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Abstract

Individuals often stop reproducing some time before they die. In this paper
we compose and analyze a logistic, two-sex population model in which indi-
viduals form pairs just to mate (i.e. pair bonds are ephemeral) and later move
on to sexually abstaining groups. Using this model, we study the impact of
sexually abstaining groups on persistence of a benign sexually transmitted
infection (STI) in populations with such ephemeral pair bonds. We observe
that the presence of sexually abstaining groups cannot prevent an STI from
invasion or eliminate it when already present if the transition rates to the
sexually abstaining groups are independent of the infection status of indi-
viduals (susceptible or infected). On the other hand, if they depend on that
status, the presence of sexually abstaining groups can prevent an STI from
invasion or eliminate it when present. Specifically, in the simple case of
sex-independent vital parameters, this happens if the transition rate of the
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infected individuals to the sexually abstaining group is higher than the tran-
sition rate of the susceptible ones. These results contrast the earlier results
based on assuming long-term, stable pair bonds, in which case one is capable
of preventing or eliminating the disease with the same isolation rate for the
susceptible and infected individuals.

Keywords: ephemeral pair bond, isolation, population dynamics,
promiscuous mating system, sexual abstinence, two-sex model

1. Introduction

Individuals often stop reproducing some time before they die. In humans,
non-reproductive groups are represented by those individuals who due to so-
cial and/or medical reasons or by mere choice remain childless and sometimes
also sexually abstain, following a certain moment of their life. Among ani-
mals, due to often strong mating competition and/or hierarchy dictated by
some mating systems, some individuals in many cases benefit at the expense
of the others, and some do not mate at all [Andersson, 1994, Shuster and
Wade, 2003]. Last but not least, among domesticated animals, older indi-
viduals are frequently eliminated from breeding groups and hence remain
non-reproductive for the rest of life.

The presence of a class of non-reproductive individuals within a popula-
tion does not only affect population dynamics relative to the absence of such a
class, but may also affect the chance of a sexually transmitted infection (STI)
to invade the population, and the prevalence of the infection if it succeeds
to invade. Given that animal STIs are ubiquitous, both as regards a variety
of host taxa and etiological agents, yet quite understudied relative to the
other types of infections, both theoretical and empirical studies are needed
to understand their ecological as well as evolutionary dynamics [Lockhart
et al., 1996, Boots and Knell, 2002, Kokko et al., 2002]. Interestingly, STIs
have been predominantly reported for humans and economically important
animal species, including many domesticated animals where regular breeding
is practiced [Oriel and Hayward, 1974, Lockhart et al., 1996].

Exploration of the effects of non-reproductive and/or sexually abstaining
groups calls for a consideration of two-sex population models, not only be-
cause life spans can differ between males and females [Rankin and Kokko,
2007] and sex ratios at birth may be biased [Gomendio et al., 2006], but
also because of potentially differential impacts of STIs on both sexes [Miller
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et al., 2007]. This is why Maxin and Milner [2009] developed a logistic, two-
sex population model to study the influence of sexually abstaining groups
on dynamics of a (human) population affected by a benign STI. The STI
was assumed to be transmitted only within heterosexual, stable pairs. The
model thus excluded ‘unfaithful’ sexual contacts outside the established pairs
and also possible births from single mothers, and was thus an approximate
description of a conservative community. From an epidemiological perspec-
tive, this framework benefits from de-facto quarantine since as long as two
individuals stay in a relationship they do not acquire the infection if they
are both susceptible nor do they transmit it if they are infected. Hence, the
most important parameter driving STI transmission was observed to be the
pair dissolution rate. With this model, Maxin and Milner [2009] proved that,
under some conditions, the presence of sexually abstaining groups can pre-
vent an STI from invasion or eliminate it from the host population if already
present.

In the present paper, we address the same question of how the presence
of sexually abstaining groups impacts dynamics of an STI-host system, com-
posing and analyzing a model more appropriate for promiscuous populations
that form ephemeral rather than stable pair bonds.

The paper is organized as follows. In the next section we introduce a
logistic, two-sex population model with only ephemeral pair bonds, and in
Section 3 we extend this model by including the sex-specific sexually abstain-
ing groups. We study the baseline behavior of these models and compute the
thresholds that separate population extinction from a globally stable interior
equilibrium. Section 4 introduces an STI to the model with the sexually ab-
staining groups, and the basic disease reproduction number of the infection is
calculated. We also give the affirmative answer to the question as to whether
the sexually abstaining groups can prevent the STI from invasion or eliminate
it from the host population if already present. We finally conclude the paper
with a summary of our results, compare our results to those for a logistic,
two-sex population model with stable pairs, emphasizing important distinc-
tions between the two, and suggest possible avenues of further research. For
easier reading of our paper, all proofs of the formulated theorems are given
in the Appendix.
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2. The logistic two-sex model with ephemeral pair bonds

The basic two-sex population model with ephemeral pair bonds includes
two classes of individuals: females (F ) and males (M). The mating rate
is taken to be the harmonic mean of F and M although there are other
possibilities suggested in the literature such as the maximum between F
and M [Hadeler et al., 1988]. The harmonic mean tends to be the most
accepted form for the mating function in the two-sex population models [e.g.
Kokko et al., 2002, Rankin and Kokko, 2007]. It is the same function that
models pair formation in the two-sex models with stable pairs. So we have
(throughout the paper, ′ denotes derivative with respect to time)

F ′ = βγf
FM

F+M
− (µf + bP )F,

M ′ = βγm
FM

F+M
− (µm + bP )M.

(1)

where β is the maximum reproductive rate, γf and γm are the ratios of
females and males, respectively, among the offspring (γf + γm = 1), µf and
µm denote the intrinsic female and male mortality rates, respectively, and
b measures the strength of negative density dependence in mortality – as
population increases, so does competition for food and hence the per capita
mortality rate; P = F + M is the total population density.

