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We describe several population models exposed to a mild life-long sexually transmitted dis-
ease, i.e. without significant increased mortality among infected individuals and providing no
immunity/recovery. We then modify these models to include non-reproductive groups con-
sisting of those isolated from sexual contact and those who are sexually active but infertile
due to choice, medical or other reasons. We analyze the potential effect on the dynamics of
the population. We are interested in how the isolated class may curb the growth of the in-
fected group while keeping the healthy population at acceptable levels. We also analyze the
difference between being sexually active and abstained within the non-reproductive class and
its impact on the epidemic reproductive number and the nature of the bifurcation around the
disease-free equilibrium. We provide a comparison with our models introduced in a previous
paper which include only the isolated from sexual contact class.
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1. Introduction

The dynamics of a population is influenced primarily by the long-term or permanent
changes in the fertility and mortality . One factor with a long-term effect on popu-
lation growth is the segregation of reproductive individuals into non-reproductive
classes represented by portions of the general population who by choice, social or
medical reasons remain childless for life.

In [4] Milner introduced several demographic exponential and logistic models,
both one-sex and gender structured, that include non-reproductive groups. These
models do not include the temporary isolation from reproduction exhibited by peo-
ple who voluntarily postpone having children through birth control. They, rather,
take into account individuals who, for any reason, enter the isolated groups and
remain there forever. Several examples are provided by same-sex isolation groups
such as prisoners, certain religious groups or life-long homosexual groups. Per-
manent sterility provides a medical cause for being non-reproductive while other
individuals simply choose to remain without progeny for life.

A similar analysis of these models, also incorporating a sexually transmitted
disease that does not increase mortality, was performed by D. Maxin and F.A.
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Milner in [3]. An example of an incurable yet mild disease is herpes simplex type
2 (HSV-2).

However, in this research we are not proposing models for herpes or any other
specific STD. Our intention is to analyze how much and in what form isolation
from reproduction alters the demographic trend in general and the spread of the
disease in particular in a population exposed to a sexually transmitted disease.
In [3] we considered the sexually abstained class only and one of the main results
was that the isolation from sexual contact can induce the stability of the disease-
free equilibrium in an otherwise endemic situation, keeping the total population
bounded away from zero. We showed that there is a range of the isolation rates that
produces enough quarantine protection while the undesirable side effect of reducing
the size of the newborns is small enough to maintain a reasonable population size.

In this paper we analyze the more realistic situation that incorporates groups of
individuals who are non-procreating but are sexually active in addition to those
who abstain from all sexual contact. A surprising result is that, by incorporating
the sexually active and non-reproductive groups, the disease-free stability range
for the infection rate can be larger than the one obtained in the presence of the
abstained class only. Furthermore, we study the epidemiological impact of isolation
from reproduction alone, i.e. without the abstinent individuals. Abstinence acts also
as quarantine and recovery from the infection, both effects being well established in
the literature such as [2]. By including only sexually active groups, we can measure
the potential of isolation from reproduction in curbing the disease spread.

We propose a logistic model with non-linear mortality to account for these two
distinct classes of people who become permanently non-reproductive:

• non-reproductive, sexually active, usually represented by individuals who more
or less often engage in sexual activity while they maintain their decision not to
have offspring, and

• abstained, or sexually inactive.

The paper is structured as follows: in Section 2 we introduce the logistic model
with both the abstained and the non-reproductive groups and we derive an ex-
tinction threshold. In all subsequent sections we assume that the total population
does not decline to zero regardless of its initial size. In Section 3 we compute the
epidemic reproductive number and derive a similar condition on the infection rates
as in [3] that ensures the stability of the disease-free equilibrium (DFE). We ana-
lyze the change in this condition when adding the sexually active non-reproductive
class to the model that already has the abstained one. The endemic steady state
is treated in Section 4 for one particular model that includes only the sexually
active non-reproductive classes and assumes equal isolation rates for susceptibles
and infected individuals. We conclude in Section 5 with an analysis of the Center
Manifold corresponding to the situation when the epidemic reproductive number
is equal to 1 that gives an explanation of the impact of assuming different isolation
rates for susceptibles and infected.

2. The model

We consider 5 classes of individuals according to their status with respect to them
being infected, non-reproductive, or isolated from sexual contact:

• Sr, Sn: the susceptibles, reproductive and non-reproductive,
• Ir, In: the similar infectious classes,
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• A: the isolated from sexual contact, healthy or infected.

The total population is, therefore:

P (t) = Sr(t) + Sn(t) + Ir(t) + In(t) + A(t),

and the logistic death rate will be denoted

µ̄(P ) = µ + bP.

The other parameters are:

• β, is the per capita birth rate, and we consider all newborn to be initially repro-
ductive,

• λ1 and λ2, the infection rates of the reproductive and sexually active non-
reproductive individuals,

• α1 and α2, the transition rates into the sexually active non-reproductive groups,
• ν1 and ν2, the transition rates from Sr and Ir into the abstained class A and
• γ1 and γ2, the transition rates from Sn and In into the abstained class A.

