only way to avoid the pattern
12 is to be the decreasing permutation of length n. It is also well-known that
if ρ ∈ S3, then sn({ρ}) = Cn where Cn is the nth Catalan number.

The following theorem provides an initial relationship between pattern-
avoiding trees and pattern-avoiding permutations that we seek to expand.

14

Theorem 11 (Dairyko, Tyner, Pudwell, Wynn, [5]). Let t be any binary tree
pattern with k ≥ 2 leaves. Then

trt(n, 0) = sn−1({132, 12 · · · (k − 2)(k − 1)}).

In fact, a stronger statement is true. It is well known that the set of
binary trees with n leaves is in bijection with the set of permutations of
length n− 1 which avoid the pattern 132.

To see this, label the root of tree t with the label n − 1. Now, suppose
there are i internal vertices to the right of the root and (n − i − 2) internal
vertices to the left of the root. The i vertices on the right will receive labels
from the set {1, . . . , i} and the vertices on the left will receive labels from
the set {i+ 1, . . . n− 2}. For each subtree, give the root the largest available
label and continue recursively until each internal vertex has been labeled.

Now, there is a natural left-to-right ordering of the vertices of t; in par-
ticular for each vertex v, all vertices in v’s left subtree are to the left of v and
all vertices in v’s right subtree are to the right of v. Read the labels of the
vertices from left to right to obtain a permutation π ∈ Sn−1. Necessarily, π
avoids 132 because all labels to the left of a given vertex have larger labels
than all labels to the right.

This correspondence between 132-avoiding permutations and binary trees
is not new. If one ignores the leaves in our trees, the bijection given above
is a symmetry of the correspondence between postorder-labeled trees with
inorder-read permutations found in [8]. Further work connecting permuta-
tions to binary trees in the context of sorting can be found in [3], [7], [13],
[14], [15], and [17].

To make this result even stronger we turn to mesh patterns. Mesh pat-
terns were introduced by Brändén and Claesson [4] in a search for more
compact expressions for various permutation statistics. They were later gen-
eralized by Úlfarsson [20] to unify the results for permutation patterns used
in characterizing Schubert varieties and in analyzing stack-sortability.

The graph of permutation π = π1 · · · πn is obtained by plotting the points
{(i, πi) | 1 ≤ i ≤ n} in the Cartesian plane. If π contains ρ ∈ Sm as a classical
pattern, as defined above, then the graph of π has m rows and m columns
whose points appear in the same arrangement as the points in the graph of
ρ.

The graph of a mesh pattern is the graph of a classical permutation with
some squares in the graph shaded. For example, the graph of 132 and the

15

Figure 6: 2413, 132, and a mesh pattern

graph of a mesh pattern with underlying permutation pattern 132 are shown
in Figure 6. A copy of a mesh pattern is a copy of the underlying classical
pattern but where no points appear in the shaded regions. A permutation
is said to avoid a mesh pattern if it contains no copies of the mesh pattern.
For example, the permutation 2413, whose graph is also shown in Figure 6
contains 132 as evidenced by the subsequence 243. However 2413 avoids the
mesh pattern shown because there is no copy of 132 where all gray regions
are empty; in particular, the only copy of 132 is given by the subsequence
243, but the point for the digit 1 appears in the gray strip at the bottom of
the mesh pattern.

The bijection above between binary trees and 132-avoiding permutations
associates each tree to a classical permutation pattern in a natural way.
However sometimes the pattern corresponding to a particular tree may embed
in a larger permutation without the tree pattern being embedded in the
corresponding larger tree. For example, the permutations 3241, 3421, and
321 and their corresponding trees are shown in Figure 7. Notice that while
3241 contains a copy of 321, the corresponding tree does not contain a copy
of the 4-leaf right comb. Also, while 3421 contains precisely 2 copies of the
permutation pattern 321, the corresponding tree only contains one copy of
the 4-leaf right comb. We repair this discrepancy by associating trees with
mesh patterns.

The discrepancy between tree patterns and permutation patterns occurs
precisely when pattern ρ has a descent, i.e. a pair of adjacent elements such
that ρi > ρi+1. A descent in a permutation pattern can be embedded in a
tree either as one vertex being the right child (or right descendant) of another
vertex or as one vertex being in the left subtree and the other in the right
subtree of a third vertex. For example, in Figure 7, when 3241 contains the

16

3241↔ 3421↔ 321↔

Figure 7: The permutations 3241, 3421, and 321 with their corresponding
trees

↔ ↔ ↔

↔ ↔

Figure 8: 4-leaf tree patterns and their corresponding mesh patterns

permutation pattern 321, the descent 32 embeds with the 2 vertex as right
child of the 3 vertex, while the descent 21 embeds in two separate subtrees
of the 4 vertex.

To prevent the split of a descent between two subtrees, we associate each
tree pattern with a mesh permutation pattern in the following way:

1. Given tree pattern t, compute πt, the permutation given by the vertex-
labeling bijection above.

2. Construct the permutation graph of πt.

3. For each descent in πt, shade all squares between and above the two
points involved in the descent. Call the resulting mesh pattern π̂t.

Now, copies of π̂t in permutation πT correspond precisely to copies of
tree t in T since the possibility of splitting t between left and right subtrees,
without using the root, is removed. Figure 8 shows this correspondence for
the 4-leaf tree patterns and Figure 9 shows the correspondence for an even
larger tree pattern.

Now, using this map from tree patterns t to mesh patterns π̂t we obtain
the following stronger version of Theorem 11.

