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We re-visit the recently published paper on a generalization of the two-sex logistic model by
Maxin and Sega [1]. We show that the logistic assumption of a non-increasing birth rate can
be replaced by a more general assumption of a non-increasing ratio between the female/male
birth and mortality rate. In this note we indicate the changes necessary in the proofs of the
theorems in [1] and discuss several situations where this new assumption is useful.

Keywords: logistic model, two-sex, generalization, birth rate

AMS Subject Classification: 92D30

1. Introduction

In [1] we provided a generalization of the two-sex logistic model with and without
pairs without assuming a specific birth and death rate for the individuals. We only
imposed the standard logistic assumptions made on these rates: non-increasing
birth rate and non-decreasing mortality rates for both females and males as
functions of the total population size. These are typical assumptions that capture
the competition for limited resources (whatever those may be) which, in turn,
cause the population to remain bounded. Often modelers assume a constant birth
rate and assume only an increasing mortality rate with the total population.
Similarly (albeit less often) mortality rates are assumed constant but, in that case,
the birth rate needs to be a decreasing function to ensure that the population
remains bounded. This was the approach in the first two-sex logistic model
introduced by Chavez and Huang [2].

After the publication of our paper it was pointed to us that it may be useful
to have a logistic model in which the assumptions made on the birth rate could
be relaxed. Logistic assumptions are typically made on the mortality rate (for
example with larger populations the limited food resources may cause an increase
in the death rate), however, the birth rate may not be subjected to the same effect.
In fact, one can argue that the birth rate could be an increasing function of the
total population by assuming, for example, that, with higher population densities,
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the mating opportunities and, consequently, the birth rate should increase. For
example, pollen limitation in low densities of trees negatively impacts fruit set and
maturation [3]. The Allee effect is another typical example when this assumption
is made. Of course, it is still necessary to assume that, in the long run, the
mortality “takes over” the birth rate in order to still have a logistic model with a
bounded population but, instead of making an assumption on the monotonicity of
the birth rate, we will make such an assumption on the ratio between the birth
and mortality rates and show that all results from [1] still hold. This slightly more
general condition allows more freedom in modeling the birth rate in these models.

In the following sections of this note we provide a brief overview of the models and
the statements of the theorems. These theorems hold under the new assumptions
with only minor adjustments. We will only point out the steps that are different
from the original paper.

The main ingredient of the two-sex models analyzed in [1] is the pair formation
function M described below:

Let F , M denote the number of females and males available for pairing. The
conditions usually imposed on M are:

• positivity: M(F,M) ≥ 0 whenever F ≥ 0, M ≥ 0.

• heterosexuality: M(0,M) =M(F, 0) = 0.

• homogeneity: M(αF, αM) = αM(F,M) for every α ≥ 0.

• monotonicity: M(F1 + F2,M1 + M2) ≥ M(F1,M1) for every F2 ≥ 0 and
M2 ≥ 0.

• consistency: M(F,M) ≤ F and M(F,M) ≤M for every F ≥ 0 and M ≥ 0.

2. The two-sex logistic model with ephemeral pair bonds

The first model analyzed in [1] considers a population where the reproductive
individuals form pairs for mating purposes only (no stable couples).

F ′ = β(P )γfM(F,M)− µf (P )F,

M ′ = β(P )γmM(F,M)− µm(P )M.
(1)

where P = F+M . We assume thatM, µf , µm and β are continuously differentiable
on their domains and positive for P > 0. The mating function M satisfies the
positivity, monotonicity and homogeneity assumptions listed in the Introduction.
In addition we assume:

• non-increasing birth to death female and male ratios:

d

dP

(
β(P )

µf (P )

)
≤ 0 and

d

dP

(
β(P )

µm(P )

)
≤ 0 for every P ≥ 0. (2)

Remark 1 : This is the new assumption that replaces β′(P ) ≤ 0 from [1].

• non-decreasing and positive mortality rates:

µ′f (P ) ≥ 0, µ′m(P ) ≥ 0 and µf (P ) > 0, µm(P ) > 0 for every P ≥ 0.

β is the per-mating birth rate and γf , γm with γf + γm = 1 are the probabilities
that a newborn is female or male, respectively.
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All other notations from [1] are maintained and reproduced here for convenience:

Rf :=
β(0)γf
µf (0)

, Rm :=
β(0)γm
µm(0)

and R :=M(Rf ,Rm),

R∞f := lim
P→∞

β(P )γf
µf (P )

, R∞m := lim
P→∞

β(P )γm
µm(P )

and R∞ :=M
(
R∞f ,R∞m

)
.