The model (1) has two steady states: the extinction one (F̄ , M̄) = (0, 0)
and an interior one

F ∗ =
γfµm

b

(
1− 1

R
)[

1 + γfRm

(
1− 1

R
)]

,

M∗ =
γmµf

b

(
1− 1

R
)[

1 + γmRf

(
1− 1

R
)]

,

(2)

where

Rf =
βγf

µf

, Rm =
βγm

µm

, and R =
RfRm

Rf +Rm

are the net reproductive numbers.
Whereas Rf and Rm represent the expected number of female/male off-

spring from a female/male during her/his life-time,R represents the expected
number of heterosexual pairs formed by the female and male offspring. No-
tice also that R > 1 implies Rf > 1 and Rm > 1, the necessary conditions
for a positive steady state to exist.
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The following theorem describes long-term dynamics of the model (1); its
proof is given in the Appendix.

Theorem 2.1. If R > 1 then the interior equilibrium (F ∗,M∗) is glob-
ally stable and the extinction equilibrium (F̄ , M̄) is unstable. Conversely, if
R < 1, the extinction equilibrium (F̄ , M̄) is globally stable and the interior
equilibrium (F ∗,M∗) is not feasible.

3. Non-reproductive groups

In this section we extend the previous model to include the female and
male non-reproductive groups Af and Am, respectively. The per capita tran-
sition rates into these groups (also referred to as isolation rates further on)
are assumed to be density-independent and are denoted by νf and νm for
females and males, respectively. So we have the model:

F ′ = βγf
FM

F+M
− (µf + bP )F − νfF,

M ′ = βγm
FM

F+M
− (µm + bP )M − νmM,

A′
f = νfF − (µf + bP )Af ,

A′
m = νmM − (µm + bP )Am.

(3)

where P = F+M+Af+Am. This model has two steady states: the extinction
one (F̄ , M̄ , Āf , Ām) = (0, 0, 0, 0) and an interior one (F̃ , M̃ , Ãf , Ãm) where

F̃ = P̃(
1+

νf
µ̃f

)
+(1+ νm

µ̃m
)K

n
m
Kn

f

, M̃ = P̃

(1+ νm
µ̃m

)+

(
1+

νf
µ̃f

) Kn
f

Kn
m

,

Ãf =
νf F̃

µ̃f
, and Ãm = νmM̃

µ̃m
,

(4)

with

P̃ =
βγfγm

b

(
1− 1

Rn

)
, µ̃f = µf + bP̃ , µ̃m = µm + bP̃ ,

Kn
f =

(µf + νf )(Rn
f − 1) + µm + νm

β
, and Kn

m =
(µm + νm)(Rn

m − 1) + µf + νf

β
.
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The net reproductive numbers are in this case (note n is a superscript here,
not a power)

Rn
f =

βγf

µf + νf

, Rn
m =

βγm

µm + νm

, and Rn =
Rn

fRn
m

Rn
f +Rn

m

.

Whereas Rn
f and Rn

m represent the expected number of female/male off-
spring from a female/male during her/his expected reproductive lifetime, Rn

represents the expected number of heterosexual pairs formed by the female
and male offspring during their reproductive lifetime.

Dynamics of the model (3) are determined by the following theorem (also
here, its proof is given in the Appendix).

Theorem 3.1. If Rn > 1 then the interior equilibrium (F̃ , M̃ , Ãf , Ãm) is
globally stable and the extinction equilibrium (F̄ , M̄ , Āf , Ām) is unstable. Con-
versely, if Rn < 1, the extinction equilibrium (F̄ , M̄ , Āf , Ām) is globally stable
and the interior equilibrium (F̃ , M̃ , Ãf , Ãm) is not feasible.

4. Sexually transmitted infections

Here we extend the model (3) to include a benign STI which will af-
fect neither fecundity nor mortality of the hosts, with infected individuals
unable to recover. From an STI perspective we need to separate the non-
reproductive groups into two different types: the sexually abstaining groups
the members of which not only do not reproduce but also abstain (by choice
or not) from sexual activity, and the rest of non-reproductive individuals who
remain sexually active. Sexual abstinence can be a consequence of mating
competition coupled with potential avoidance of infected individuals. Non-
reproductive but sexually active individuals are likely to be more prevalent
in humans, but may also occur among animals – sterile animals (whatever
is the reason for their sterility) may still participate in mating, especially
if the STI is cryptic. In what follows, we assume that all non-reproducing
individuals also sexually abstain. The more complex case of the two distinct
types of non-reproductive individuals will be treated in a separate paper.

Modeling STI transmission becomes tricky in two-sex population models
with an explicit mating function. As the mating function models the way
individuals meet and mate, the model of STI transmission needs in many
cases to reflect this and be consistent with the selected mating function. This
is why we use for the infection transmission also a kind of harmonic mean, but
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we are here not in the clash with the classical epidemiological theory, since
this function essentially represents standard incidence, the term commonly
used to model STI transmission [McCallum et al., 2001]. So our model is as
follows:

F ′ = βγf
(F+ϕ)(M+χ)
F+ϕ+M+χ

− λf
Fχ

F+M+ϕ+χ
− (µf + bP )F − νfF,

M ′ = βγm
(F+ϕ)(M+χ)
F+ϕ+M+χ

− λm
Mϕ

F+M+ϕ+χ
− (µm + bP )M − νmM,

ϕ′ = λf
Fχ

F+M+ϕ+χ
− (µf + bP )ϕ− αfϕ,

χ′ = λm
Mϕ

F+M+ϕ+χ
− (µm + bP )χ− αmχ,

A′
f = νfF − (µf + bP )Af ,

A′
m = νmM − (µm + bP )Am,

A′
ϕ = αfϕ− (µf + bP )Aϕ,

A′
χ = αmχ− (µm + bP )Aχ,

(5)

where the total population size is now

P = F + M + ϕ + χ + Af + Am + Aϕ + Aχ,

and ϕ, χ, Aϕ, and Aχ respectively denote classes of reproducing infected
females, reproducing infected males, sexually abstaining infected females,
and sexually abstaining infected males. Furthermore, αf and αm are the
female and male isolation rates of infected individuals, respectively, and λf

and λm scale the infection rates at which infected males infect susceptible
females and vice versa, respectively.

As is common in virtually any analysis of any epidemiological model, we
start with calculating the basic disease reproduction number of the infection.