17

↔

Figure 9: A 9-leaf tree pattern and its corresponding mesh pattern

Theorem 12. Let t be any binary tree pattern with ` ≥ 2 leaves. Then

trt(n, 0) = sn−1({132, π̂t}) = sn−1({132, 12 · · · (`− 2)(`− 1)}).

In particular, this restatement gives a set of C` Wilf-equivalent pattern
sets of the form {132, π̂t} for any integer `, and furthermore, since the in-
creasing pattern 12 · · · (` − 1), corresponding to the `-leaf left comb has no
descents, each of these is pattern pairs equivalent to the classical pattern pair
{132, 12 · · · (`− 1)}.

We also obtain a stronger statement for pattern containment once we
augment our current notation for permutation patterns. Because of the bi-
jection between trees and 132-avoiding permutations, we are concerned with
permutations in Sn({132}). Now, let

an,k(q) = {π ∈ Sn({132}) | π contains exactly k copies of pattern q} .

We saw above that an−1,0(π̂t) = trt(n, 0). In fact, the correspondence given
above yields the following result of which Theorem 11 is a special case.

Theorem 13. Let t be any binary tree pattern with ` ≥ 2 leaves. Then
trt(n, k) = an−1,k(π̂t).

Because of this correspondence trt3(n, k) counts 132-avoiding permuta-
tions with k copies of 12, trt4(n, k) counts 132-avoiding permutations with k
copies of 123, and so on.

18

Further, Theorem 3 causes us to revisit the question of the total number
of copies of a given pattern within the set of all length n permutations. To
this end, let An(q) be the number of copies of pattern q in Sn({132}).

Bóna [1, 2] shows that An(213) = An(231) = An(312) and for sufficiently
large n, An(123) < An(213) = An(231) = An(312) < An(321). In the context
of tree patterns, we obtain the following corollary to Theorem 3

Corollary 14. Given an integer ` ∈ Z+, there exist C` mesh patterns π̂t for
which An(π̂t) = An(12 · · · (`− 1)) = toct(n).

This corollary provides a hidden symmetry to Bóna’s result in that there
is a mesh pattern π̂t associated to each 4-leaf tree t for which An(π̂t) =
An(123) = toct(n).

References

[1] M. Bóna. The absence of a pattern and the occurrences of another.
Discrete Math. Theor. Comput. Sci. 12(2):89–102, 2010.

[2] M. Bóna. Surprising symmetries in objects counted by Catalan numbers.
Electron. J. Combin., 12(1), P62, 2012.

[3] M. Bousquet-Mèlou. Sorted and/or Sortable Permutations. Discrete
Math., 223:23–30, 2000.

[4] P. Brändén, A. Claesson. Mesh patterns and the expansion of permuta-
tion statistics as sums of permutation patterns. Electron. J. Combin.,
18(2), P5, 2011.

[5] M. Dairyko, L. Pudwell, S. Tyner, and C. Wynn. Non-contiguous pat-
tern avoidance in binary trees. Electron. J. Combin. 19(3), P22, 2012.

[6] V. Dotsenko. Pattern avoidance in labeled trees. Sém. Lothar. Combin.,
B67b: 27 pages, 2012.

[7] S. Even. Graph Algorithms. Computer Science Press, 1979.

[8] T. Feil, K. Hutson, R.M. Kretchmar. Tree Traversals and Permutations.
Congr. Numer., 172:201–221, 2005.

19

[9] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge Uni-
versity Press, 2009.

[10] P. Flajolet, P. Sipala, and J. M. Steyaert. Analytic variations on the
common subexpression problem. Automata, Languages, and Program-
ming: Proc. of ICALP 1990. volume 443 of Lecture Notes in Computer
Science, pages 220–234. Springer, 1990.

[11] N. Gabriel, K. Peske, L. Pudwell, and S. Tay. Pattern Avoidance in
Ternary Trees. J. Integer Seq. 15:12.1.5, 2012.

[12] A. Khoroshkin and D. Piontkovski. On generating series of finitely pre-
sented operads. preprint, arXiv:1202.5170.

[13] D.E. Knuth. The art of computer programming. Volume 3. Sorting and
Searching. Addison- Wesley Publishing Co., Reading, Mass.-London-
Don Mills, Ont., 1973.

[14] D. Rotem. Stack Sortable Permutations. Discrete Math., 33:185–196,
1981.

[15] D. Rotem and Y. Varol. Generating Binary Trees from Ballot Sequences.
J. ACM, 25:396–404, 1978.

[16] E. S. Rowland. Pattern avoidance in binary trees. J. Combin. Theory,
Ser. A, 117:741–758, 2010. 741–758.

[17] R. P. Stanley. Enumerative Combinatorics, Vol. 2. Cambridge Univer-
sity Press, 1999.

[18] N. Sloane. The Encyclopedia of Integer Sequences. Available at http:

//oeis.org, 2013.

[19] J. M. Steyaert and P. Flajolet. Patterns and pattern-matching in trees:
an analysis. Info. Control, 58:19–58, 1983.

[20] H. Úlfarsson. A unification of permutation patterns related to Schubert
varieties. Pure Math. Appl. (PU.M.A.). 22(2): 273–296, 2011.

20

http://arxiv.org/abs/1202.5170
http://oeis.org
http://oeis.org

	Introduction
	Definitions and Notation
	Total number of copies
	Pattern containment of path trees
	Pattern containment of small trees
	Containing a 3-leaf tree
	Containing a 4-leaf tree

	Connections to pattern-avoiding permutations