The model is as follows:





S′r = β(Sr + Ir)− λ1SrIr − λ2SrIn − (α1 + ν1)Sr − µ̄(P )Sr,

S′n = α1Sr − λ1SnIr − λ2SnIn − γ1Sn − µ̄(P )Sn,

I ′r = λ1SrIr + λ2SrIn − (α2 + ν2)Ir − µ̄(P )Ir,

I ′n = α2Ir + λ1SnIr + λ2SnIn − γ2In − µ̄(P )In,

A′ = ν1Sr + ν2Ir + γ1Sn + γ2In − µ̄(P )A.

(1)

The system is well-posed and the positive invariance of R5
+ can be established

using standard methods. Moreover, due to the presence of the logistic death rate
µ̄(P ) the solution is bounded for all time t.

We consider only one abstained class A to keep the model simple and also because
any permanently infected individual in it will no longer spread the disease. Another
pertinent remark is that once a steady state is reached with Ir = 0 and In = 0, the
abstained class A will necessarily contain healthy people only.

We now show that the total population declines to zero if the non-reproductive
rates ν1, ν2, α1 and α2 are too large when compared with the natural growth rate.

In our previous paper [3] that considers only the sexually abstained class A, we
found that the extinction equilibrium is globally stable if

β − µ < min{ν1, ν2},

and it is locally asymptotically stable if

β − µ < ν1.
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A similar result holds for the model analyzed in this paper:

Proposition 2.1:
The extinction equilibrium (0, 0, 0, 0, 0) satisfies:

• If β − µ < min{α1 + ν1, α2 + ν2} the extinction equilibrium is globally asymptot-
ically stable,

• If β − µ > α1 + ν1 the extinction equilibrium is unstable and
• If β − µ < α1 + ν1 the extinction equilibrium is locally asymptotically stable

and the total population P (t) declines to zero or stays bounded away from zero
depending on the initial conditions in (1).

Proof : To prove the global stability condition, we use a suitable bounding equa-
tion for Sr + Ir:

(Sr + Ir)′ ≤ β(Sr + Ir)−min{α1 + ν1, α2 + ν2}(Sr + Ir)− (µ+ b(Sr + Ir))(Sr + Ir).

This is in fact a logistic equation in Sr + Ir that declines to zero whenever

β − µ < min{α1 + ν1, α2 + ν2}.

Summing up all the equations of (1) we obtain the following ODE for the total
population P :

P ′ = β(Sr + Ir)− (µ + bP )P.

Since

lim
t→∞(Sr(t) + Ir(t)) = 0,

for any ε > 0 we can choose a time t0 such that

Sr(t) + Ir(t) < ε for every t > t0.

It follows that

P ′ ≤ βε− (µ + bP )P ≤ βε− µP whenever t > t0.

Integrating this inequality, we obtain the following upper bound for P (t):

P (t) ≤ βε

µ
+

[
P (t0)− βε

µ

]
e−µ(t−t0), whenever t > t0.

We now have two cases: If

P (t0)− βε

µ
≤ 0 then P (t) ≤ βε

µ
,

otherwise wee can choose t big enough so that e−µ(t−t0) < ε, i.e.

t∗ = max
{

t0, t0 − ln ε

µ

}
,
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and the upper bound computed above becomes

P (t) ≤
[
β

µ
+ P (t0)− βε

µ

]
ε whenever t > t∗.

In both cases, since ε can be chosen arbitrarily small, this proves the global
stability of the extinction equilibrium in the conditions stated in the proposition.

The local stability threshold comes from analyzing the Jacobian of (1) evaluated
at the origin:

J [0, 0, 0, 0, 0] =




β − µ− α1 − ν1 0 β 0 0
α1 −µ− γ1 0 0 0
0 0 −µ− α2 − ν2 0 0
0 0 α2 −µ− γ2 0
ν1 γ1 ν2 γ2 −µ.




.

All its eigenvalues are negative provided that

β − µ− α1 − ν1 < 0.

¤

Remark 1 : Note that the global stability condition in this proposition is only
sufficient but not necessary as shown in the example below.

If α2 + ν2 < β − µ < α1 + ν1 the total population declines to zero only if P (t)
starts close enough to the origin. Furthermore, there exists two positive steady
states which are difficult to compute in general. One of them is unstable and
another one is locally asymptotically stable. In the next figure we illustrate this by
plotting the total population P (t) for several values of the initial population size
P (0) in order to emphasize the basins of attraction of the extinction equilibrium
and that of the stable interior steady state.
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Figure 1. Case of two positive steady states.

β = 0.01442 µ = 0.01303 λ = 0.00075 ν1 = 0.008 ν2 = 0.0002 α1 = α2 = 0.0002
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It follows from this proposition that the net reproductive number for a population
that includes isolation from reproduction is R = β

µ+α1+ν1
which represents the

average offspring production from susceptibles during their expected reproductive
life-time. Under normal conditions the total population remains bounded away
from zero unless catastrophic changes occur in the natural mortality and fertility.
Consequently, throughout this paper, we will assume

R > 1 or β − µ− α1 − ν1 > 0.

3. The disease-free equilibrium and the epidemic reproductive number

In this section we establish a threshold condition on the vital parameters that
separates the disease-free steady state from an endemic situation. The system (1)
admits the following disease-free equilibrium (DFE):

S̄r =
µ∗

β
P̄ , S̄n =

α1µ
∗

β(µ∗ + γ1)
P̄ ,

Īr = 0, Īn = 0, and Ā =
[
ν1

β
+

α1γ1

β(µ∗ + γ1)

]
P̄ ,

where

P̄ = S̄r + S̄n + Ā =
β − µ− α1 − ν1

b
and µ∗ = β − α1 − ν1.