Recall also the following identity used several times:

a
∂M
∂x

(a, b) + b
∂M
∂y

(a, b) =M(a, b).

We now state the theorems from [1] and indicate the steps in the proofs that are
different from the original paper:

Theorem 2.1 : If R∞ > 1 the solution of (1) is unbounded in the positive quad-
rant (i.e. no logistic behavior). If R∞ < 1 the solution of (1) is bounded in the
positive quadrant.

The proof of this theorem is identical to the corresponding one in [1] without
any modification.

Theorem 2.2 : Suppose R∞ < 1. If R < 1 the extinction equilibrium is globally
stable. If R > 1 there exists a unique positive equilibrium (F ∗,M∗) that is globally
stable.

This theorem requires some minor adjustments on the lower and upper estimates
used in the original proof and a different Dulac function in the argument that shows
the model does not admit periodic solutions. In the main argument (here and in
other similar theorems) we used minimum or maximum functions such as the one
below with the goal of estimating the ratio h′/h:

h(t) = max{RfM(t),RmF (t)}.

Below we provide an example on how we should modify the estimate under the
new assumption (2):

If h(t) = RmF (t) then

F ′

F
= µf (P )

[
β(P )γf
µf (P )

M
(

1,
M

F

)
− 1

]
< µf (P )

[
β(0)γf
µf (0)

M
(

1,
M

F

)
− 1

]

= µf (P )

[
RfM

(
1,
M

F

)
− 1

]
= µf (P )

[
M
(
Rf ,
RfM
F

)
− 1

]

< µf (P )[M(Rf ,Rm)− 1] = −µf (P )(1−R) < −µf (0)(1−R) < 0 since R < 1.

Similar re-arrangements can be used in all other arguments of this type.
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In the argument where we showed the non-existence of periodic solutions we can
use (instead of 1

FM ) the Dulac function 1
β(P )FM which leads to:

β(P )FM

[
∂

∂F

(
1

β(P )FM
F ′
)

+
∂

∂M

(
1

β(P )FM
M ′
)]

=
β′(P )

β(P )
µf (P )F +

β′(P )

β(P )
µm(P )M + β(P )γf

∂M
∂F

(F,M) + β(P )γm
∂M
∂M

(F,M)

−β(P )γfM
(

1,
M

F

)
− β(P )γmM

(
F

M
, 1

)
− µ′f (P )F − µ′m(P )M.

Now from F ∂M
∂F (F,M) +M ∂M

∂M (F,M) =M(F,M) we use the following substi-
tutions in the expression above:

∂M
∂F

(F,M) = −M
F

∂M
∂M

(F,M) +M
(

1,
M

F

)
and

∂M
∂M

(F,M) = − F
M

∂M
∂F

(F,M) +M
(
F

M
, 1

)
.

With these, we now have

β(P )FM

[
∂

∂F

(
1

β(P )FM
F ′
)

+
∂

∂M

(
1

β(P )FM
M ′
)]

= F

[
β′(P )µf (P )

β(P )
− µ′f (P )

]
+M

[
β′(P )µm(P )

β(P )
− µ′m(P )

]

−β(P )γf
M

F

∂M
∂M

(F,M)− β(P )γm
F

M

∂M
∂F

(F,M)

= β(P )F

[
β(P )

µf (P )

]′
+ β(P )M

[
β(P )

µm(P )

]′

−β(P )γf
M

F

∂M
∂M

(F,M)− β(P )γm
F

M

∂M
∂F

(F,M) < 0.

3. The logistic two-sex model with pair-formation

In this section we present the proofs of the theorems from [1] related to the two-sex
logistic model with pair-formation shown below:
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
F ′ = −µf (P )F + [β(P )γf + δ + µm(P )]C −M(F,M),

M ′ = −µm(P )M + [β(P )γm + δ + µf (P )]C −M(F,M),

C ′ =M(F,M)− [δ + µf (P ) + µm(P )]C.

(3)

where P = F + M + 2C. The couple-formation function M satisfies the same
conditions as the one for (1) with the additional heterosexuality condition

M(0,M) =M(F, 0) = 0, for every F ≥ 0, M ≥ 0.

The model (3) is equivalent to one that follows the dynamics of total females,
males and couples:


x′ = −µf (P )x+ β(P )γfC,

y′ = −µm(P )y + β(P )γmC,

C ′ =M(x− C, y − C)− [δ + µf (P ) + µm(P )]C,

(4)

where x = F + C, y = M + C and P = x+ y.
The relevant threshold quantities are:

Rf :=
β(0)γf
µf (0)

, Rm :=
β(0)γm
µm(0)

, R :=
M(Rf − 1,Rm − 1)

δ + µf (0) + µm(0)
,

R∞f := lim
P→∞

β(P )γf
µf (P )

, R∞m := lim
P→∞

β(P )γm
µm(P )

,

and R∞ := lim
P→∞

1

δ + µf (P ) + µm(P )
M
(
β(P )γf
µf (P )

− 1,
β(P )γm
µm(P )

− 1

)
.

