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Abstract. We describe several gender structured population models governed
by logistic growth with non-linear death rate. We extend these models to in-
clude groups of people isolated from sexual activity and individuals exposed
to a mild and long-lasting sexually transmitted disease. i.e. without disease-
induced mortality and recovery. The transmission of the disease is modeled
through formation/separation of heterosexual couples assuming that one in-
fected individual automatically infects his/her partner. We are interested in
how the non-reproductive class may change the demographic tendencies in the
general population and whether they can curb the growth of the infected group
while keeping the healthy one at acceptable levels. A comparison of the equi-
librium total population size in the presence and the absence of the isolated
class is also provided.

1. Introduction

The long term dynamics of a population depends on the long-term changes
in fertility and mortality rates and much less on their temporary changes.
For this reason epidemic models usually ignore the demographic factors since
the questions they address are usually about short lived phenomena related
to the infectious outbreaks. This is especially true when the infection and
recovery times are fast or if the disease induced mortality is big enough to the
point where the natural birth and death rate will not affect the outcome too
much. There are, however, infectious diseases which, by their own nature, or
due to the progress in medical treatment, tend to stay in the population for
a very long time. One typical example is given by the Herpes Simplex type 2
virus (HSV-2). In this case the disease is not lethal and, in fact it is symptom
free most of the time, yet there is no known cure and it is safe to say that
the virus, once acquired, it will never disappear completely. In other cases
the advances in medical treatment will increase the life expectancy for the
patients with otherwise lethal infections to the point where the demographic
parameters become important. Several examples are given by the impact of
Highly Active Anti-Retroviral Therapy (HAART) for HIV patients or by the
introduction of a new vaccine against the strains of Human Papillomavirus
(HPV) responsible for causing cervical cancer in the infected women.
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All these justify a detailed study of the interplay between the demographic
and epidemiological factors that influence the long term evolution of a pop-
ulation. One of the demographic factors that we study here is the impact of
isolation from reproduction in general and from sexual activity, in particu-
lar, of portions of a general reproductive population exposed to a mild and
long-lasting sexually transmitted disease (without recovery and additional
mortality).

We mention that we are not going to propose a model for a specific disease
since it is, in general, difficult to measure the correlation between demo-
graphic factors and infectious diseases trends, especially in the context of a
mild and non-lethal STD which is, for most of the time, without symptoms.
However, at least in the case of Herpes Simplex type 2, such correlation
is implied by various reports of the World Health Organization. While
the number of new HSV-2 cases is increasing, even in developed countries,
there are notable exceptions such as Japan where the prevalence of herpes is
actually declining. At the same time, Japan is confronted with a serious de-
mographic problem with a significant proportion of individuals living alone
being de facto non-reproductive and, possibly, sexually inactive (three out
of five women and almost half the men in their twenties and early thirties
are single). The main question that we address is: how much and in what
form isolation from sexual contact by some proportion of individuals may
affect two important aspects of a real population with a sexually transmitted
disease: its growth as a population and the spread of the disease. Previ-
ous work addressed this question from a demographic perspective only [6]
and from an epidemiological one using S − I type exponential and logistic
one-sex models [8].

In this paper we attempt to analyze both the demographic and epidemi-
ological aspects of the problem by using two-sex logistic models with non-
linear mortality. The importance of considering gender-structured model
is obvious in the context of sexually transmitted diseases. One reason, as
mentioned by Hadeler et al.[9], is that faithful healthy couples are tem-
porarily shielded from the infection. On the other hand the pair forma-
tion/separation itself may be the underlying mechanism of disease trans-
mission. As we will see later on this leads to different theoretical predictions
on the total population size which further emphasizes the importance of
using gender structured models in the dynamics of STD’s. On the other
hand the problem of establishing a logistic two-sex model is not trivial. In
the one-sex case one can rely on the well-known logistic equation due to
Verhulst [1]:

P ′(t) = r

[
1− P

K

]
P,

where the K is the carrying capacity. The solution of this equation can
be computed explicitly and it satisfies

P (t) → K as t →∞ whenever P (0) = P0 > 0.

A similar result is sought in the case of two-sex models where we must find
conditions on the parameters that ensure the population always approaches
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a positive bounded steady state. Due to the complicated form taken by
the pair formation function this is not trivial. The first work was done by
Castillo-Chavez and Huang [3] who introduced a two-sex logistic model with
non-linear births and separation rates. Our model considers all paramters
constant except the mortality which is assumed linearly dependent on the
total population P .

This paper is structured as follows: section 2 gives a brief description of
the work done on two-sex homogeneous models by Hadeler et al. [2] and
on the two-sex logistic model developed by Castillo-Chavez and Huang [3].
In section 3 we introduce a logistic model with non-linear mortality that
includes two classes of people isolated from sexual activity and derive an
extinction threshold due to the isolation from reproduction. Section 4 is de-
voted to the full model that includes also the three infected classes, females,
males and couples and two additional isolated from sexual contact classes
coming from the infected females and males. We also compute and analyze
the epidemic reproductive number in the presence and in the absence of the
abstained classes and show how the disease can be eliminated by the isolated
class and also how the total population size can settle at higher levels than
the one in the absence of the non-reproductive groups. In section 5 we treat
the symmetric case of equal vital parameters for both men and women and
analyze the threshold derived before in the context of a population whose
social behavior is not changed in the presence of the disease. Finally, we
conclude in section 6 with some thoughts and directions for future research.

2. The two-sex homogeneous model and its logistic version
with non-linear fertility

Hadeler et al. [2] gave a complete analysis of the pair-formation model
with constant vital parameters using their work in homogeneous models.
Their model is an extension of the one introduced by Kendall [4] and Keyfitz
[5]:

(1)





F ′ = −µfF + (βγf + δ + µm)C −M(F,M),

M ′ = −µmM + (βγm + δ + µf )C −M(F, M),

C ′ = M(F, M)− (δ + µf + µm)C.

F and M denote the single females and males and C the couples.
β represents the birth rate while γf and γm are the probabilities that a
newborn is female or a male respectively (γf + γm = 1).
Finally, µf and µm are the death rates for both genders and δ is the couple
separation rate. Notice that a pair can also disappear due to the death of
one partner which results in a newly single opposite gender.
There are different choices for the marriage function M and there is no
definite agreement as to which one best resembles the reality. It is agreed
however that this function should satisfy several basic properties:

M(F, M) ≥ 0,

M(0,M) = M(F, 0) = 0,
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M(F + F ′,M + M ′) ≥M(F, M),

M(aF, aM) = aM(F, M),

for all positive F , M , F ′ and M ′.
These assumptions are required in order to avoid biologically incorrect

predictions. For example, the homogeneity condition on M says that if
both female and male sizes increase with the same rate we should expect
a similar rate increase in the number of couples. That is the reason why
one cannot model pair formation using mass action kinetics since that will
lead to unrealistically large number of couples for a small increase in the
population of singles. Examples of marriage functions are:

min(F, M), ρFαM1−α with α ∈ (0, 1), 2ρ
FM

F + M

In [2], Hadeler et al. used a transformation that reduces the original
system to one that admits stationary solutions. They proved that every
stationary solution of the reduced system is associated with an exponential
solution with an exponent λ given by the following eigenvalue problem:

(2) M
(

βγf

µf + λ
− 1,

βγm

µm + λ
− 1

)
= µf + µm + δ + λ.