Theorem 4.1. For the model (5), the basic disease reproduction number of
the infection is

Rn
0 =

√
λfλmF̃ M̃

(F̃ + M̃)
√

(µ̃f + αf )(µ̃m + αm)
,
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where F̃ and M̃ are components of the interior equilibrium of the model (3),
and µ̃f = µf +b(M̃ +F̃ ) and µ̃m = µm+b(M̃ +F̃ ). If Rn

0 < 1 the disease-free
equilibrium (DFE) (F̃ , M̃ , 0, 0, Ãf , Ãm, 0, 0) is locally asymptotically stable; it
is unstable if Rn

0 > 1.

See the Appendix for a proof of this theorem.
In order to analyze the conditions on the parameters that may lead to

infection extinction or an endemic state we first consider the case when the
isolation rates are independent of the infection status, a situation that might
correspond to a cryptic STI:

νf = αf and νm = αm,

and further assume that the two infection transmission coefficients are equal,

λf = λm = λ.

In this relatively simple case, the dynamics of the total female and male
populations are identical to those of the model (3). Indeed, summing up the
first with the third equation, the second with the fourth, the fifth with the
seventh, and the sixth with the eighth equation in the model (5), we obtain

(F + ϕ)′ = βγf
(F+ϕ)(M+χ)
F+ϕ+M+χ

− (µf + bP )(F + ϕ)− νf (F + ϕ),

(M + χ)′ = βγm
(F+ϕ)(M+χ)
F+ϕ+M+χ

− (µm + bP )(M + χ)− νm(M + χ),

(Af + Aϕ)′ = νf (F + ϕ)− (µf + bP )(Af + Aϕ),

(Am + Aχ)′ = νm(M + χ)− (µm + bP )(Am + Aχ),

(6)

which is precisely the model (3). Using Theorem 3.1 we can conclude that if
Rn > 1, then

lim
t→∞

[F (t) + ϕ(t)] = F̃ , lim
t→∞

[M(t) + χ(t)] = M̃

lim
t→∞

[Af (t) + Aϕ(t)] = Ãf , lim
t→∞

[Am (t) + Aχ(t)] = Ãm.

The model (5) has three steady states. Two boundary equilibria, the ex-
tinction equilibrium (F̄ , M̄ , ϕ̄, χ̄, Āf , Ām, Āϕ, Āχ) = (0, 0, 0, 0, 0, 0, 0, 0) and
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the DFE (F̃ , M̃ , 0, 0, Ãf , Ãm, 0, 0), and an interior (endemic) equilibrium
(F o,M o, ϕo, χo, Ao

f , A
o
m, Ao

ϕ, Ao
χ), where

F o = F̃ − ϕo, ϕo =
λ2F̃ M̃ − (F̃ + M̃)

2
(µ̃f + νf )(µ̃m + νm)

λ[λM̃ + (F̃ + M̃)(µ̃f + νf )]
,

M o = M̃ − χo, χo =
λ2F̃ M̃ − (F̃ + M̃)

2
(µ̃f + νf )(µ̃m + νm)

λ[λF̃ + (F̃ + M̃)(µ̃m + νm)]
,

Ao
f = Ãf − Ao

ϕ, Ao
ϕ =

νfϕ
o

µ̃f

,

Ao
m = Ãm − Ao

χ, Ao
χ =

νmϕo

µ̃m

,

and where µ̃f = µf + bP̃ , µ̃m = µm + bP̃ and P̃ = F̃ + M̃ + Ãf + Ãm.
With the adopted assumptions, the basic reproduction number of the

infection, in this special case denoted as Ln
0 , is

Ln
0 =

λ
√

F̃ M̃

(F̃ + M̃)
√

(µ̃f + νf )(µ̃m + νm)
.

It is easy to see (from the expressions of ϕo and χo) that the endemic equi-
librium is feasible (positive) if and only if Ln

0 > 1.
From the first two equations of (3) we have

M̃

F̃ + M̃
=

µ̃f + νf

βγf

and
F̃

F̃ + M̃
=

µ̃m + νm

βγm

.

Using these expressions, the basic reproduction number becomes

Ln
0 =

λ

β
√

γfγm

.

Since Ln
0 is independent of νf and νm, the threshold between the DFE and

the endemic equilibrium is in this particular case independent of the presence
and intensity of sexual abstinence. Assuming Rn > 1, the following theorem
describes long-term dynamics of the model (5), depending on the value of Ln

0

(see the Appendix for its proof).
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Theorem 4.2. LetRn > 1. If Ln
0 < 1, then the DFE (F̃ , M̃ , Ãf , Ãm, 0, 0, 0, 0)

is globally stable. Conversely, if Ln
0 > 1, the endemic equilibrium

(F o,M o, ϕo, χo, Ao
f , A

o
m, Ao

ϕ, Ao
χ) exists, is globally stable, and the DFE is un-

stable.

We now summarize the conclusions related to the model with isolation
rates independent of the disease:

• IfRn < 1 then the extinction equilibrium (F̄ , M̄ , ϕ̄, χ̄, Āf , Ām, Āϕ, Āχ) =
(0, 0, 0, 0, 0, 0, 0, 0) is globally stable,

• IfRn > 1 and Ln
0 < 1 then the DFE (F̃ , M̃ , 0, 0, Ãf , Ãm, 0, 0) is globally

stable,

• If Rn > 1 and Ln
0 > 1 then the endemic equilibrium of the infection

(F o,M o, ϕo, χo, Ao
f , A

o
m, Ao

ϕ, Ao
χ) is globally stable.

We now turn to the case when the transition rates into the sexually
abstaining groups are dependent on the infection status, i.e.

νf 6= αf and νm 6= αm.

The net reproductive number and the interior equilibrium analysis are dif-
ficult to establish in this most general case. We provide, instead, an analysis
in the particular case of sex-independent parameters while still maintaining
infection- dependent isolation rates. Assuming

µf = µm := µ, νf = νm := ν, αf = αm := α,

γf = γm =
1

2
, and λf = λm := λ,

the model (5) becomes

F ′ = β
4
(F + ϕ)− λ

2
Fϕ

F+ϕ
− (µ + bP )F − νF,

ϕ′ = λ
2

Fϕ
F+ϕ

− (µ + bP )ϕ− αϕ,

A′
f = νF − (µ + bP )Af ,

A′
ϕ = αϕ− (µ + bP )Aϕ.