The main results are formulated in the following theorems:

Theorem 3.1 : If R∞f > 1, R∞m > 1 and R∞ > 1 then the solution of (4) is

unbounded. If either R∞f < 1, R∞m < 1 or R∞ < 1 the solution of (4) is bounded
for all time t.

Theorem 3.2 : Suppose either R∞f < 1, R∞m < 1 or R∞ < 1. If either Rf < 1,
Rm < 1 or R < 1 then the extinction steady state is globally stable. Otherwise, the
solution of (4) is bounded away from zero.

The proofs of these two theorems have identical steps as those from [1] or require
small adjustments in the estimates similar to those presented in the previous section
of this note.

Theorem 3.3 : Suppose either R∞f < 1, R∞m < 1 or R∞ < 1. If Rf > 1, Rm > 1

and R > 1 then there exists a unique positive steady state of (4) that is locally
asymptotically stable.
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The only relevant modification in the proof of this theorem concerns the Routh-
Hurwitz criteria in proving the local stability of the interior equilibrium. Recall
also the notations used here:

µ∗f := µf (x∗+y∗), µ∗m := µm(x∗+y∗), P ∗ := x∗+y∗, µ′f := µ′f (P ∗), µ′m := µ′m(P ∗),

β∗ := β(P ∗), β′ := β′(P ∗), Mx :=
∂M
∂x

(x∗−C∗, y∗−C∗) and My :=
∂M
∂y

(x∗−C∗, y∗−C∗).

The Jacobian of (4) is

J(x, y, C) =


−µ′fx

∗ − µ∗f + β′γfC
∗ −µ′fx

∗ + β′γfC
∗ β∗γf

−µ′my∗ + β′γmC∗ −µ′my∗ − µ∗m + β′γfC
∗ β∗γm

Mx − [µ′f + µ′m]C∗ My − [µ′f + µ′m]C∗ −Mx −My − δ − µ∗f − µ
∗
m

 .

Note that β′µ∗f −β∗µ′f ≤ 0, β′µ∗m−β∗µ′m ≤ 0, µ′f ≥ 0 and µ′m ≥ 0. To simplify the

computation of the coefficients of the characteristic polynomial of J(x∗, y∗, C∗) we
will also use the following identities:

γf =
µ∗fx

∗

β∗C∗
, γm =

µ∗my
∗

β∗C∗
,

Mx +My + δ + µ∗f + µ∗m =
1

C∗
(x∗Mx + y∗My).

Denoting the characteristic polynomial as

λ3 + p1λ
2 + p2λ+ p3

then the Routh-Hurwitz conditions become:

p1 = (µ∗f +µ∗m) +
1

C∗
(x∗Mx + y∗My) +

x∗

β∗
(β∗µ′f − β′µ∗f ) +

y∗

β∗
(β∗µ′m− β′µ∗m) > 0.

p2 =
1

β∗C∗
{

(β∗µ′f − β′µ∗f )[x∗(x∗Mx + y∗My) + y∗µ∗mC
∗]

+(β∗µ′m − β′µ∗m)[y∗(x∗Mx + y∗My) + x∗µ∗fC
∗] + β∗C∗(x∗µ′f + y∗µ′m)(µ∗f + µ∗m)

+β∗(x∗µ∗mMx + y∗µ∗fMy) + β∗C∗µ∗fµ
∗
m

}
> 0.

p3 =

(
x∗ + y∗

β∗C∗

)
[β∗µ∗fµ

∗
mC
∗(µ′f + µ′m) + x∗µ∗mMx(β∗µ′f − β′µ∗f )

+y∗µ∗fMy(β
∗µ′m − β′µ∗m)

]
> 0.

A tedious but straightforward computation shows that p1p2− p3 > 0 as well. Thus
(x∗, y∗, C∗) is locally asymptotically stable.

4. Conclusions

In this note we showed that the assumption that the birth rate β(P ) is a decreasing
function of the total population size can be relaxed to a similar assumption on the

ratio between the birth and mortality rates β(P )
µf (P ) and β(P )

µm(P ) . All theorems from [1]

remain valid while their proofs needed only small adjustments. This modification
allows a greater variety in choosing a specific form for the birth rate. In particular,
it allows the use of fertility rates that increase with the total population size which
is an underlying assumption in some cases.
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