Moreover, they also proved the global stability of these stationary solu-
tions whenever they exists. Consequently λ determines whether the total
population grows exponentially or decays to zero.

The equation (2) can be used to prove the extinction threshold for the lo-
gistic two-sex model introduced by Castillo-Chavez and Huang in [3] and for
our own logistic model with non-linear mortality without isolation discussed
later on.

The first logistic version of the pair formation model was introduced by
Castillo-Chavez and Huang in their 1995 paper [3]. The model contains
the same classes of people but it has non-linear births and separations.
Consequently β and δ are now functions of the total population P with the
following properties:

dβ(P )
dP

< 0, lim
P→∞

β(P ) = 0 and
dδ(P )
dP

≥ 0.

The main result of their model is given below in the form of three propo-
sitions:

Proposition 2.1. If

min
{

β(0)γf

µf
,
β(0)γm

µm

}
≤ 1

or

µf + µm + δ(0) ≥M
(

β(0)γf

µf
− 1,

β(0)γm

µm
− 1

)

then
lim
t→∞P (t) = 0.
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Proposition 2.2. If

min
{

β(0)γf

µf
,
β(0)γm

µm

}
> 1

and

µf + µm + δ(0) < M
(

β(0)γf

µf
− 1,

β(0)γm

µm
− 1

)

then the trivial solution (0, 0, 0) is unstable.

Proposition 2.3. If

min
{

β(0)γf

µf
,
β(0)γm

µm

}
> 1

and

µf + µm + δ(0) < M
(

β(0)γf

µf
− 1,

β(0)γm

µm
− 1

)

then there exist a unique positive steady state (F ∗,M∗, C∗) locally–and con-
jectured globally–asymptotically stable.

The proposition says that the population goes extinct whenever the re-
productive number of each genders is below 1 and when there are not enough
marriages to compensate for the initial separation rate of the couples. Oth-
erwise the total population approaches a non-trivial bounded equilibrium.
These are in fact the basic features of a logistic model. While proving 2.3
can be done using the classic Routh-Hurwitz criterion, this is no longer true
for the extinction steady state (0, 0, 0) since the marriage function fails to be
differentiable at that point. In order to prove 2.1 and 2.2, Castillo-Chavez
and Huang used an equivalent system that follows the dynamics of the total
females and males x = F + C and y = M + C. For the global stability of
the extinction steady state they considered the following continuous and, in
general, not differentiable function:

η(t) = max
{

µfx(t)
β(0)γf

,
µmy(t)
β(0)γm

, C(t)
}

and showed that

D+η(t) = lim sup
ε→0+

η(t + ε)− η(t)
ε

< 0.

However just by itself this condition does not imply that η(t) → 0 as
desired. Instead, we propose using a homogeneous two-sex system that
bounds above the two-sex logistic one and show that the corresponding
non-linear eigenvalue problem (2) has only negative roots. This argument
is provided below.

The system in x, y and C is as follows:

(3)





x′ = −µfx + β(P )γfC,

y′ = −µmy + β(P )γmC,

C ′ = M(x− C, y − C)− (δ(P ) + µf + µm)C,
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where P = x + y.
First notice that the biological meaningful domain for this system is

Ω = {(x, y, C) : x ≥ 0, y ≥ 0, C ≥ 0, x > C, y > C}
and one can show, using standard methods, that it is invariant.

If either
β(0)γf

µf
< 1 or

β(0)γm

µm
< 1

then
x′ < (−µf + β(0)γf )x or y′ < (−µm + β(0)γm)y

meaning that x(t) or y(t) is bounded above by an exponential with negative
rate, hence x(t) → 0 or y(t) → 0 and, consequently, P (t) → 0. Suppose
now that both female and male reproductive numbers are greater than 1
but there are not enough marriages initially, i.e.

M
(

β(0)γf

µf
− 1,

β(0)γm

µm
− 1

)
≤ µf + µm + δ(0).

We can construct a homogeneous system obtained from (3) by replacing
β(P ) and δ(P ) with the constants β(0) and δ(0). The solution of this system
is greater than the one of the original logistic system since β(P ) < β(0) and
δ(P ) > δ(0) for every P > 0. The non-linear eigenvalue problem associated
with this system is, according to (2)

M
(

β(0)γf

µf + λ
− 1,

β(0)γm

µm + λ
− 1

)
= µf + µm + δ(0) + λ

It is clear that the equation cannot have a positive root in the condition
of Proposition 2.1 since for positive λ the left hand side decreases and the
right hand side increases. So if there are not enough marriages as stated
in the proposition, the non-linear eigenvalue problem yields a negative root
and therefore the solution of the homogeneous system–and, consequently, of
the logistic one–declines to zero.

The proof of Proposition 2.2 uses a function similar to η. First we notice
that due to the assumptions of 2.2 there exists a strictly positive P0 such
that

µf + µm + δ(P0) < M
(

β(P0)γf

µf
− 1,

β(P0)γm

µm
− 1

)
.

Then, it is shown in [3], that for any initial condition x0 + y0 < P0, the
function

ξ(t) = min
{

µfx(t)
β(P0)γf

,
µmy(t)

β(P0)γm
, C(t)

}

has the following property:

D+ξ(t) = lim inf
ε→0+

ξ(t + ε)− ξ(t)
ε

> 0

as long as x(t)+y(t) < P0 and this indeed shows that (0, 0, 0) is unstable.
In the next sections we will use a similar approach, with some modifica-

tions, to establish the logistic behavior in the two-sex logistic models with
non-linear mortality and with non-reproductive groups.
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3. The two-sex logistic equation with non-linear mortality
and non-reproductive groups

The purpose of this section is to study the demographic role of the non-
reproductive groups in the context of a two-sex logistic model with non-linear
mortality. The first work was done by Milner [6] on one-sex exponential and
logistic demographic models as well as on two-sex homogeneous models with
constant birth and death rate. The models were modified to include groups
of non-reproductive people and threshold values were computed for νf and
νm–the transition rates into the female and male non-reproductive classes–
that would stop the exponential growth and result in stagnant population.

In this paper we consider a constant birth rate β and two logistic mortality
terms for each gender as functions of the total population P :

µf + bfP and µm + bmP

The assumption is that the linear coefficients bf and bm are much smaller
than the corresponding natural mortality, i.e.

µf >> bf and µm >> bm,

otherwise there would be an unrealistic increase in the death rate for rather
small increases in the total population P .

This particular form of the death rate is also justified by the well estab-
lished logistic model introduced by Verhulst in [1] and it represents a first
approximation of a more realistic population dynamics than that of the one
exhibited by the exponential two-sex model in [2].

Remark 3.1. Another argument for taking non-linear mortality and con-
stant birth rate is that in general the natural factors that impose a limit
on the population size are more prevalent on the number of deaths rather
than births. In fact crowding should increase the number of contact between
people and therefore the number of births per unit of time. What changes
is the survivability of the individuals. There are however situations when
human intervention is clearly acted on the fertility and is correlated with the
total population size justifying taking β as a decreasing function. One such
example is given by China and its demographic laws that limit the number
of offspring a family can have.

The two-sex model becomes

(4)





F ′ = −(µf + bfP )F + (βγf + δ + µm + bmP )C −M(F,M),

M ′ = −(µm + bmP )M + (βγm + δ + µf + bfP )C −M(F, M),

C ′ = M(F, M)− (δ + µf + µm + (bf + bm)P )C.