(7)

This model (7) has the following steady states:
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• The extinction equilibrium (0, 0, 0, 0),

• The disease-free equilibrium
(

2
bβ

(
β
4
− µ− ν

) (
β
4
− ν

)
, 0, 2ν

bβ

(
β
4
− µ− ν

)
, 0

)
,

• An endemic equilibrium (F̂ , ϕ̂, Âf , Âϕ) with

F̂ =
2x̂P̂ (µ + bP̂ )

β
, ϕ̂ =

(
1

x̂
− 1

)
F̂ , Âf =

νF̂

µ + bP̂
, Âϕ =

αϕ̂

µ + bP̂
,

P̂ :=
1

b

[
β

4x̂
− λ

2
(1− x̂)− µ− ν

]
, and x̂ :=

β/2

λ− 2(α− ν)
.

The main result related to the model (7) is provided in the following theorem
(see the Appendix for its proof):

Theorem 4.3. For the simplified model (7), if

• λ < β
2

+ 2(α− ν) and β
4

< µ + ν: the extinction equilibrium is globally
stable,

• λ < β
2

+ 2(α− ν) and β
4

> µ + ν: the DFE is globally stable,

• λ > β
2
+2(α− ν) and β

2
< 2(µ+α)[λ−2(α−ν)]

λ
: the extinction equilibrium is

globally stable,

• λ > β
2

+ 2(α − ν) and β
2

> 2(µ+α)[λ−2(α−ν)]
λ

: the endemic equilibrium is
globally stable.

Remark 4.1. Note that the last pair of conditions can only be satisfied if
λ > 2(α + µ). Thus, the endemic situation happens if and only if

λ > max

{
β

2
+ 2(α− ν), 2(α + µ)

}

The first part of the above conditions is equivalent to Rn
0 > 1 (λ >

β
2

+ 2(α − ν)) or Rn
0 < 1 (λ < β

2
+ 2(α − ν)). The second part thus in-

dicates that, in general, if the transition rates into the sexually abstaining
classes are infection-dependent, Rn

0 > 1 may lead to either population ex-
tinction (if the isolation rate of the infected individuals is high enough) or to
an endemic state (if the isolation rate of the infected individuals is below a
certain threshold).
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This result indicates that the net reproductive number has a much more
complicated form in the case of infection-dependent isolation rates. This is
because if ν 6= α the infection acts as a transfer between groups (healthy and
infected) of different reproductive power.

Remark 4.2. These results imply that it is impossible for the abstinence to
eliminate the disease if the transition rates to the sexually abstaining groups
do not depend on the infection status of host individuals (susceptible or in-
fected) since then the basic reproduction number of the infection (Ln < 1)
does not depend on these isolation rates. However, as soon as νf 6= αf and
νm 6= αm, this might be possible if in the absence of sexually abstaining groups
the basic reproduction number is greater than one and in the presence of sexu-
ally abstaining groups it is less than one. In other words, infection-dependent
isolation rates may allow for the following double inequality:

Rn
0 < 1 < R0

where

R0 =
λ
√

F ∗M∗

(F ∗ + M∗)
√

µ∗fµ
∗
m

is the basic reproduction number of the infection in the absence of sexually
abstaining groups. R0 has been obtained by replacing νf , νm, αf , and αm in
Rn

0 with zero, by replacing F̃ and M̃ with F ∗ and M∗, components of the
interior equilibrium in the absence of non-reproductive groups (Section 2),
and denoting by µ∗f and µ∗m the mortality rates evaluated at the equilibrium
obtained in Section 2:

µ∗f = µm + b(F ∗ + M∗) and µ∗m = µm + b(F ∗ + M∗).

Figures 1–3 illustrate the above results. While an STI exemplified in Fig. 1
cannot be eliminated by the presence of the sexually abstaining groups pro-
vided that the isolation rates are independent of the infection status (Fig. 2),
the disease-free equilibrium becomes stable once the isolation rate of the in-
fected individuals is higher than the isolation rate of the susceptible ones
(Fig. 3). In addition, Fig. 3 suggests that the latter result is more general
and holds also when the vital parameters are sex-specific.
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5. Conclusions

In this paper we introduced and analyzed a logistic, two-sex popula-
tion model in which individuals form pairs just to mate (i.e. pair bonds are
ephemeral) so as to study the impact of sexually abstaining groups on per-
sistence of a benign sexually transmitted infection. Our major result states
that:

• Presence of the sexually abstaining groups cannot prevent an STI from
invasion or eliminate it when already present if the transition rates to
the sexually abstaining groups do not depend on the infection status
of individuals (susceptible or infected), because the basic reproduction
number of the infection does not depend in that case on these transition
rates;

• Provided that the transition rates to the sexually abstaining groups
depend on the infection status of individuals, then presence of the sex-
ually abstaining groups can prevent an STI from invasion or eliminate
it when present. In the simple case of sex-independent vital param-
eters, this happens if the isolation rate of the infected individuals is
higher than the isolation rate of the susceptible ones.

Maxin and Milner [2009] addressed the same question as we did, assuming
a logistic, two-sex population model with stable, long-lasting pairs. Hence,
two individuals in a relationship could not acquire the infection if both were
susceptible nor could they transmit it if they were infected. Contrary to
our results, with the same isolation rate for the susceptible and infected
individuals, one is capable of eliminating the disease in this latter model
with stable pairs. First, this shows that mating system, promiscuous in our
model and monogamous in that of Maxin and Milner [2009], is a strong
driver of host population dynamics in the presence of sexually abstaining
groups and an STI. Second, if elimination of reproductive individuals should
serve a practical way of preventing an STI invasion, our results suggest that
this can only be achieved if one is able to discern the susceptible and infected
individuals. This needs not always be possible, however, as many STIs might
be cryptic [Knell, 1999]. On top of that, a true monogamy appears to be
relatively rare in nature, as many species with the ‘socially’ monogamous
mating system actually exhibit high rates of extra-pair copulation [Jennions
and Petrie, 2000].
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Put the other way round, our analysis predicts that STIs cannot be pre-
vented from invasion or eliminated when present if the isolation rate of the
infected individuals is lower than or equal to the isolation rate of the sus-
ceptible ones. Empirical data that would allow relative comparison of these
rates does not seem available. Still, many STIs cause sterility in the affected
individuals [Oriel and Hayward, 1974, Lockhart et al., 1996]. We have not
modeled sterilizing effects of STIs in this paper, but we might speculate that
at least some of these sterilized individuals will enter the sexually abstaining
group. In other words, if an individual has trouble finding mates, it might
have even more trouble now that she is infected. In this way, infected individ-
uals might move on to the sexually abstaining group at a higher rate than the
susceptible ones, satisfying the necessary condition for the STI prevention or
elimination.