To study the stability of the DFE we are going to use a method provided by
van den Driessche and Watmough in [1] based on the next generation matrix. This
method is considerably easier than computing the eigenvalues of J [S̄r, S̄n, Īr, Īn, Ā]
because it restricts the analysis to the equation corresponding to the infected
classes, which reduces the dimension of the problem. We first need to write our
system in the form

xi
′ = Fi(x)− Vi(x),

where F denotes the rate of appearance of new infections, which in our case is
represented by the terms

λ1SrIr + λ2SrIn and λ1SnIr + λ2SnIn.

In general we need only consider the rate of appearance of new infections in the ex-
pression of F , so we do not include α2Ir, ν2Ir and γ2In in F because they represent
a transfer of already infected individuals from one compartment to another.

Remark 1 : Note that a “disease-free” equilibrium in our model neglects the in-
fected people that are part of the abstained class A. In other words, we do not
consider A as being an infected compartment although A does contain infected
and healthy abstained people. However, the abstained people do not have any
epidemiological effect on the population since there is no transfer back from the
abstained people into the sexually active groups. As soon as Ir and In approach
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zero, the remaining infected people in the abstained class A will eventually disap-
pear through natural mortality. Consequently, at the disease-free steady state, the
abstained class A contains healthy people only.

In order to apply the method in [1] we need to verify that the DFE is stable in
the absence of the disease. Without the infected groups, the system (1) becomes





S′r = βSr − (α1 + ν1)Sr − µ̄(P )Sr,

S′n = α1Sr − γ1Sn − µ̄(P )Sn,

A′ = ν1Sr + γ1Sn − µ̄(P )A,

(2)

where P (t) = Sr(t) + Sn(t) + A(t).

Proposition 3.1: In the absence of the disease, the disease-free equilibrium,
(S̄r, S̄n, Ā), is locally asymptotically stable.

Proof : The Jacobian of (2) is

J(Sr, Sn, A) =




β − α1 − ν1 − µ̄(P )− bSr −bSr −bSr

α1 − bSn −γ1 − µ̄(P )− bSn −bSn

ν1 − bA γ1 − bA −µ̄(P )− bA


 .

At the DFE, we have

P̄ = S̄r + S̄n + Ā =
β − µ− α1 − ν1

b
and µ̄(P̄ ) = β − α1 − ν1.

Therefore,

J(S̄r, S̄n, Ā) =




−bS̄r −bS̄r −bS̄r

α1 − bS̄n −γ1 − µ̄(P̄ )− bS̄n −bS̄n

ν1 − bĀ γ1 − bĀ −µ̄(P̄ )− bĀ


 .

The eigenvalues are the zeros of the characteristic polynomial of J(S̄r, S̄n, Ā) which
is denoted by

f(x) =

∣∣∣∣∣∣

−bS̄r − x −bS̄r −bS̄r

α1 − bS̄n −γ1 − µ̄(P̄ )− bS̄n − x −bS̄n

ν1 − bĀ γ1 − bĀ −µ̄(P̄ )− bĀ− x

∣∣∣∣∣∣
.

Subtracting the third column from the first and the second one, and then, adding
the first two rows to the third one, we obtain the following simpler form for f(x):

f(x) =

∣∣∣∣∣∣

−x 0 −bS̄r

α1 −γ1 − µ̄(P̄ )− x −bS̄n

α1 + ν1 + µ̄(P̄ ) 0 −µ̄(P̄ )− bP̄ − x

∣∣∣∣∣∣
.

It is clear that one eigenvalue is x1 = −γ1 − µ̄(P̄ ) and the other two, x2 and x3,
are the roots of

x2 + [µ̄(P̄ ) + bP̄ ]x + bS̄r[α1 + ν1 + µ̄(P̄ )] = 0.
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However,

x2 + x3 = −µ̄(P̄ )− bP̄ < 0 and x2x3 = bS̄r[α1 + ν1 + µ̄(P̄ )] > 0,

hence all eigenvalues have negative real parts and the DFE is locally asymptotically
stable as claimed. ¤

We now arrange the original system of equations in the following order: Ir, In,
Sr, Sn and A and compute F and V:

F =




λ1SrIr + λ2SrIn

λ1SnIr + λ2SnIn

0
0
0




,

and

V =




α2Ir + ν2Ir + µ̄(P )Ir

−α2Ir + µ̄(P )In + γ2In

−β(Sr + Ir) + µ̄(P )Sr + ν1Sr + α1Sr + λ1SrIr + λ2SrIn

−α1Sr + µ̄(P )Sn + λ1SnIr + λ2SnIn + γ1Sn

−ν1Sr − ν2Ir + µ̄(P )A− γ1Sn − γ2In.




.

Evaluating the Jacobians DF and DV at the DFE we obtain the following block
matrices:

DF =
(

F 0
0 0

)
, DV =

(
V 0
J1 J2

)
.

where

F =
(

λ1S̄r λ2S̄r

λ1S̄n λ2S̄n

)
,

and

V =
(

µ̄(P̄ ) + α2 + ν2 0
−α2 µ̄(P̄ ) + γ2

)
.