The equivalent system that follows the dynamics of the total females and
males is
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(5)





x′ = −(µf + bfP )x + βγfC,

y′ = −(µm + bmP )y + βγmC,

C ′ = M(x− C, y − C)− (δ + µf + µm + (bf + bm)P )C.

Before we include the non-reproductive groups we will show that this model
exhibits a similar threshold condition on the parameters as the one derived
by Castillo-Chavez and Huang [3].

Proposition 3.1. If

min
{

βγf

µf
,
βγm

µm

}
≤ 1

or

µf + µm + δ ≥M
(

βγf

µf
− 1,

βγm

µm
− 1

)

then
lim
t→∞P (t) = 0.

Otherwise the trivial solution is unstable and there exist a positive interior
steady state (F ∗, M∗, C∗) that is locally asymptotically stable.

Proof. The argument for the stability and non-stability of the extinction
equilibrium mirrors the one we used for Castillo-Chavez and Huang’s model.
Using the fact that the death rate is an increasing function of P we can
neglect the logistic terms bfP and bmP in (5) and obtain a homogeneous
bounding system whose solution exponentially declines to zero and attracts
all other solutions. Furthermore, a function similar to ξ and an analogous
argument shows that the trivial solution is unstable. We proceed now to
show the existence and the stability of the interior steady state whenever

βγf

µf
> 1,

βγm

µm
> 1 and µf + µm + δ < M

(
βγf

µf
− 1,

βγm

µm
− 1

)
.

First notice that, as it is expected, the total population is always bounded.
Namely,

x′ < (βγf − µf − bfx)x implies x(t) ≤ max
{

x(0),
βγf − µf

bf

}
.

Similarly,

y(t) ≤ max
{

y(0),
βγm − µm

bm

}
.

Substituting x and y from the first two equations into the third one we
obtain the equation that gives the steady state for the total population
P = x + y i.e

(6) M
(

βγf

µf + bfP
− 1,

βγm

µm + bmP
− 1

)
= δ + µf + µm + (bf + bm)P

denote

H(P ) = M
(

βγf

µf + bfP
− 1,

βγm

µm + bmP
− 1

)
− (δ + µf + µm + (bf + bm)P )
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It is easy to see that H is a decreasing function in P > 0.
Moreover H(0) > 0 since this is equivalent to

M
(

βγf

µf
− 1,

βγm

µm
− 1

)
> δ + µf + µm,

which is true by assumption. Also, taking into account that

M(0, y) = M(x, 0) = 0 for every x, y ≥ 0,

we have that

H

(
βγf − µf

bf

)
< 0 and H

(
βγm − µm

bm

)
< 0

Hence there exist a unique positive steady state denoted by P ∗ = x∗ + y∗

0 < P ∗ < min
{

βγf − µf

bf
,
βγm − µm

bm

}
.

Notice that
C∗ =

P ∗
βγf

µf+bf P ∗ + βγm

µm+bmP ∗

and
x∗ =

βγf

µf + bfP ∗C
∗, y∗ =

βγm

µm + bmP ∗C
∗.

In order to prove the stability of the interior steady state we linearize
the system around (x∗, y∗, P ∗) and use the Routh-Hurwitz criterion to show
that all roots of the characteristic polynomial have negative real part.

To simplify the computation we are going to use the following notations
and substitutions:

µ̄f = µf +bfP ∗, µ̄m = µm+bmP ∗, b = bf +bm, βγf = µ̄f
x∗

C∗ , βγm = µ̄m
y∗

C∗ ,

Mx =
∂M
∂F

(x∗ − C∗, y∗ − C∗) and My =
∂M
∂M

(x∗ − C∗, y∗ − C∗) .

It follows then,
∂

∂C
[M(x∗ − C∗, y∗ − C∗)]C=C∗ = −Mx −My

From [3] we can also use the following identity due to the homogeneity of
M:

δ + µ̄f + µ̄m +Mx +My =
1

C∗ (x
∗Mx + y∗My)

This is obtained by differentiating the following identity with respect to α
and evaluated at α = 1:

M [α(x∗ − C∗), α(y∗ − C∗)] = αM(x∗ − C∗, y∗ − C∗).

Having these, the Jacobian computed at the interior steady state is

A =



−µ̄f − bfx∗ −bfx∗ µ̄f

x∗
C∗

−bmy∗ −µ̄m − bmy∗ µ̄m
y∗
C∗

Mx − bC∗ My − bC∗ − 1
C∗ (x

∗Mx + y∗My)


 .
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If we denote by λ3 + p1λ
2 + p2λ+ p3 = 0 the corresponding characteristic

equation then a straightforward computation shows:

p1 = −Tr(A) = µ̄f + µ̄m + bfx∗ + bmy∗ +
1

C∗ (x
∗Mx + y∗My) > 0

p2 = [(µ̄f + bfx∗)(µ̄m + bmy∗)− bfbmx∗y∗] +

+
[

1
C∗ (µ̄f + bfx∗)(x∗Mx + y∗My)− 1

C∗ µ̄fx∗Mx + bµ̄fx∗
]

+

+
[

1
C∗ (µ̄m + bmy∗)(x∗Mx + y∗My)− 1

C∗ µ̄my∗My + bµ̄my∗
]

=

= µ̄f µ̄m + bmµ̄fy∗+ bf µ̄mx∗+ b(µ̄fx∗+ µ̄my∗)+
1

C∗ (µ̄mx∗Mx + µ̄fy∗My)+

+
1

C∗ (bfx∗ + bmy∗)(x∗Mx + y∗My) > 0

p3 = −Det[A] =
(

b− Mx

C∗

)
[x∗y∗(bmµ̄f − bf µ̄m) + x∗µ̄f µ̄m] +

+
(

b− My

C∗

)
[x∗y∗(bf µ̄m − bmµ̄f ) + y∗µ̄f µ̄m] +

+
1

C∗ (x
∗Mx + y∗My)[(µ̄f + bfx∗)(µ̄m + bmy∗)− bfbmx∗y∗] =

= (x∗ + y∗)
(

bµ̄f µ̄m + bf µ̄mx∗
Mx

C∗ + bmµ̄fy∗
My

C∗

)
> 0

Similarly, a lengthy computation shows also that p1p2 > p3 and it is
easy to see, in fact, that p3 appears entirely as part of p1p2 with additional
non-negative terms. ¤

In all likelihood the interior steady state is globally stable. If we assume
that we have the same parameters for both genders the marriage function
becomes linear and the system can be reduced to two dimensions. We can
prove in this case the global stability of the interior steady state using the
Poincare-Bendixson theory for planar systems.

Proposition 3.2. Assuming that

µ = µf = µm, b = bf = bm, γf = γm =
1
2

and
β

2µ
>

δ + 2µ

M(1, 1)
+ 1

the interior equilibrium (x∗, y∗, C∗) is globally asymptotically stable.

Proof. The last condition in the proposition essentially combines the hy-
pothesis of the general case stating that there should be enough births and
enough marriages in order for the population to avoid extinction. Tak-
ing into account that M is homogeneous and that x(t) = y(t)–provided
x(0) = y(0)–the system (5) reduces to
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(7)





x′ = −(µ + 2bx)x + β
2 C := f̄(x,C),

C ′ = (x− C)M(1, 1)− (δ + 2µ + 4bx)C := ḡ(x, C).