This is not that simple, however, since sterilized individuals can still par-
ticipate in mating. This fact requires more complex epidemiological models
than our model (5), which will most likely demonstrate more complicated dy-
namics [Diekmann and Kretzschmar, 1991] and produce different conditions
for inability of invasion / ability of elimination of the infection. Anyway,
individuals facing a cryptic STI are expected to evolve risky mating behav-
ior, both as regards the number (increased promiscuity) and quality (lowered
mate choice) of potential mates [Boots and Knell, 2002]. This will likely re-
sult in similar isolation rates of the susceptible and infected individuals. If
infected individuals are aware of being infected, one can even imagine that
the isolation rates can be reverted, as the infected individuals have ‘nothing
to lose’ and hence might mate ‘to the last breath’. In a follow-up paper, we
will extend our current models to cover sterilizing effects of STIs and allow
for non-reproductive individuals that can still participate in mating.

6. Appendix

In this section we provide the proofs of the theorems introduced in this
paper.

Theorem 2.1

Proof. It is more convenient to re-write the model (1) as an equivalent
system in variables P = F + M and x = F

P
:
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P ′ = βx(1− x)P − µfxP − µm(1− x)P − bP 2,

x′ = βx(1− x)(Kf − x),
(8)

where

Kf =
µf (Rf − 1) + µm

β
.

Notice that the equation for x is decoupled from the one for P . Standard
ODE theory implies that x(t) is defined for all t ≥ 0 which, in turn, implies
that P (t) is defined for all t ≥ 0. In addition, the intervals (0, 1) and (0,∞)
are positively invariant for x and P , respectively.

Going back to the model (1) we see that either Rf < 1 or Rm < 1 will
cause the population to go extinct. Indeed, ifRf < 1 and taking into account
that M

F+M
< 1 then we can use the following differential inequality:

F ′ < (βγf − µf )F.

Integrating both sides we obtain

F (t) < F0e
(βγf−µf )t

which implies F (t) → 0 as t → ∞ and hence M(t) → 0 from the second
equation of (1). An analogous argument can be used if Rm < 1.

Suppose now that Rf > 1 and Rm > 1. Notice that Rf > 1 and Rm > 1
imply 0 < Kf < 1. Setting

h(x) := βx(1− x)(Kf − x),

the right-hand side of the equation for x, we have that

h′(0) = βKf > 0 and h′(1) = β(1−Kf ) > 0.

This means that the critical points x = 0 and x = 1 are both unstable.
Furthermore

h′(Kf ) = −βKf (1−Kf ) < 0

meaning that Kf is the only asymptotically stable critical point for x.
From the sign of the derivative x′, if x0 > Kf then x(t) is decreasing in

forward time, and if x0 < Kf then x(t) is increasing in forward time. This
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implies that x(t) converges to a finite limit as t → ∞ which must be Kf .
Hence

lim
t→∞

x(t) = Kf .

Due to symmetry and to make our notation more consistent, we also set

Km = 1−Kf =
µm(Rm − 1) + µf

β
.

This result allows us to view the equation for P ,

P ′ = βx(1− x)P − µfxP − µm(1− x)P − bP 2 := f̄(t, P ), (9)

as an asymptotically autonomous ODE, with the following limiting autonomous
ODE:

P ′ = (βKfKm − µfKf − µmKm − bP )P := f(P ). (10)

Note that f̄(t, P ) → f(P ) locally uniformly. We are going to use the theory
of asymptotically autonomous systems developed in Thieme [1992], Castillo-
Chavez and Thieme [1995] in order to establish the main result of this theo-
rem. Note that the limiting equation (10) is a logistic equation in P and

βKfKm − µfKf − µmKm > 0

is equivalent to R > 1.
There are two equilibrium points for the limiting equation (10):

P̄ = 0 and P ∗ =
βKfKm − µfKf − µmKm

b
.

Equivalently,

P ∗ =
βγfγm

b

(
1− 1

R
)

.

If R < 1 then P̄ is the only biologically feasible equilibrium and all
solutions of the limiting equation (10) converge to it. It follows from Theorem
2.3 of Castillo-Chavez and Thieme [1995] that

lim
t→∞

P (t) = 0.

If R > 1 then P̄ belongs to the trivial invariant closed set {0} and P ∗

lies in the open invariant set (0,∞). All solutions of (10) starting in (0,∞)
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approach P ∗ which is also asymptotically stable. Moreover, P̄ is a weak
repeller for (0,∞) in (9). To see this, notice that, assuming there exists a
solution of (9) starting with P0 > 0 and approaching 0, then

lim
t→∞

d

dt
ln P (t) = lim

t→∞
[βx(1− x)− µfx− µm(1− x)− bP ] =

= βKfKm − µfKf − µmKm > 0

which is a contradiction. Thus, from Theorems 2.4 and 2.5 of Castillo-Chavez
and Thieme [1995] we have that, for P0 > 0

lim
t→∞

P (t) = P ∗.

From this, we obtain the global stability of (F ∗,M∗) for R > 1, since

lim
t→∞

F (t) =
γfµm

b

(
1− 1

R
)[

1 + γfRm

(
1− 1

R
)]

lim
t→∞

M(t) =
γmµf

b

(
1− 1

R
)[

1 + γmRf

(
1− 1

R
)]

¤

Theorem 3.1

Proof. Using an analogous approach as for the model without sexual ab-
stinence, we start with an equivalent system in

x =
F

F + M
, y =

F

F + Af

, z =
M

M + Am

, and F :

x′ = βx(1− x)(Kn
f − x),

y′ = βγf (1− x)y(1− y)− νfy,

z′ = βγmxz(1− z)− νmz,

F ′ = βγf (1− x)F −
[
µf + νf + b

(
1
y
− 1

z
+ 1

xz

)
F

]
F,

(11)

Just as in the previous theorem, the equation for x is decoupled and,
using similar arguments, one can see that the solution of (11) is defined for
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all t ≥ 0. Furthermore, the interval (0, 1) is forward invariant for x, y and z
and (0,∞) is forward invariant for F .