Cf. [1], the eigenvalues of J2 have positive real part and V is non-singular. The
epidemic reproductive number, R0, is then defined as the spectral radius of FV −1.
Denoting µ∗ = µ̄(P̄ ) we obtain

V −1 =

(
1

µ∗+α2+ν2
0

α2
(µ∗+γ2)(µ∗+α2+ν2)

1
µ∗+γ2

)
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and

FV −1 =

(
λ1S̄r

µ∗+α2+ν2
+ α2λ2S̄r

(µ∗+γ2)(µ∗+α2+ν2)
λ2S̄r

µ∗+γ2

λ1S̄n

µ∗+α2+ν2
+ α2λ2S̄n

(µ∗+γ2)(µ∗+α2+ν2)
λ2S̄n

µ∗+γ2

)
.

The biological interpretation of the entries of V −1 is as follows:

• 1
µ∗+α2+ν2

represents the average time spent by a newly introduced infected re-
productive individual in the Ir class during his life time,

• α2
µ∗+α2+ν2

is the fraction of infected reproductive people that move into the iso-
lated class In, therefore the (2, 1) entry represents the average time spent by an
infected reproductive individual into the In class during his life time,

• the (1, 2) and (2, 2) entries simply mean that a non-reproductive infected indi-
vidual will stay forever in either In or A class during his lifetime, i.e. there is no
transition back from In and A to Ir.

A straightforward computation shows that det
(
FV −1

)
= 0, hence

R0 = Tr
(
FV −1

)
=

[
λ1

µ∗ + α2 + ν2
+

α2λ2

(µ∗ + γ2)(µ∗ + α2 + ν2)

]
S̄r +

λ2S̄n

µ∗ + γ2
.

The first two terms of R0 represent the secondary infections of susceptible re-
productive individuals who either remain reproductive life-long or eventually be-
come non-reproductive and the last term represents the secondary infections of
non-reproductive susceptible individuals. Hence the DFE is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1.

In [3] we showed that the group isolated from sexual contact can eliminate the
infected group while keeping the healthy group bounded away from zero: if λ is
within the range indicated below,

β

K
< λ <

β − ν1 + ν2(
K − ν1

b

) (
1− ν1

β

) , (3)

where

K =
β − µ

b
,

then the DFE is stable.
Using the notation in this paper, (3) can be written as

β(µ∗ − µ)
P̄ (µ∗ − µ + α1 + ν1)

< λ <
β

P̄

(µ∗ − µ)(µ∗ + α1 + ν2)
(µ∗ + α1)(µ∗ − µ + α1)

. (4)

The interpretation of (3) is the following:
If λ satisfies the left-hand side bound, then the disease is endemic in the absence
of the isolated group; whereas if λ also satisfies the right-hand side bound, then
the DFE is stable. The question now arises whether a similar result can be derived
in the case of the presence of both non-reproductive but sexually active groups
represented by Sn and In together with the isolated-from-sexual-contact group A.
We will show that not only a similar result holds but also that, under certain
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conditions, the range of DFE-stability for λ is even larger than before. This is a
counter-intuitive effect because one would expect that the sexually active group can
contribute only to the disease spread since there is no contribution to the healthy
class from Sn and In.

We first substitute Sr and Sn in R0 with µ∗P̄
β and α1µ∗P̄

β(µ∗+γ1)
respectively. After

rearranging the terms, we observe that the DFE stability condition, i.e. R0 < 1,
together with the assumption that the disease is endemic in the absence of the
non-reproductive groups can be written as

β

K
< λ1 and λ1 +

[
α1(µ∗ + α2 + ν2) + α2(µ∗ + γ1)

(µ∗ + γ1)(µ∗ + γ2)

]
λ2 <

β(µ∗ + α2 + ν2)
µ∗P̄

. (5)

This condition reconciles with (3) because if we keep in the model only the groups
isolated from sexual contact then, after we replace α1 = α2 = 0, λ2 becomes
irrelevant, and one obtains precisely (3).

In order to compare the range of the infection rate in (5) with the one in (3) or
(4) we will assume that incidence of infection is the same for both reproductive
and non-reproductive people, i.e. λ1 = λ2 = λ. Then (5) becomes

β

K
< λ <

β(µ∗ + γ1)(µ∗ + γ2)(µ∗ + α2 + ν2)
µ∗P̄ [(µ∗ + γ1)(µ∗ + α2 + γ2) + α1(µ∗ + α2 + ν2)]

. (6)

If the range of λ in (6) is greater than the range of λ in (4) we can conclude that
there is a threshold for λ which shows that in the presence of the sexually active
non-reproductive class the DFE is stable whereas in the absence of it the disease
is endemic. In other words we would like to verify whether it is possible for λ to
satisfy

β

P̄

(µ∗ − µ)(µ∗ + α1 + ν2)
(µ∗ + α1)(µ∗ − µ + α1)

< λ <
β(µ∗ + γ1)(µ∗ + γ2)(µ∗ + α2 + ν2)

µ∗P̄ [(µ∗ + γ1)(µ∗ + α2 + γ2) + α1(µ∗ + α2 + ν2)]
. (7)

This is equivalent to

A :=
(µ∗ + γ1)(µ∗ + γ2)(µ∗ + α2 + ν2)(µ∗ + α1)(µ∗ + α1 − µ)

µ∗(µ∗ − µ)(µ∗ + α1 + ν2) [(µ∗ + γ1)(µ∗ + α2 + γ2) + α1(µ∗ + α2 + ν2)]
> 1. (8)

To simplify the interpretation of the above threshold, let us assume that the tran-
sition rates into the sexually active but non-reproductive classes are equal, i.e.