By applying the Dulac’s criterion we can exclude the possibility of periodic
solutions since

∂

∂x

[
1

xC
f̄(x,C)

]
+

∂

∂C

[
1

xC
ḡ(x,C)

]
=

= − 1
xC

[
2bx +M(1, 1)

x

C
+

β

2
C

x

]
< 0

in the positive quadrant. Furthermore, the extinction equilibrium is unstable
whenever the interior one exists by Proposition 3.1. From this and the fact
that the solution is bounded for all time we conclude the global stability
result stated above.

¤

We introduce now two classes of individuals , Af and Am representing
the number of females and males who become sexually abstained for life by
any reason, either social or medical. The modified two-sex logistic model is

(8)



F ′ = −(µf + bfP )F + (βγf + δ + µm + bmP )C −M(F, M)− νfF,

M ′ = −(µm + bmP )M + (βγm + δ + µf + bfP )C −M(F, M)− νmM,

C ′ = M(F, M)− [δ + µf + µm + (bf + bm)P ]C,

A′f = νfF − (µf + bfP )Af ,

A′m = νmM − (µm + bmP )Am.

The corresponding system in x, y, C, Af , Am is

(9)





x′ = −(µf + νf + bfP )x + (βγf + νf )C,

y′ = −(µm + νm + bmP )y + (βγm + νm)C,

C ′ = M(x− C, y − C)− [δ + µf + µm + (bf + bm)P ]C,

A′f = νf (x− C)− (µf + bfP )Af ,

A′m = νm(y − C)− (µm + bmP )Am.

Notice that in this case x and y denotes the total number of reproductive
females and males, hence

P (t) = x(t) + y(t) + Af (t) + Am(t).
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The next proposition establishes a similar condition as the one for the
model without isolation from reproduction that ensure the logistic behavior
of our model. This will also provide a threshold condition on the isolation
rates νf and νm that will cause an otherwise stable positive population to
decline to zero. Thus we will give an answer for the question about the
demographic influence of the non-reproductive groups. As we mentioned
before, this was done in [6] for the homogeneous two-sex models.

Proposition 3.3. If

min
{

βγf

µf
,
βγm

µm

}
≤ 1

or

µf + µm + δ ≥M
(

βγf + νf

µf + νf
− 1,

βγm + νm

µm + νm
− 1

)

then
lim
t→∞P (t) = 0

Proof. First notice that νf and νm have no influence on the first condition
since

x′ < (−µf − νf + βγf + νf )x = (−µf + βγf )x

and
y′ < (−µm − νm + βγm + νm)y = (−µm + βγm)y.

Therefore
βγf

µf
< 1 or

βγm

µm
< 1 implies x(t) → 0 or y(t) → 0

and then P (t) → 0.
Suppose now that both female and male reproductive numbers are positive

but we have

a1 := µf + µm + δ −M
(

βγf + νf

µf + νf
− 1,

βγm + νm

µm + νm
− 1

)
> 0

In this case we are no longer able to use the homogeneous bounding system
that we mentioned in the model without isolation and in the Proposition
2.1. By doing so, the isolation rates νf and νm will cancel and we end-up
with the same extinction threshold which is too strong and, evidently, does
not capture the influence of the non-reproductive groups. Instead, we will
use Castillo-Chavez and Huang approach by taking a function similar to η
for which we derive a stronger result by taking advantage of our particular
form of the death rate.

Consider the forward solution (x(t), y(t), C(t), Af (t), Am(t)) through an
initial point (x0, y0, C0, Af0 , Am0) and the following function, as in [3]:

h(t) = max
{

(µf + νf )x(t)
βγf + νf

,
(µm + νm)y(t)

βγm + νm
, C(t)

}

For any t > 0 fixed one of the following holds:
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• h(t) = C(t). In this case we have

C ′ = C
[
M

( x

C
− 1,

y

C
− 1

)
− (δ + µf + µm + (bf + bm)P )

]
<

< C

[
M

(
βγf + νf

µf + νf
− 1,

βγm + νm

µm + νm
− 1

)
− (δ + µf + µm)

]
< −a1C.

• h(t) = (µf+νf )x(t)
βγf+νf

. This implies that

x′ =
[
(βγf + νf )

C

x
− µf − νf − bfP

]
x < −bfx2.

• Similarly if h(t) = (µm+νm)y(t)
βγm+νm

we have y′ < −bmy2.
This means that if we denote

D+h(t) = lim sup
ε→0+

h(t + ε)− h(t)
ε

we have

D+h(t) < −a1h(t) or D+h(t) < −a2h
2(t),

where

a2 = min
{

bf (βγf + νf )
µf + νf

,
bm(βγm + νm)

µm + νm

}
.

While h(t) is a continuous function one cannot in general assume that it
is differentiable so we can’t use the Riemann integral nor the fundamental
theorem of calculus to integrate the inequalities above. We can use, however,
the following weaker version of the theorem of calculus:

Theorem 3.1. Let f be an increasing real-valued function on the interval
[a, b]. Then f is differentiable almost everywhere. The derivative f ′ is mea-
surable and ∫ b

a
f ′(x)dx ≤ f(b)− f(a).

Consider now T > 0 a fixed time. On the compact [0, T ], h(t) is continuous
and decreasing. Therefore − ln(h(t)) and 1

h(t) are increasing . We define now
the following sets:

A = {t ∈ [0, T ], D+h(t) < −a1h(t)}
and

B = {t ∈ [0, T ], D+h(t) < −a2h
2(t)}

These are clearly measurable with respect with the usual real Lebesgue
measure denoted by l. Hence

l(A) + l(B) ≥ T.

Since both − ln h(t) and 1
h(t) are differentiable almost everywhere on [0, T ]

we can consider the Lebesgue integral of their derivatives:

∫

A
[− lnh(t)]′dt <

∫ T

0
[− lnh(t)]′dt ≤ − lnh(T ) + lnh(0).
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However on A we also have∫

A
[− ln h(t)]′dt =

∫

A

−h′(t)
h(t)

dt >

∫

A
a1dt = a1l(A).

Similarly, ∫

B

[
1

h(t)

]′
dt <

∫ T

0

[
1

h(t)

]′
dt ≤ 1

h(T )
− 1

h(0)
and ∫

B

[
1

h(t)

]′
dt =

∫

B

[
− h′(t)

h2(t)

]
dt >

∫

B
a2dt = a2l(B)dt.

Combining these inequalities and denoting a = min{a1, a2} we obtain
1

h(T )
− 1

h(0)
+ ln

h(0)
h(T )

> a[l(A) + l(B)] ≥ aT.

As h(T ) is decreasing in T and bounded below it must be convergent but
since the right hand side of the above inequality goes to ∞ then we must
have h(T ) → 0+ as T →∞ and therefore P (t) → 0 as claimed. ¤

Notice that this provides a threshold phenomenon regarding the segrega-
tion rates of the healthy group

If

M
(

βγf − µf

µf + νf
,
βγm − µm

µm + νm

)
< δ + µf + µm < M

(
βγf

µf
− 1,

βγm

µm
− 1

)

then the total population goes to zero due to the non-reproductive rates of
healthy people.

The equation that gives the interior steady state in the segregated case is

(10) M
(

βγf + νf

µf + νf + bfP
− 1,

βγm + νm

µm + νm + bmP
− 1

)
= δ + µf + µm + (bf + bm)P.

which by the same argument as in the case without the non-reproductive
groups has a unique positive root denoted by P ∗

s . We denote also by F ∗
s ,

M∗
s , C∗

s , A∗fs
and A∗ms

the corresponding interior equilibrium.