Rn
f > 1 and Rn

m > 1 are necessary conditions to avoid population ex-
tinction and we assume these inequalities from now on. As in the previous
theorem, they imply

0 < Kn
f < 1 and 0 < Kn

m < 1.

Since the equation for x has the same form as the analogous one for the
model (1) without sexually abstaining groups, we conclude that

lim
t→∞

x(t) = Kn
f .

Notice also that Rn > 1 is equivalent to two inequalities needed later:

βγmKn
f > µm + νm and βγfKn

m > µf + νf . (12)

The equation in y,

y′ = βγf (1− x)y(1− y)− νfy, (13)

can be viewed as an asymptotically autonomous ODE in y, with the limiting
equation

y′ = (βγfKn
m − νf − βγfKn

my) y. (14)

The equation (14) is a logistic equation in y and, from (12), we see that every
solution of (14) starting with a positive value converges to

ỹ =
βγfKn

m − νf

βγfKn
m

if Rn > 1,

or approaches zero, which can only happen if Rn < 1. In the latter case,
y → 0 implies F (t) → 0 as t →∞ which, in turn, causes the entire population
to approach the extinction equilibrium.

Assuming now that the solutions of (14) converge to ỹ we show that zero
is a weak repeller for (13). Indeed, if a solution of (13) starting with a positive
value approaches zero, then

lim
t→∞

d

dt
ln y(t) = lim

t→∞
[βγf (1− x)− νf − βγf (1− x)y] = βγfKn

m − νf > 0,
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which is a contradiction. From Theorems 2.4 and 2.5 of Castillo-Chavez and
Thieme [1995] we conclude that

lim
t→∞

y(t) = ỹ.

An analogous argument using the first and the third equation of (11)
shows that either the male population (and then the total population) dies
out or, if Rn > 1,

lim
t→∞

z(t) = z̃ :=
βγmKn

f − νm

βγmKn
f

.

Finally, we turn to the equation for F ,

F ′ = βγf (1− x)F −
[
µf + νf + b

(
1

y
− 1

z
+

1

xz

)
F

]
F, (15)

which can now be viewed as an asymptotically autonomous ODE, with the
limiting equation

F ′ =

[
βγfKn

m − µf − νf − b

(
1

ỹ
− 1

z̃
+

1

z̃Kn
f

)
F

]
F. (16)

Again, the equation (16) is a logistic equation in F and, from (12), its solu-
tions either approach zero (if Rn < 1) or a positive equilibrium (if Rn > 1).
It is easy to see that (15) satisfies the requirements of Theorems 2.4 and 2.5
from Castillo-Chavez and Thieme [1995] which imply

lim
t→∞

F (t) =
βγfKn

m − µf − νf

b
(

1
ỹ
− 1

z̃
+ 1

z̃Kn
f

) .

This limit (after a long but straightforward computation) can be shown to
be equal to F̃ . Thus,

lim
t→∞

F (t) = F̃ .

Altogether, the interior equilibrium (F̃ , M̃ , Ãf , Ãm) is globally stable if
and only if

Rn > 1.

Conversely, ifRn < 1, global stability of the extinction equilibrium (F̄ , M̄ , Āf , Ām)
follows. ¤
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Theorem 4.1

Proof. We use the next generation matrix approach developed by van den
Driessche and Watmough [2002]. Following the equations for the infected
classes only, and using the notation of van den Driessche and Watmough
[2002], we have the following infection and removal rates from each of the
infected classes:

G =




λf
Fχ

F+M+ϕ+χ

λm
Mϕ

F+M+ϕ+χ

0
0


 , V =




(µf + bP )ϕ + αfϕ
(µm + bP )χ + αmχ
−αfϕ + (µf + bP )Aϕ

−αmχ + (µm + bP )Aχ


 ,

which implies

G =




− λf Fχ

(F+M+ϕ+χ)2
λf F

F+M+ϕ+χ
− λf Fχ

(F+M+ϕ+χ)2
0 0

λmM
F+M+ϕ+χ

− λmMϕ
(F+M+ϕ+χ)2

− λmMϕ
(F+M+ϕ+χ)2

0 0

0 0 0 0
0 0 0 0


 ,

V =




µ̃f + bϕ + αf bϕ bϕ bϕ
bχ µ̃m + bχ + αm bχ bχ

bAϕ − αf bAϕ µ̃f + bAϕ bAϕ

bAχ bAχ − αm bAχ µ̃m + bAχ


 .

The matrices G and V are actually composed of partial derivatives of the
components of vectors G and V , respectively, with respect to the infected
classes of the model; see van den Driessche and Watmough [2002] for more
details. Furthermore, we have

G(0, 0, 0, 0) =




0
λf F̃

F̃+M̃
0 0

λmM̃
F̃+M̃

0 0 0

0 0 0 0
0 0 0 0


 ,
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V −1(0, 0, 0, 0) =




1
µ̃f+αf

0 0 0

0 1
µ̃m+αm

0 0
αf

µ̃f (µ̃f+αf )
0 1

µ̃f
0

0 αm

µ̃m(µ̃m+αm)
0 1

µ̃m


 ,

GV −1(0, 0, 0, 0) =




0
λf F̃

M̃(µ̃m+αm)
0 0

λmM̃
F̃ (µ̃f+αf )

0 0 0

0 0 0 0
0 0 0 0


 .

As proven in van den Driessche and Watmough [2002], the basic reproduction
number of the infection is the spectral radius of the latter matrix, i.e.

Rn
0 = ρ(GV −1) =

√
λfλmF̃ M̃

(F̃ + M̃)
√

(µ̃f + αf )(µ̃m + αm)
.