α1 = α2 = α.

Then (8) becomes

A =
(µ∗ + γ1)(µ∗ + γ2)(µ∗ + α)(µ∗ + α− µ)

µ∗(µ∗ − µ) [(µ∗ + γ1)(µ∗ + α + γ2) + α(µ∗ + α + ν2)]
> 1. (9)

Remark 2 : Notice that the left-hand side of the inequality (9) is decreasing in
ν2 and convergent to zero as ν2 →∞. Thus, (9) has an interesting interpretation.
If we analyze the range of λ in (3) we notice that a bigger ν2 will extend the
stability range of the infection rate for the disease-free equilibrium in the model
that only includes the abstained classes analyzed in [3]. This is because abstained
infected individuals quarantine themselves through isolation. On the other hand,
the above inequality suggests, to the contrary, that, if the infected abstinence rate
ν2 increases above a certain threshold, then A < 1 and the stability range of
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λ for the disease-free steady state will not become larger. This shows that the
ability of the non-reproductive sexually active group to decrease the size of the
epidemic reproductive number can be stronger than the similar effect created by
the quarantine through abstinence of reproductive infected individuals.

Data from the U.S. Census 2000 shows that the per capita birth rate is approxi-
mately β = 0.01442 and the mortality rate µ = 0.01303. Assuming equal isolation
rates for both healthy and infected reproductive people, we have the following
restriction on these rates that ensures the population will not decline to zero:

α + ν1 < β − µ = 0.00139.

For simplicity, we will also assume in this example that the transition rates into
the abstained class A are independent of the reproductive status of any given
individual, i.e.

γ1 = ν1 and γ2 = ν2

The ratio between the two bounds of λ in (7) becomes

A =
(µ∗ + ν1)(µ∗ + ν2)(µ∗ + α)(µ∗ + α− µ)
µ∗(µ∗ + α + ν1)(µ∗ + α + ν2)(µ∗ − µ)

. (10)

It is difficult to estimate the transition rates α, ν1 and ν2 from real data since
the reasons for being non-reproductive, whether sexually active or abstained, are
not part of the usual census collection of information. Furthermore, being childless
by personal choice or life style reasons is evidently a private undertaking unlikely
to be accurately reflected in statistical data. However, one can reasonably assume
that α > ν1 and α > ν2 since there are, in general, more sexually active non-
reproductive individuals than those who are abstained from sexual contact. If we
choose, for reference, α = 0.001, ν1 = 0.0002 and ν2 = 0.0008 then µ∗ = 0.01322
and

A ≈ 5.5,

meaning that, with the presence of the sexually active non-reproductive groups,
the infection rate λ could be more than 5 times higher and still be within the range
of DFE-stability.

Below we provide a numerical example to illustrate this result. All graphs pre-
sented below use logarithmic scale for better clarity. Fig.2 shows an example when
the disease is eliminated by the abstained group A in the absence of the sexually
active non-reproductive groups, i.e. α1 = α2 = 0. By increasing 5 times the infec-
tion rate λ and still in the absence of the sexually active non-reproductive groups,
we have an endemic situation as seen in Fig.3. Finally, in Fig.4 we see the role of
the sexually active non-reproductive groups in causing the stability of the disease-
free equilibrium. We chose the transition rate into the isolated class α = 0.001, and
the same common infection rate as in Fig.3, λ1 = λ2 = 0.000075, which satisfies
condition (7).
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β = 0.01442 µ = 0.01303 λ = 0.000075 ν1 = 0.0002 ν2 = 0.0008 α = 0.001

4. The interior steady state in the absence of the abstained group

In this section we study the stability of the interior equilibrium in the particular
case λ1 = λ2 = λ, α1 = α2 = α and in the absence of the abstained group
A, i.e. ν1 = ν2 = 0 and γ1 = γ2 = 0. The abstained groups represent people
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who not only do not reproduce but also quarantine themselves from the infection
through abstinence. If they did reproduce, the effect of the isolation rate ν1 would
be identical to a quarantine effect and the rate ν2 would be identical to a recovery
with immunity effect, as pointed out in [3]. Based on the result from the previous
section, we are now motivated to analyze in more detail the original model having
non-reproductive and sexually active groups only that are not quarantined from the
disease. Another reason for this approach is given by the fact that, in general, the
majority of the people isolated from reproduction are sexually active and unaware
of whether they are infected or not. With these assumptions, the population’s
behavior is completely independent of the presence of the disease.

The model becomes




S′r = β(Sr + Ir)− λSrIr − λSrIn − αSr − µ̄(P )Sr,

S′n = αSr − λSnIr − λSnIn − µ̄(P )Sn,

I ′r = λSrIr + λSrIn − αIr − µ̄(P )Ir,

I ′n = αIr + λSnIr + λSnIn − µ̄(P )In.

(11)

This system can be reduced to a two-dimensional one that follows the dynamics
of the total reproductive and non-reproductive populations,

R = Sr + Ir and N = Sn + In.

Notice that if we add the first to the third equation and the second to the fourth
we obtain the following reduced system:





R′ = [β − α− µ̄(P )]R,

N ′ = αR− µ̄(P )N,
(12)

where
P (t) = R(t) + N(t).