Remark 3.2. The stability of the interior steady state appears to hold when-
ever it exists according to the simulations. Applying the Routh-Hurwitz cri-
terion is difficult in this case because the 5 dimensional system leads to very
large coefficients. In order to check the stability we implemented a numerical
algorithm that computes the eigenvalues of the Jacobian of (9) evaluated at
the interior steady state for a given set of data. We generated approximately
1000 sets of data assuming that each parameter is uniformly distributed in
the interval [0, 1] and in all cases the eigenvalues had a negative real part.
We will use this numerical result in the interpretation of the epidemic re-
productive number computed in the next section.

4. The epidemic two-sex logistic model with groups isolated
from sexual activity

The two-sex logistic model introduced in the previous section can be ex-
tended to an epidemic model where the disease transmission is realized by
the pair formation. We assume that once a couple is formed between a
healthy person and an infected one then the infection is certain. While this
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might be an oversimplification it allows us to keep the dimension of the
system as low as possible.

The epidemic model includes 6 classes of individuals: F , M , C as before
and the corresponding Φ, X and Γ for the infected females, males and cou-
ples.
The pair formation is assumed to be independent of the disease. In other
words single individuals enter in relationships without a behavioral change
according to whether they are infected or not. We consider from now on
that the marriage function is given by the harmonic mean:

M(x, y) = 2ρ
xy

x + y
.

In our model this can be written as follows:

M(F + Φ,M + X) = P(F,M) + P(F, X) + P(Φ,M) + P(Φ, X)

where

P(x, y) = 2ρ
xy

F + M + Φ + X
.

Using the pair-formation function P we can track the source of new in-
fections in the model. Notice that this is given by P(Φ,M) and P(F, X).
The last term that pairs the sick females and males while it will be a source
for infected couples Γ it does not technically constitute new infection since
the partners are already infected before entering in the relationship. Finally
we will add the 4 classes abstained from sexual activity Af , Am, Aϕ and
Aχ coming from single females and males both healthy and infected with
the rates given by νf , νm, νϕ and νχ. We denote also by δi the separation
rate of the infected couples. A flow diagram is provided below. The infected
classes are emphasized by the red color.

The model equations are:

(11)
F ′ = −(µf + bfP )F + βγf (C + Γ) + (δ + µm + bmP )C − P(F, M)− P(F, X)− νfF,

M ′ = −(µm + bmP )M + βγm(C + Γ) + (δ + µf + bfP )C − P(F, M)− P(Φ, M)− νmM,

C′ = P(F, M)− (δ + µf + µm + (bf + bm)P )C,

Φ′ = −(µf + bfP )Φ + (δi + µm + bmP )Γ− P(Φ, M)− P(Φ, X)− νϕΦ,

X ′ = −(µm + bmP )X + (δi + µf + bfP )Γ− P(Φ, X)− P(F, X)− νχX,

Γ′ = P(F, X) + P(Φ, M) + P(Φ, X)− (δi + µf + µm + (bf + bm)P )Γ,

A′f = νfF − (µf + bfP )Af ,

A′m = νmM − (µm + bmP )Am,

A′ϕ = νϕφ− (µf + bfP )Aφ,

A′χ = νχX − (µm + bmP )Aχ.
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Figure 1. The two sex epidemic model with abstained groups.

The total population P is given now by

P = F + M + 2C + Φ + X + 2Γ + Af + Am + Aϕ + Aχ.

Remark 4.1. Notice that, in the epidemic model, the concept of “pair for-
mation” includes short lived couples in addition to traditional marriages and
implies that these unions are faithful. In other words, we assume that indi-
viduals enter a relationship of some sort before engaging in sexual activity.
This, of course, is not realistic for communities where casual sexual rela-
tions are common but it is appropriate for conservatives cultures where extra
marital relations are discouraged or even condemned. Furthermore, even in
liberal societies, most people spend some time together before engaging in
intimate relations. For these reasons, we consider that the majority of new
infections occur among individuals involved in a relationship.
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Notice that the disease free equilibrium in the absence of isolation from
reproduction is precisely the interior steady state F ∗, M∗ and C∗ of (4)
and the one in the presence of the abstained groups is the interior steady
state F ∗

s , M∗
s , C∗

s , A∗fs
and A∗ms

of (8). The first one is locally asymptotically
stable and the second one is also assumed–from the simulations–to be stable.
We use this information in order to compute the epidemic reproductive
number in both cases mentioned above using a method developed by van
den Driessche et al. [7] based on the next-generation matrix.

For an n−dimensional system x′ = f(x), we need to write the equations
in the form

xi
′ = Gi(x)− Vi(x) i = 1, ..., n,

where G denotes the rate of appearance of new infections. In our model
this is

P(Φ,M) + P(F, X).
This is because a new infection occurs when there is a marriage between
an infected individual and a healthy one. If both partners are already in-
fected they do contribute to the number of infected couples but they do not
constitute a new infection. The main result of van den Driessche et al. [7]
is that one can compute the epidemic reproductive number by restricting
the analysis to the components of G and V corresponding to the infected
compartments only. For better clarity we change the order of the equations
to have the single infected classes first. G and V restricted to the infected
groups are:

G =




0
0
0
0

P(F, X) + P(Φ,M)




,

G =




P(Φ, X) + P(Φ,M)− (δi + µm + bmP )Γ + (µf + bfP )Φ + νϕΦ
P(Φ, X) + P(F,X)− (δi + µf + bfP )Γ + (µm + bmP )X + νχX

(µf + bf )Aϕ − νϕΦ
(µm + bmP )Aχ − νχX

(δi + µf + µm + (bf + bm)P )Γ− P(Φ, X)




.

The Jacobians computed below are with respect to the infected classes
in the following order: Φ, X and Γ for the system without isolation from
sexual activity and Φ, X, Aϕ, Aχ and Γ, in the presence of the abstained
groups. The basic reproductive number is then defined as being the spectral
radius of GV −1 where G and V are the Jacobians of G and V restricted to
the infected classes and evaluated at the disease free equilibrium.

We introduce first the following notation:

Rf =
βγf

µf + bfP ∗ − 1, Rm =
βγm

µm + bmP ∗ − 1,

Rνf

f =
βγf + νf

µf + νf + bfP ∗
s

− 1, Rνm
m =

βγm + νm

µm + νm + bmP ∗
s

− 1,

µ̄f = µf + bfP ∗, µ̄m = µm + bmP ∗,



18 D. MAXIN AND F.A. MILNER

µ̄s
f = µf + bfP ∗

s , µ̄s
m = µm + bmP ∗

s .

Without isolation from sexual activity, the Jacobians corresponding to
the infected classes, Φ, X and Γ, and evaluated at DFE, are

G =




0 0 0
0 0 0

2ρ M∗
F ∗+M∗ 2ρ F ∗

F ∗+M∗ 0




and

V =




µ̄f + 2ρ M∗
F ∗+M∗ 0 −δi − µ̄m

0 µ̄m + 2ρ F ∗
F ∗+M∗ −δi − µ̄f

0 0 δi + µ̄f + µ̄m


 .