¤

Theorem 4.2

Proof. We use the theory of asymptotically autonomous planar systems
established by Thieme and Castillo-Chavez in Thieme [1992] and Castillo-
Chavez and Thieme [1995] to study behavior of the model (5), using a limiting
planar system in ϕ, χ,Aϕ, and Aχ. Notice that the equations for ϕ and χ in
(5),

ϕ′ = λ Fχ
F+M+ϕ+χ

− (µf + bP )ϕ− νfϕ := f̄(t, ϕ, χ),

χ′ = λ Mϕ
F+M+ϕ+χ

− (µm + bP )χ− νmχ := ḡ(t, ϕ, χ),
(17)

form an asymptotically autonomous system in ϕ, χ, with the following lim-
iting system:

ϕ′ = λ
F̃+M̃

(F̃ − ϕ)χ− (µ̃f + νf )ϕ := f(ϕ, χ),

χ′ = λ
F̃+M̃

(M̃ − χ)ϕ− (µ̃m + νm)χ := g(ϕ, χ).

(18)

21



The Poincaré-Bendixson-type trichotomoy established by Thieme and Castillo-
Chaves in Thieme [1992] and Castillo-Chavez and Thieme [1995] ensures that
every bounded forward solution of (17) converges to an equilibrium of the
limiting system (18). All solutions of (5) and, consequently, of (18) are ob-
viously bounded in the positive quadrant due to the assumption of negative
density dependence in host mortality. It remains to establish the local stabil-
ity conditions for the interior equilibria in the limiting system and to exclude
the possibility of periodic solutions. Furthermore, in the endemic case, we
will show that the DFE is a weak repeller for (17) which will ensure that the
basins of attraction of the DFE and the endemic steady state are the same
as those in the limiting system (18). From these the global stability of the
DFE and the endemic steady state will follow.

In order to check the local stability of the equilibrium points, we will
compute the Jacobian of (18):

J(ϕ, χ) =

[
− λχ

F̃+M̃
− (µ̃f + νf )

λ(F̃−ϕ)

F̃+M̃
λ(M̃−χ)

F̃+M̃
− λϕ

F̃+M̃
− (µ̃m + νm)

]
.

From this we see that

TrJ(ϕ, χ) = − λχ

F̃ + M̃
− (µ̃f + νf )− λϕ

F̃ + M̃
− (µ̃m + νm) < 0

for all possible positive values of ϕ and χ. In addition,

det J(ϕ, χ) =
λϕ

F̃ + M̃

(
µ̃f + νf + λ

M̃

F̃ + M̃

)
+

+
λχ

F̃ + M̃

(
µ̃m + νm + λ

F̃

F̃ + M̃

)
+ (µ̃f + νf )(µ̃m + νm)− λ2 F̃ M̃

(F̃ + M̃)2
.

From this expression, det(J(0, 0)) > 0 if and only if

λ2 F̃ M̃

(F̃ + M̃)2(µ̃f + νf )(µ̃m + νm)
< 1 ⇔ Ln

0 < 1,
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and det(J(ϕo, χo)) > 0 if and only if

λ2 F̃ M̃

(F̃ + M̃)2(µ̃f + νf )(µ̃m + νm)
> 1 ⇔ Ln

0 > 1.

Hence the DFE is locally asymptotically stable if Ln
0 < 1 and it is the only

equilibrium in the biologically feasible region. Conversely, if Ln
0 > 1, the DFE

is unstable and the endemic equilibrium is locally asymptotically stable.
The existence of periodic solutions is ruled out by the Poincaré-Bendixson

Criterion:

∂f

∂ϕ
+

∂g

∂χ
= − λχ

F̃ + M̃
− (µ̃f + νf )− λϕ

F̃ + M̃
− (µ̃m + νm) < 0,

which proves the global stability of the equilibria analyzed above.
Assuming Ln

0 > 1 we now show, by contradiction, that (0, 0) is a weak
repeller of (17). Suppose that (ϕ, χ) → (0, 0) with positive initial values.
Then (17) can be written in the following way

ϕ′ = m(t)χ− n(t)ϕ,
χ′ = p(t)ϕ− q(t)χ,

(19)

with

m(t) → λF̃

F̃ + M̃
:= m1, n(t) → µ̃f + νf := n1,

p(t) → λM̃

F̃ + M̃
:= p1, q(t) → µ̃m + νm := q1.

Notice that, with these notations, the condition Ln
0 > 1 is equivalent to

m1p1 > n1q1.

From (19) we have

p1ϕ
′ + n1χ

′

ϕ + χ
= [p1m(t)− n1q(t)]

χ

ϕ + χ
+ [n1p(t)− p1n(t)]

ϕ

ϕ + χ
,

and

q1ϕ
′ + m1χ

′

ϕ + χ
= [m1p(t)− q1n(t)]

ϕ

ϕ + χ
+ [q1m(t)−m1q(t)]

χ

ϕ + χ
.
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Combining these equalities leads to

(p1 + q1)ϕ
′ + (m1 + n1)χ

′

ϕ + χ
= [p1m(t)−n1q(t)]

χ

ϕ + χ
+[m1p(t)−q1n(t)]

ϕ

ϕ + χ
+

+[n1p(t)− p1n(t)]
ϕ

ϕ + χ
+ [q1m(t)−m1q(t)]

χ

ϕ + χ
.

Setting K1 := p1 + q1, T1 := m1 + n1 and K := max{K1, T1}, we obtain the
following inequality

(K1ϕ + T1χ)′

K1ϕ + T1χ
=

ϕ + χ

K1ϕ + T1χ

{
[p1m(t)− n1q(t)]

χ

ϕ + χ
+ [m1p(t)− q1n(t)]

ϕ

ϕ + χ
+

+[n1p(t)− p1n(t)]
ϕ

ϕ + χ
+ [q1m(t)−m1q(t)]

χ

ϕ + χ

}
>

>
1

K

{
[p1m(t)− n1q(t)]

χ

ϕ + χ
+ [m1p(t)− q1n(t)]

ϕ

ϕ + χ
+

+[n1p(t)− p1n(t)]
ϕ

ϕ + χ
+ [q1m(t)−m1q(t)]

χ

ϕ + χ

}
.