Below we are going to use the Poincaré-Bendixson theory in R2 to establish the
asymptotic sizes of R(t) and N(t):

Proposition 4.1: The system (12) has an interior steady state which is globally
stable, i.e.

lim
t→∞R(t) =

(
1− α

β

)(
K − α

b

)
and lim

t→∞N(t) =
α

β

(
K − α

b

)

where

K =
β − µ

b
.

Proof : From

R′ < (β − α− µ− bR)R and N ′ < αR− µN

any solution of (12) is bounded in the open set

O =
(
0, max

{
R0, K − α

b

})
×

(
0,

α

µ
max

{
R0,K − α

b

})
,
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where R(0) = R0. Notice that in this set there exists a unique equilibrium of (12):

R∗ =
(

1− α

β

)(
K − α

b

)
and N∗ =

α

β

(
K − α

b

)
.

Furthermore, the trivial state (0, 0) is a saddle since the Jacobian evaluated at the
origin is

(
β − µ− α 0

α −µ

)
,

and we know that β−µ > α by our original assumption. Therefore, any orbit that
starts arbitrarily close to the origin will move away from the origin, except the ones
starting on the nullcline R = 0. Furthermore, the interior equilibrium (R∗, N∗) is
locally asymptotically stable. The Jacobian of (12) evaluated at (R∗, N∗) is

(
β − α− µ̄(P ∗)− bR∗ −bR∗

α− bN∗ −µ(P ∗)− bN∗

)
,

where P ∗ = R∗ + N∗ = β−µ−α
b . Replacing µ̄(P ∗) by β − α, the Jacobian becomes

J =
( −bR∗ −bR∗

α− bN∗ −β + α− bN∗

)
,

with

Tr J = −(β − α)− bP ∗ < 0 and detJ = bβR∗ > 0,

showing that both eigenvalues have negative real part.
Also notice that (12) satisfies Dulac’s criterion

∂

∂R

[
1

RN
(β − α− µ̄)R

]
+

∂

∂N

[
1

RN
(αR− µ̄N)

]
=

= − 1
RN

(
bR + bN + α

R

N

)
< 0,

which eliminates the possibility of periodic solutions or of separatrix cycles and
graphics in O. From these the global stability of the interior steady state follows.
¤

We can now use the theory of asymptotically autonomous systems established
by Thieme and Castillo-Chavez in [5] and [6] to study the behavior of the original
system based on the reduced one in R and N . Using the previous proposition
we can return to our original system (11) to write the last two equations as an
asymptotically autonomous system in Ir and In.
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I ′r = [λR− α− µ̄(P )]Ir + λRIn − λIrIn − λI2
r := f(t, Ir, In)

I ′n = (α + λN)Ir + [λN − µ̄(P )]In − λIrIn − λI2
n := g(t, Ir, In).

(13)

This is an asymptotically autonomous system whose limiting system is





I ′r = (λR∗ − β)Ir + λR∗In − λIrIn − λI2
r := f̄(Ir, In)

I ′n = (α + λN∗)Ir + (λN∗ − β + α)In − λIrIn − λI2
n := ḡ(Ir, In).

(14)

The limiting system (14) has two steady states:
the trivial (0, 0) corresponding to a disease-free equilibrium in the original system
and an interior one:

I∗r =
(

1− α

β

)(
K − α

b

)[
1− β

λ
(
K − α

b

)
+ α

]
,

I∗n =
α

β

[(
K − α

b

)
− β(β − α)

λ2(K − α
b ) + λα

]
.

If

λ <
β − α

K − α
b

,

both I∗r and I∗n are negative and the only steady state of (14) is (0, 0), whereas if

λ >
β − α

K − α
b

,

then (0, 0) is unstable and (I∗r , I∗n) is the only interior steady state. Notice that
this is consistent with the epidemic reproductive number computed in the previous
section. If we replace α1 = α2 = α, γ1 = γ2 = 0 and ν1 = ν2 = 0 in R0 then,

R0 =
λ

(
K − α

b

)

β − α
.

Proposition 4.2: Every solution of (13) asymptotically approaches the trivial
equilibrium (0, 0) if λ < β−α

K−α

b

and (I∗r , I∗n) otherwise.

Proof : Notice that if we sum the equations of the limiting system (14) we obtain
the following equation for the sum of the two unknowns, I(t) = Ir(t) + In(t):

I ′ =
[
λ
(
K − α

b

)
− β + α

]
I − λI2.

This is a logistic equation and we thus have

I(t) → 0 if λ <
β − α

K − α
b

,

and

I(t) → K − α

b
− β − α

λ
otherwise.
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We already know that every solution of (13) is bounded in O. According to [5]
and [6], in order to use the Poincaré-Bendixson-type trichotomy for (13) we must
show that the closure of any possible periodic orbit or graphic of (14) is included
in the open set O. Noice that there is no orbit tangent to either Ir = 0 or In = 0.
For example it is impossible for (Ir, In) to be arbitrarily close to a point (0, a) with
a > 0 because I ′r ≈ λR∗a > 0. Similarly, (Ir, In) cannot approach a point (a, 0)
with a > 0 since I ′n ≈ (α + λN∗)a > 0. Furthermore, there can be no separatrix
cycle including the origin because this would imply that there is a solution which
starts from a positive initial datum and declines to zero and a solution that moves
away from zero if it starts close to the origin. This is impossible for two reasons:
If λ < β−α

K−α

b

, then (0, 0) is a stable node; hence, starting close enough to the
origin all solutions must decline to zero from any direction. On the other hand,
if λ > β−α

K−α

b

, then we know that I(t) approaches a positive limit so there is no
solution that declines to zero.