The inverse of V is:

V −1 =




1

µ̄f+2ρ M∗
F∗+M∗

0 δi+µ̄m

(δi+µ̄f+µ̄m)(µ̄f+2ρ M∗
F∗+M∗ )

0 1

µ̄m+2ρ F∗
F∗+M∗

δi+µ̄f

(δi+µ̄f+µ̄m)(µ̄m+2ρ F∗
F∗+M∗ )

0 0 1
δi+µ̄f+µ̄m


 .

The biological interpretation of the entries of V −1 is as follows:
• The elements on the main diagonal represent the average time spent

by a newly introduced infected single female, male or couple in the
Φ, X and Γ classes respectively.

• δi+µ̄m

δi+µ̄f+µ̄m
is the fraction of married infected females that move into

the single class Φ due to either separation or death of the male part-
ner. Therefore the (1, 3) entry represents the average time spent by
an infected married woman into the single class Φ. An analogous
interpretation corresponding to the married infected males can be
made regarding (2, 3) entry.

• The zero elements on the first two rows of V −1 simply mean that
there is obviously no transition between single females and single
males. The zeros in the last row mean that there is no direct transi-
tion from couples to singles. In other words a couple cannot exist as
an entity in either Φ or X groups.

The corresponding reproductive number is the spectral radius of GV −1

which is

R0 = 2ρ
M∗

F ∗ + M∗
δi + µ̄m

(δi + µ̄f + µ̄m)
(
µ̄f + 2ρ M∗

F ∗+M∗

)+

+2ρ
F ∗

F ∗ + M∗
δi + µ̄f

(δi + µ̄f + µ̄m)
(
µ̄m + 2ρ F ∗

F ∗+M∗

) .

The biological interpretation of the first term of R0 is as follows: When a
single infected female is introduced in a healthy population she spends and
average time in Φ class equal to 1

µ̄f+2ρ M∗
F∗+M∗

.

Hence, 2ρ M∗
F ∗+M∗

1

µ̄f+2ρ M∗
F∗+M∗

is the expected number of infected couples

generated by a single infected female and δi+µ̄m

δi+µ̄f+µ̄m
is the fraction of married
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infected females that move back into the single class Φ. In other words, the
first term of R0 represents the average number of secondary cases of infected
single females generated by the introduction of a single infected female in a
healthy population.

An equivalent expression for R0 in terms of Rf and Rm is

R0 =
2ρ

δi + µ̄f + µ̄m

[
δi + µ̄m

2ρ + µ̄f (1 +Rf/Rm)
+

δi + µ̄f

2ρ + µ̄m(1 +Rm/Rf )

]
.

Finally, in the presence of isolation from sexual activity, G and V , corre-
sponding to the equations for Φ, X, Aϕ, Aχ and Γ, are:

Gs =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2ρ
M∗

s
F∗s +M∗

s
2ρ

F∗s
F∗s +M∗

s
0 0 0




and

Vs =




µ̄s
f + νϕ + 2ρ

M∗
s

F∗s +M∗
s

0 0 0 −δi − µ̄s
m

0 µ̄s
m + νχ + 2ρ

F∗s
F∗s +M∗

s
0 0 −δi − µ̄s

f

−νϕ 0 µ̄s
f 0 0

0 −νχ 0 µ̄s
m 0

0 0 0 0 δi + µ̄s
f + µ̄s

m




,

V −1
s =




1

µ̄s
f
+νϕ+2ρ

M∗
s

F∗s +M∗
s

0 0 0
δi+µ̄s

m(
δi+µ̄s

f
+µ̄s

m

)(
µ̄s

f
+νϕ+2ρ

M∗
s

F∗s +M∗
s

)

0 1

µ̄s
m+νχ+2ρ

F∗s
F∗s +M∗

s

0 0
δi+µ̄s

f(
δi+µ̄s

f
+µ̄s

m

)(
µ̄s

m+νχ+2ρ
F∗s

F∗s +M∗
s

)

νϕ

µ̄s
f

(
µ̄s

f
+νϕ+2ρ

M∗
s

F∗s +M∗
s

) 0 1
µ̄s

f
0

νϕ(δi+µ̄s
m)

µ̄s
f

(
δi+µ̄s

f
+µ̄s

m

)(
µ̄s

f
+νϕ+2ρ

M∗
s

F∗s +M∗
s

)

0
νχ

µ̄s
m

(
µ̄s

m+νχ+2ρ
F∗s

F∗s +M∗
s

) 0 1
µ̄s

m

νχ(δi+µ̄s
f )

µ̄s
m

(
δi+µ̄s

f
+µ̄s

m

)(
µ̄s

m+νχ+2ρ
F∗s

F∗s +M∗
s

)

0 0 0 0 1
δi+µ̄s

f
+µ̄s

m




.

The interpretation of V −1
s is similar to that for V −1. In addition, νϕ

µ̄s
f+νϕ+2ρ

M∗
s

F∗s +M∗
s

represents the average number o single infected females that move into Aϕ

class. Hence, the (3, 1) entry of V −1
s is the expected time spent in the

isolated class by an infected reproductive single female during her life-time.
Consequently, the (3, 5) entry is the expected time spent in the isolated class
by a married infected female that moves first into the single reproductive
class Φ and then into the isolated class Aϕ. A similar interpretation holds
for the (4, 2) and (4, 5) entries.

The epidemic reproductive number in the presence of abstinence is the
spectral radius of GsV

−1
s :

Rs
0 = 2ρ

M∗
s

F ∗
s + M∗

s

δi + µ̄s
m(

δi + µ̄s
f + µ̄s

m

)(
µ̄s

f + νϕ + 2ρ M∗
s

F ∗s +M∗
s

)+

+2ρ
F ∗

s

F ∗
s + M∗

s

δi + µ̄s
f(

δi + µ̄s
f + µ̄s

m

)(
µ̄s

m + νχ + 2ρ F ∗s
F ∗s +M∗

s

) .
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Just as before, each term represents the gender-specific expected number of
secondary infected cases caused by a newly introduced infectious individual
in a healthy population. Below we provide an analogous expression for Rs

0

in terms of Rνf

f and Rνm
m :

Rs
0 =

2ρ

δi + µ̄s
f + µ̄s

m

[
δi + µ̄s

m

2ρ + (µ̄s
f + νφ)(1 +Rνf

f /Rνm
m )

+
δi + µ̄s

f

2ρ + (µ̄s
m + νχ)(1 +Rνm

m /Rνf

f )

]
.

The following result indicates that there exists a DFE induced by the
abstained groups:

Proposition 4.1. There exists a threshold on the abstinence rates, νf , νm,
νϕ and νχ such that the DFE is unstable in the absence of the sexually
isolated groups and locally asymptotically stable in the presence of them.

Proof. Notice the following dependency of Rs
0 on the non-reproductive tran-

sition rates:
Rs

0 = Rs
0 (P ∗

s (νf , νm), νϕ, νχ) .

Furthermore, Rs
0 is a decreasing function with respect to the transition

rates, νϕ and νχ, into the abstained groups coming from the infected singles
and, in fact, it is easy to see that

Rs
0 → 0 as νϕ →∞ or νχ →∞.

We can, therefore, establish conditions on the parameters so that

R0 > 1 and Rs
0 < 1.