Finally, since

p1m(t)− n1q(t) → m1p1 − n1q1, m1p(t)− q1n(t) → m1p1 − n1q1,

n1p(t)− p1n(t) → 0, and q1m(t)−m1q(t) → 0,

it follows that

lim
t→∞

d

dt
ln(K1ϕ + T1χ) ≥ 1

K
(m1p1 − n1q1) > 0

which is a contradiction.
Having established the limits for ϕ and χ, the limits for Aϕ and Aχ follow

immediately from the last two equations of the model (5). ¤

Theorem 4.3
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Proof. We proceed as in the previous cases by re-writing the model (7) in
a more convenient equivalent form in terms of

x :=
F

F + ϕ
, P := 2(F + ϕ + Af + Aϕ), F, and Af :

x′ = 1
2
(1− x)

{
β
2
− x[λ− 2(α− ν)]

}
,

P ′ = β
2

F
x
− (µ + bP )P,

F ′ = β
4

F
x
− λ

2
(1− x)F − (µ + ν + bP )F,

A′
f = νF − (µ + bP )Af .

(20)

Standard ODE theory ensures that x(t) is defined for all t ≥ 0 which, in turn
implies that the solutions of the full model (20) and hence (7) are defined
for all t ≥ 0. The biologically feasible domain for x is the interval [0, 1], and
(0, 1) is invariant for x. Thus, the equation for x has two equilibrium points:

x̃ := 1 and x̂ :=
β/2

λ− 2(α− ν)

where x̂ is biologically feasible if and only if

λ >
β

2
+ 2(α− ν)

Thus we have the following main result concerning the equation in x:

lim
t→∞

x(t) = x̂ if λ >
β

2
+ 2(α− ν) and lim

t→∞
x(t) = x̃ if λ <

β

2
+ 2(α− ν).

Since x(t) approaches a positive limit, the second and the third equations
of (20) form an asymptotically autonomous system in P and F . The limiting
behavior of its solutions can be analyzed using the same technique regardless
of whether x(t) → x̃ or x(t) → x̂. Thus, we denote by x∗ the limit of x(t).
We will later replace x∗ by either x̃ or x̂. With this notation the limiting
system in P and F becomes

P ′ = β
2

F
x∗ − (µ + bP )P,

F ′ = β
4

F
x∗ − λ

2
(1− x∗)F − (µ + ν + bP )F.

(21)
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There are two possible equilibria: (P̄ , F̄ ) = (0, 0) and

(P ∗, F ∗) =

(
1

b

[
β

4x∗
− λ

2
(1− x∗)− µ− ν

]
,
2x∗P ∗(µ + bP ∗)

β

)
.

Notice that the second one is feasible if and only if β
4x∗− λ

2
(1−x∗)−µ−ν > 0.

The Jacobian of (21) is

J(P, F ) =

[−µ− 2bP β
2x∗

−bF β
4x∗ − λ

2
(1− x∗)− (µ + ν + bP )

]
.

Evaluated at the equilibrium points, this is

J(0, 0) =

[−µ β
2x∗

0 β
4x∗ − λ

2
(1− x∗)− (µ + ν)

]

and

J(P ∗, F ∗) =

[−µ− 2bP ∗ β
2x∗

−bF ∗ 0

]
.

From the sign of the trace and the determinant of J we have the following
result:

• If β
4x∗ − λ

2
(1 − x∗) < µ + ν then (0, 0) is locally asymptotically stable

and (P ∗, F ∗) is not feasible

• If β
4x∗ − λ

2
(1−x∗) > µ+ν then (0, 0) is unstable and (P ∗, F ∗) is feasible

and locally asymptotically stable.

Notice also that, in the second case, (0, 0) is a weak repeller for the non-
autonomous system in P and F . Indeed, if (P, F ) → (0, 0) then

lim
t→∞

d

dt
ln F =

β

4x∗
− λ

2
(1− x∗)− µ− ν > 0,

which is a contradiction.
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Also, the limiting system (21) does not have periodic solutions as we can
see from the Dulac’s Criterion:

∂

∂P

(
1

PF
P ′

)
+

∂

∂F

(
1

PF
F ′

)
= − β

2x∗P 2
− b

F
< 0.

It follows now from the theory of asymptotically autonomous systems
[Castillo-Chavez and Thieme, 1995] that

(P, F ) → (0, 0) if
β

4x∗
− λ

2
(1− x∗) < µ + ν

and

(P, F ) → (P ∗, F ∗) if
β

4x∗
− λ

2
(1− x∗) > µ + ν.

Replacing now x∗ with either x̃ or x̂ we obtain the results stated in the
theorem.
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Figure legends:
Figure 1: Dynamics of the model (5) in case there are no sexually abstain-

ing groups and R0 > 1. These conditions together imply that the infection
invades the host population and attains the endemic equilibrium. Parameter
values: β = 0.2, γf = 0.7, γm = 0.3, µf = 0.012, µm = 0.013, b = 0.00002,
λf = λm = 0.2, νf = νm = αf = αm = 0. In this case, R0 = 2.18 > 1.

Figure 2: Dynamics of the model (5) in case the transition rates to the
sexually abstaining groups are infection-status-independent and R0 > 1.
These conditions together imply that the infection invades the host popu-
lation and attains the endemic equilibrium. Parameter values: β = 0.2,
γf = 0.7, γm = 0.3, µf = 0.012, µm = 0.013, b = 0.00002, λf = λm = 0.2,
νf = αf = 0.03, νm = αm = 0.01. Notice that the basic reproduction number
of the infection is here the same as in Fig.1: Rn

0 = 2.18 > 1.

Figure 3: Dynamics of the model (5) in case the transition rates to the
sexually abstaining groups are infection-status-dependent, with the transi-
tion rates of the infected individuals to the sexually abstaining group higher
than those of the susceptible individuals, and Rn

0 < 1 < R0. These condi-
tions together imply that the disease-free equilibrium, unstable in the absence
of the sexually abstaining groups, is stable in their presence. Parameter val-
ues: β = 0.2, γf = 0.7, γm = 0.3, µf = 0.012, µm = 0.013, b = 0.00002,
λf = λm = 0.2, νf = 0.03, αf = 0.09, νm = 0.01, αm = 0.08. In this case,
R0 = 2.18 > 1 and Rn

0 = 0.88 < 1.
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