In other words neither Ir nor In can be arbitrarily close to Ir = 0 or In = 0.
Hence, any possible periodic orbit or graphic and their closure is included in the
open set mentioned above. However, the existence of these types of solutions is
ruled out by Dulac’s criterion applied on O:

∂

∂Ir

[
1

IrIn
f̄(Ir, In)

]
+

∂

∂In

[ 1
IrIn

ḡ(Ir, In)
]

=

= − 1
IrIn

[
λIr + λIn + λR∗ In

Ir
+ (α + λN∗)

Ir

In

]
< 0.

Thus our system satisfies the Poincaré-Bendixson-type trichotomy established
by Thieme in [5] for asymptotically autonomous systems. Therefore, as shown in
[6], the only possibility is that any solution of (13) will converge to an equilibrium
of the limiting system (14).

¤

One might be tempted to conjecture that the global behavior of the system in
the case α1 6= α2 is similar. We believe that global stability of the endemic state
holds as well in this case, although we did not find a Lyapunov function for the
most general system. On the other hand, an analysis of the Center Manifold of
the disease-free steady state when R0 = 1 reveals that for different isolation rates
we may obtain unstable endemic steady states for R0 < 1. This will also give
an interpretation of the role of α2 in the nature of this bifurcation. One possible
explanation of why α2 is not present in the epidemic reproductive number is given
by the fact that if a single infected individual is introduced in a population of
susceptibles, it is irrelevant in the beginning whether he reproduces or not since,
by being sexually active, his force of infection remains unchanged.

5. The existence of sub-threshold endemic equilibria near R0 = 1

As pointed out by van den Driessche at al. in [1], the analysis of the center manifold
near the bifurcation point R0 = 1 may show the existence of sub-threshold equi-
libria. The epidemiological interpretation is that although R0 < 1 and the DFE
is locally asymptotically stable, non-trivial endemic steady states may still exist,
meaning that even small perturbations could lead to an epidemic.
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The purpose of this section is to show that having different isolation rates for
the healthy and the infected group may change the dynamics in the sense that if
α2 is too low, sub-threshold endemic equilibria can occur.

We consider the original model (1) without the abstained class A:




S′r = β(Sr + Ir)− λSrIr − λSrIn − α1Sr − µ̄(P )Sr,

S′n = α1Sr − λSnIr − λSnIn − µ̄(P )Sn,

I ′r = λSrIr + λSrIn − α2Ir − µ̄(P )Ir,

I ′n = α2Ir + λSnIr + λSnIn − µ̄(P )In.

(15)

Van den Driessche and Watmough proved in [1] that, when R0 = 1, the Jaco-
bian of (15) evaluated at the DFE has exactly one zero eigenvalue while the other
eigenvalues have negative real part. Therefore they were able to analyze the corre-
sponding one-dimensional center manifold and provide a useful characterization of
the nature of this bifurcation. We state their result below:

Consider the following system that satisfies all the hypotheses in [1]

x′ = f(x, ε),

where ε is a bifurcation parameter chosen so that ε > 0 if R0 > 1 and ε < 0 if
R0 < 1. Denoting the DFE by x0, we define the following constants:

ā =
v

2
Dxxf(x0, 0)w2, (16)

b̄ = vDxεf(x0, 0)w, (17)

where v and w are the left and right null vectors corresponding to the zero eigen-
value, chosen so that vw = 1. Theorem 4 of [1] states that, if the zero eigenvalue
of Dxf(x0, 0) is simple and if b 6= 0, then there exists δ > 0 such that:

• if ā < 0, then there are locally asymptotically stable endemic equilibria near x0

for 0 < ε < δ,
• if ā > 0, then there are unstable endemic equilibria near x0 for

−δ < ε < 0.
To apply this result to our model we consider first the Jacobian of (15):




β − µ̄(P )−α1−λ(Ir+In)−bSr −bSr β−(λ + b)Sr −(λ+b)Sr

α1−bSn −µ̄(P )−λ(Ir+In)−bSn −(λ+b)Sn −(λ+b)Sn

λ(Ir+In)−bIr −bIr −µ̄(P )−α2+λSr−bIr λSr−bIr

−bIn λ(Ir+In)−bIn α2+λSn−bIn −µ̄(P )+λSn−bIn.


 .

The disease-free equilibrium is

(S̄r, S̄n, Īr, Īn) =
[(

1− α1

β

) (
K − α1

b

)
,
α1

β

(
K − α1

b

)
, 0, 0

]
.

Setting ν1 = ν2 = 0 in (7), we find that the DFE is asymptotically stable provided
that

β

K
< λ <

β − α1

K − α1
b

.