¤
The next two pictures show two numerical examples for the disease per-

sistence in the absence of the abstained groups and one where the DFE is
stable in the presence of the abstained groups. The values of the parameters
were chosen to illustrate the mathematical result and do not correspond to
real data.
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Figure 3. DFE induced by the abstained groups.
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This result is similar to the one obtained in our previous paper [8] involv-
ing SI-type one-sex models. In that case the transmission process involved
only one parameter, λ, the force of infection coefficient. We managed then
to provide a range for λ where the disease is eliminated by the sexually
inactive groups:

β

K
< λ <

β − ν1 + ν2(
K − ν1

b

) (
1− ν1

β

) ,

where ν1 = νf = νm and ν2 = νϕ = νχ. The left inequality means that the
disease persists in the absence of the abstained groups, that is ν1 = ν2 = 0,
while the right inequality denotes the condition that leads to the elimination
of the disease by the introduction of an abstained group in an otherwise
endemic population. Similarly, R0 > 1 means that the disease is endemic,
while Rs

0 < 1 is the condition for the disease-free steady state to be induced
by the abstained classes.

The next result shows that the presence of the sexually isolated groups
may have the surprising effect of causing the total population to settle at
higher values than in the absence of them.

Proposition 4.2. If Rs
0 < 1, a greater separation rate δi of the infected

couples combined with a low isolation into the isolated groups of healthy
singles leads to

lim
t→∞P (t) < P ∗

s .

Proof. To see why this happens, notice that, if δi = δ and νf , νm, νϕ and
νχ are zero, then the disease will not affect the general dynamics of the
population meaning that the singles and the couples, are modeled precisely
by the same system as (4):

(12)
(F + Φ)′ = −(µf + bfP )(F + Φ) + (βγf + δ + µm + bmP )(C + Γ)−M(F + Φ, M + X),

(M + X)′ = −(µm + bmP )(M + X) + (βγm + δ + µf + bfP )(C + Γ)−M(F + Φ, M + X),

(C + Γ)′ = M(F + Φ, M + X)− (δ + µf + µm + (bf + bm)P )(C + Γ),

whose interior steady state is P ∗, the solution of (6), as we know from
the analysis in the previous section. If δi > δ, then it is clear that P ∗ is
eventually an upper bound for the total population size P (t) as t →∞. On
the other hand, we also now that

P ∗
s < P ∗ and P ∗

s → P ∗ as (νf , νm) → (0, 0).

It follows that, for sufficiently large δi, νϕ, and νχ, and sufficiently small νf

and νm,
lim
t→∞P (t) < P ∗

s .

¤
Remark 4.2. The situation described above can be explained by the fact
that, while the infected groups are present, a higher separation rate of the
infected couples means that the reproductive number of the paired individ-
uals is lowered significantly. On the other hand, there is no recovery from
the disease, which means that the infection transmission acts as a drain of
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reproductive people from a group with high reproductive rate to a group with
higher separation rate δi, resulting in an overall smaller population size at
steady state. In contrast, if the disease is eliminated, then the entire popu-
lation is governed by a low separation rate δ and the isolated groups do not
manage to decrease it too much if νf and νm are small.

Remark 4.3. Having greater separation and isolation rates for infected indi-
viduals can be justified in cases where people become aware of their infection.
In the context of mild and non-lethal diseases it is reasonably to assume that
these rates are the same for both healthy and infected. On the other hand, if
a certain individuals become aware of their infection, they may choose to re-
frain from sexual activity. Intuitively, this increases the likelihood of couple
separation or transition into the abstained groups.

In the next picture we show one numerical example in support for this
result.
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Figure 4. Comparison of the total population size.

5. The case of gender independent parameters

In this section we compute the reproductive numbers derived before in
the case of equal gender-related parameters. In doing so we will reduce the
dimension of the system to 4 and we will be able to compute explicitly the
interior steady states since they will be roots of quadratics. This will give
us the opportunity to identify a range on the key parameters–aside from νϕ

and νχ–that induce the stability of DFE.
We assume now

µ = µf = µm, b = bf = bm, γf = γm =
1
2
,
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ν1 = νf = νm, ν2 = νϕ = νχ.

Then,
Rf = Rm and Rνf

f = Rνm
m .

In addition, to simplify the expressions, we denote

µ̄ = µ + bP ∗ and µ̄s = µ + bP ∗
s .

The epidemic reproductive numbers become

R0 =
2ρ(δi + µ̄)

(ρ + µ̄)(δi + 2µ̄)
and Rs

0 =
2ρ(δi + µ̄s)

(ρ + ν2 + µ̄s)(δi + 2µ̄s)
,

where µ̄ and µ̄s are computed solving explicitly (6) and (10), respectively,
having the following unique positive values:

µ̄ =
−(δ + ρ) +

√
(δ + ρ)2 + 4ρβ

4
,

µ̄s =
−(δ + ρ + 2ν1) +

√
(δ + ρ + 2ν1)2 + 4(ρβ − 2δν1)

4
.

The existence condition of a positive steady state becomes

(13)
β

2
> µ +

(δ + 2µ)(µ + ν1)
ρ

.

R0 > 1 becomes

(14) δi(ρ− µ̄) > 2µ̄2,

and Rs
0 < 1 is equivalent to

(15) δi(ρ− ν2 − µ̄s) < 2µ̄2
s + 2ν2µ̄s.

Notice that (14) requires ρ > µ̄, which is equivalent to

3ρ + δ >
β

2
.

Remark 5.1. The condition above explains the double role–demographic
and epidemiological–played by the pair formation coefficient ρ and by the
separation rate δ. On one hand, the existence condition (13) provides a
lower bound for ρ and an upper bound for δ meaning that marriages need
to compensate couple separations in order to sustain a positive stable popu-
lation. On the other hand, both ρ and δ as well as δi must be large enough
because three factors must be satisfied in order for an epidemic to occur: a
large ρ means that there are enough contacts between infected and healthy
people, a large δ provides enough healthy singles which become later on new
infections and, finally, a large δi supplies single infected individuals. As it
is expected, condition (15) is either trivially satisfied if ρ − µ̄s < ν2 or if
δi < 2µ̄2

s+2ν2µ̄s

ρ−νsµ̄s
and it says that the disease is eliminated either due to the

large segregation rate of single infected people or due to a lack of separation
of infected couples. The last one essentially has the same effect of reducing
the size of single infected groups.
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Remark 5.2. What is the effect of separating because of infection?
From the above remark we see that a higher separation rate of infected cou-
ples δi > δ increases the chance for an epidemic because it combines the
unwanted demographic effect of fewer healthy newborns (since we assume no
vertical transmission) with the epidemiological effect of having more single
infected in the population. This also explains biologically the mathematical
result in the previous section when one can obtain a larger population size
in the presence of isolation from reproduction.

According to our simulations we conjecture that the stability of both
the endemic and the disease free equilibrium are global. In the following
particular case we can prove this assertion:

Proposition 5.1. If the separation rate is independent of the presence of
infection, i.e. δ = δi, the endemic equilibrium in the absence of the abstained
groups is globally asymptotically stable.

Proof. Assuming ν1 = ν2 = 0 the original system (11) becomes

(16)



F ′ = −(µ + bP )F + β
2 (C + Γ) + (δ + µ + bP )C − ρ F 2

F+Φ − ρ FΦ
F+Φ ,

Φ′ = −(µ + bP )Φ + (δ + µ + bP )Γ− ρ FΦ
F+Φ − ρ Φ2

F+Φ ,

C ′ = ρ F 2

F+Φ − (δ + 2µ + 2bP )C,

Γ′ = 2ρ FΦ
F+Φ + ρ Φ2

F+Φ − (δ + 2µ + 2bP )Γ.

where P = 2(F + Φ + C + Γ).
Denoting x = F +Φ and y = C+Γ we obtain the following planar system:

(17)





x′ = −(ρ + µ + 2bx)x + (β
2 + δ + µ + 2by)y := f̄1(x, y),

y′ = ρx− (δ + 2µ + 4bx + 4by)y := ḡ1(x, y).