Thus, the epidemic reproductive number can be written as

R0 =
λ

λ∗
where λ∗ =

b(β − α1)
(β − µ− α1)

.
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We have that R0 < 1 if λ < λ∗ and R0 > 1 if λ > λ∗. In conclusion, we can take
as bifurcation parameter

ε = λ− λ∗

and apply the result from [1] described above.
We substitute λ with ε + λ∗ in (15) and compute the Jacobian evaluated at the

DFE with ε = 0:




β−µ−α1− 2bS̄r − bS̄n −bS̄r β−(λ∗ + b)S̄r −(λ∗+b)S̄r

α1−bS̄n −µ−bS̄r−2bS̄n −(λ∗+b)S̄n −(λ∗+b)S̄n

0 0 −µ−α2−bS̄r−bS̄n+λ∗S̄r λ∗S̄r

0 0 α2+λ∗S̄n −µ−bS̄r−bS̄n+λ∗S̄n.


 .

The eigenvalues of the above matrix are:

0, α1 − β, α1 − α2 − β, α1 − β + µ.

After a lengthy but straightforward computation we find the following pair of
left and right null vectors corresponding to the zero eigenvalue, denoted by v and
w and chosen such that vw = 1:

v = (v1, v2, v3, v4), and w = (w1, w2, w3, w4)

where

v1 = v2 = 0, v3 = v4 =
α1(β − α1) + βα2

β(β − α1 + α2)
,

w1 =
(β − α1)[3α2

1 + 2α2β + β2 − 2α1(α2 + 2β − µ)− µα2 − βµ]
(β − µ− α1)[α2

1 − β(α1 + α2)]
,

w2 =
α1[3α2

1 + 2β(β − µ) + α2(2β − µ) + α1(−2α2 − 5β + 2µ)]
(β − µ− α1)[α2

1 − β(α1 + α2)]
,

w3 =
(β − α1)2

β(α1 + α2)− α2
1

, and w4 = 1.

The constant b̄ defined as in (17) becomes:

b̄ = K − α1

b
,

which is clearly positive due to our assumption that β > µ + α1. According to the
Center Manifold Theorem and [1], the nature of the bifurcation is characterized by
the sign of ā defined in (16), which in our case is

ā =
bβ(β − α1)[βµ− (β − α1)2 − α2(β − α1)]

[βα2 + α1(β − α1)](β − µ− α1)2
.

Since β > µ + α1 the sign of ā is determined by the following expression:

L(α1, α2) = βµ− (β − α1)2 − α2(β − α1).

Notice that, if α1 = α2 = α, this expression becomes:

L(α, α) = −β(β − µ− α) < 0,

and, according to the theorem from [1] stated above, there exists a stable endemic
equilibrium for R0 > 1. This is no surprise, since we have proved in the previous
section that the endemic steady state is in fact globally stable if R0 > 1.

However, if
α1 6= α2 and L(α1, α2) > 0,

then ā > 0 implying, by the same theorem, that there exist a neighborhood of the
bifurcation point λ∗ where the system admits an unstable endemic steady state
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when R0 < 1. This condition is equivalent to

α1 >
√

β(
√

β −√µ) and α2 <
βµ− (β − α1)2

β − α1
. (18)

In the next figure we show a numerical example based again on the 2000 U.S.
Census data, with β = 0.01442 and µ = 0.01303. The dark region corresponds to
β − µ− α1 > 0 and L(α1, α2) > 0.

Z a1, a2 = 0 Z a1, a2 O 0

a
1

0.0008 0.0009 0.0010 0.0011 0.0012 0.0013

a2

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Figure 5. β = 0.01442, µ = 0.01303

Remark 1 :
One possible interpretation of (18) is the following: if an infective individual is

introduced in a susceptible population and there is no epidemic, i.e. the DFE is
stable, then the infected class remains small while the evolution of the susceptibles
is dominated by β, µ and α1. A higher value of α1 than the above threshold implies
that the contribution from the reproductive infected people to the susceptible class
becomes important and a lower isolation rate α2 maintains a critical number of sus-
ceptibles exposed to the infection, enough to allow the existence of a sub-threshold
endemic steady state.

6. Conclusions

We have extended models developed in [3] to include a more general class of sexually
active but non-procreating people and derived similar thresholds for the infection
rate that lead to the stability of the disease-free equilibrium. The sexually active
class may extend the range of stability for the DFE under certain conditions, which
suggests that the depletion of susceptibles alone could be enough to eradicate the
disease from a population that otherwise would reach an endemic steady state.
Another related result is that the quarantine role provided by the abstinence of
the infected in achieving a disease-free steady state can be less significant than the
isolation from reproduction of the sexually active population. In the case of equal
infection rates for both reproductive and non-reproductive people we managed to
prove global stability of both the DFE and the endemic steady state when R0 < 1
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and R0 > 1, respectively. We also found that different isolation rates play an
important role in the dynamics of the disease. While the isolation rate of infected
people does not impact the epidemic reproductive number R0, it may lead to the
existence of sub-threshold endemic steady states, thus emphasizing the importance
of differences in the reproduction behavior between the infected and the healthy
people.

A more realistic method of analyzing the problem can be achieved by using
demographic gender structured models that include couple formation between in-
fected and healthy individuals who, by separation or death of a partner, provide
a source for newly infected single persons. This is the focus of an upcoming paper
that uses a modified logistic two-sex model with non-linear mortality and including
abstained classes only. In this research we will attempt to establish a similar result
as in [3]. The more general analysis of a gender structured model that also includes
non-reproductive sexually active groups is currently underway and will be reported
later.
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