Notice now that, just as in Proposition 3.2, we have

∂

∂x

[
1
xy

f̄1(x, y)
]

+
∂

∂y

[
1
xy

ḡ1(x, y)
]

=

= − 1
xy

[
2bx + 2µ +

(
β

2
+ δ + µ + 2by

)
y

x
+ ρ

x

y

]
< 0

on the positive quadrant. Using Poincare-Bendixson theory and the Du-
lac’s criterion as in Proposition 3.2 we conclude that the unique interior
equilibrium of this system is globally asymptotically stable:

x∗ =
µ̄− µ

2b

δ + 2µ̄

ρ + δ + 2µ̄
and y∗ =

µ̄− µ

2b

ρ

ρ + δ + 2µ̄
.

Using now the fact that F (t) + Φ(t) → x∗ and C(t) + Γ(t) → y∗, we can
use results on asymptotically autonomous systems–such as the ones derived
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by Thieme in [10]–in order to compute the limits of each of the 4 groups of
people that appear in the model.

The following system obtained from (16)

(18)





Φ′ = −(µ + bP )Φ + (δ + µ + bP )Γ− ρ FΦ
F+Φ − ρ Φ2

F+Φ ,

Γ′ = 2ρ FΦ
F+Φ + ρ Φ2

F+Φ − (δ + 2µ + 2bP )Γ.

is asymptotically autonomous and by replacing F with x∗−Φ and C with
y∗ − Γ we can obtain its limiting system:

(19)





Φ′ = −(µ̄ + ρ)Φ + (δ + µ̄)Γ := f̄2(Φ, Γ),

Γ′ = 2ρΦ− ρ
x∗Φ

2 − (δ + 2µ̄)Γ := ḡ2(Φ,Γ).

The interior equilibrium of (19) is

Φ∗ =
ρδ − δµ̄− 2µ̄2

ρ(δ + µ̄)
and Γ∗ =

(µ̄ + ρ)(ρδ − δµ̄− 2µ̄2)
ρ(δ + µ̄)2

which exists whenever

δ(ρ− µ̄) > 2µ̄2.

As it is expected this is precisely R0 > 1. Seeking now a similar argument
as above for the global stability of the solution of (19) we apply again Dulac’s
Criterion to rule out the possibility of periodic solutions:

∂

∂Φ

[
1

ΦΓ
f̄2(Φ, Γ)

]
+

∂

∂Γ

[
1

ΦΓ
ḡ2(Φ, Γ)

]
=

=
1

ΦΓ

[
− (δ + µ̄)

Γ
Φ
− 2ρ

Φ
Γ

+ ρ
Φ
Γ

Φ
x∗

]
< 0

because, in the limiting system, Φ
x∗ < 1.

Thus, our system satisfies the Poincaré-Bendixson type trichotomy estab-
lished by Thieme in [10] for assymptotically autonomous systems. Therefore
the only possibility is that any solution of (18) will converge to an equilib-
rium of the limiting system (19). ¤

In the next pictures we illustrate the interplay between the marriage and
the separation rate with the dynamics of the disease and show how, under
some conditions, the isolation from sexual activity increases the likelihood of
having a disease free equilibrium in an endemic population. For some of the
parameters we will use the data from the 2000 U.S. Census. In that year,
the birth rate per couple was β = 0.07338. The mortality rates, computed
as reciprocals of life expectancy at birth were

µf = 0.01258 and µm = 0.01350.

Since in this simulation we are going to use a common death rates for both
genders, we will consider an average value µ = 0.01304. We restrict also the
range of the other parameters to the interval [0, 0.2]. In the first picture we
show the feasible region of the possible values taken by the marriage and
separation rate so that we have a positive stable population. In the second
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graph we add the restriction that the disease is endemic, i.e. the region
defined by

R0 > 1 and condition (13).
Finally, in all other pictures we add the condition for the stability of the
disease free equilibrium induced by the abstained groups, i.e. we plot the
region defined by

R0 > 1, Rs
0 < 1 and condition (13),

for several values of the isolation rate ν.
In the first figure we can see how the the endemic condition R0 > 1

imposes lower bounds on both the marriage and the separation rate.

Remark 5.3. As it is expected, if the isolation rate ν is very small, for a
given value of the marriage rate ρ the interval of existence for the separation
rate δ is very small as well. This is because the two thresholds R0 and Rs

0

are equal if ν = 0. As ν increases, the interval for δ becomes larger up to
a maximum, however, if ν continues to increase, the condition of existence
of a stable positive population becomes more restrictive and , eventually, the
population becomes extinct due to the lack of reproduction. One can see in
the last figure that the left boundary of the (δ, ρ) domain is shifted to the
right and its slope becomes smaller with larger values of ν meaning that the
existence condition (13) becomes more restrictive.

r
0 0.05 0.10 0.15 0.20

d

0

0.05

0.10

0.15

0.20

r
0 0.05 0.10 0.15 0.20

d

0

0.05

0.10

0.15

0.20

(a) (b)

Figure 5. (a) Existence of the positive interior equilibrium,
(b) the endemic case R0 > 1 .
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Figure 6. (a) ν = 0.009, (b) ν = 0.02, (c) ν = 0.04,
(d) ν = 0.06, (e) ν = 0.08, (f) ν = 0.1.

6. Conclusions

We introduced a two-sex logistic model with non-linear mortality and used
it to study the influence of the non-reproductive groups on the population
dynamics as a continuation of the work initiated by Milner in [6]. We found
that the conditions that need to be imposed on the parameters to ensure
the logistic behavior are similar to the ones derived by Castillo-Chavez and
Huang for a similar model with non-linear birth and separation rate. This
is true for both the demographic model that includes only the females males
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and couples as well as for the demographic model with the non-reproductive
groups. In the latter case we proved only the global stability of the extinction
equilibrium. For the interior equilibrium we run approximately one thousand
numerical examples based on the Latin hypercube sampling in order to be
able to conjecture that it is also locally asymptotically stable. We used the
demographic model with isolation from reproduction to analyze the impact
of abstaining from sexual activity on the evolution of a persistent sexually
transmitted disease. This was a continuation of our previous work using
one-sex S-I type models [8]. We found that, just as in the one-sex case, the
isolation from sexual activity has both a demographic and an epidemiological
impact in the sense that the isolated group can induce a stable disease
free equilibrium in an otherwise endemic population. For several particular
cases we managed to prove that the stability is also global. We also found
that, under some conditions, the total population size may be greater in the
presence of the isolated groups, provided that they do manage to eliminate
the disease and that the reproductive number of the infected couple is very
low. This is of course a consequence of having a disease without recovery
and having the mechanism of couple formation/separation responsible for
both the population growth and the disease transmission.
One limitation of the epidemic model is that it does not include people who
are non-reproductive but sexually active. We omitted this class to keep our
model as simple as possible and to compare the results with those from
one-sex models analyzed in [8]. The distinction between sexually active and
non-reproductive and sexually inactive will be treated in an upcoming paper
using both one-sex and two-sex models. Future research may also take into
consideration age structure, treatment, vertical transmission , or recovery
from the disease.
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